Spaces:
Sleeping
Sleeping
Commit
·
bbcbb55
1
Parent(s):
d3910a8
Initial deployment
Browse files- Dockerfile +17 -0
- main.py +597 -0
- requirements.txt +8 -0
Dockerfile
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.11-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
RUN apt-get update && apt-get install -y \
|
| 6 |
+
build-essential \
|
| 7 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 8 |
+
|
| 9 |
+
COPY requirements.txt
|
| 10 |
+
|
| 11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 12 |
+
|
| 13 |
+
COPY main.py
|
| 14 |
+
|
| 15 |
+
EXPOSE 7860
|
| 16 |
+
|
| 17 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
|
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
from contextlib import asynccontextmanager
|
| 4 |
+
from typing import List, Optional, Literal, Dict, Any
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from fastapi import FastAPI, HTTPException
|
| 8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 9 |
+
from pydantic import BaseModel, ConfigDict
|
| 10 |
+
from sentence_transformers import SparseEncoder
|
| 11 |
+
from transformers import AutoTokenizer
|
| 12 |
+
|
| 13 |
+
# --------------------------------------------------------------------------------------
|
| 14 |
+
# Logging
|
| 15 |
+
# --------------------------------------------------------------------------------------
|
| 16 |
+
logging.basicConfig(level=logging.INFO)
|
| 17 |
+
logger = logging.getLogger("main")
|
| 18 |
+
|
| 19 |
+
# --------------------------------------------------------------------------------------
|
| 20 |
+
# Device selection — intentionally NEVER choose MPS for SPLADE due to sparse-op gaps
|
| 21 |
+
# --------------------------------------------------------------------------------------
|
| 22 |
+
|
| 23 |
+
def choose_device() -> str:
|
| 24 |
+
if torch.cuda.is_available():
|
| 25 |
+
return "cuda"
|
| 26 |
+
# Avoid MPS for SPLADE (missing sparse ops). Default to CPU instead.
|
| 27 |
+
return "cpu"
|
| 28 |
+
|
| 29 |
+
DEVICE = choose_device()
|
| 30 |
+
logger.info(f"Selected device: {DEVICE}")
|
| 31 |
+
|
| 32 |
+
# --------------------------------------------------------------------------------------
|
| 33 |
+
# Model loading
|
| 34 |
+
# --------------------------------------------------------------------------------------
|
| 35 |
+
MODEL_ID = "sparse-encoder/splade-robbert-dutch-base-v1"
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def load_sparse_encoder(model_id: str, device: str) -> SparseEncoder:
|
| 39 |
+
"""Load SparseEncoder. Prefer safetensors when available, but fall back to .bin.
|
| 40 |
+
Torch >= 2.6 is required by Transformers to load .bin safely.
|
| 41 |
+
"""
|
| 42 |
+
# Do NOT force safetensors globally; some repos only publish .bin
|
| 43 |
+
os.environ.pop("TRANSFORMERS_USE_SAFETENSORS", None)
|
| 44 |
+
try:
|
| 45 |
+
logger.info(f"Loading Dutch SPLADE model on {device}...")
|
| 46 |
+
m = SparseEncoder(model_id, device=device, model_kwargs={"use_safetensors": True})
|
| 47 |
+
return m
|
| 48 |
+
except OSError as e:
|
| 49 |
+
msg = str(e)
|
| 50 |
+
if "does not appear to have a file named model.safetensors" in msg:
|
| 51 |
+
logger.info("No safetensors in repo; retrying with .bin weights.")
|
| 52 |
+
return SparseEncoder(model_id, device=device)
|
| 53 |
+
raise
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
model: Optional[SparseEncoder] = None
|
| 57 |
+
# Tokenizer for mapping vocab ids -> readable tokens in explanations
|
| 58 |
+
tokenizer: Optional[AutoTokenizer] = None
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
@asynccontextmanager
|
| 62 |
+
async def lifespan(app: FastAPI):
|
| 63 |
+
global model, tokenizer
|
| 64 |
+
try:
|
| 65 |
+
model = load_sparse_encoder(MODEL_ID, DEVICE)
|
| 66 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 67 |
+
logger.info("Model & tokenizer loaded.")
|
| 68 |
+
yield
|
| 69 |
+
except Exception as e:
|
| 70 |
+
logger.error(f"Failed to load model: {e}")
|
| 71 |
+
raise
|
| 72 |
+
finally:
|
| 73 |
+
# Allow GC to clean up if server stops
|
| 74 |
+
pass
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
app = FastAPI(title="Sparse Embedding API", lifespan=lifespan)
|
| 78 |
+
app.add_middleware(
|
| 79 |
+
CORSMiddleware,
|
| 80 |
+
allow_origins=["*"],
|
| 81 |
+
allow_credentials=True,
|
| 82 |
+
allow_methods=["*"],
|
| 83 |
+
allow_headers=["*"],
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# --------------------------------------------------------------------------------------
|
| 87 |
+
# Schemas
|
| 88 |
+
# --------------------------------------------------------------------------------------
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class HealthResponse(BaseModel):
|
| 92 |
+
# Pydantic v2 warns about names starting with model_; allow them explicitly
|
| 93 |
+
model_config = ConfigDict(protected_namespaces=())
|
| 94 |
+
|
| 95 |
+
model_loaded: bool
|
| 96 |
+
model_name: str
|
| 97 |
+
device: str
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class EmbeddingsRequest(BaseModel):
|
| 101 |
+
texts: List[str]
|
| 102 |
+
mode: Literal["query", "document"] = "query"
|
| 103 |
+
normalize: bool = True
|
| 104 |
+
# Keep payloads light; 0/None means no cap
|
| 105 |
+
max_active_dims: Optional[int] = 0
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class EmbeddingRow(BaseModel):
|
| 109 |
+
indices: List[int]
|
| 110 |
+
weights: List[float]
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class EmbeddingsResponse(BaseModel):
|
| 114 |
+
data: List[EmbeddingRow]
|
| 115 |
+
dim: int
|
| 116 |
+
info: Dict[str, Any]
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# --- Similarity API ---
|
| 120 |
+
class SimilarityRequest(BaseModel):
|
| 121 |
+
queries: List[str]
|
| 122 |
+
documents: List[str]
|
| 123 |
+
normalize: bool = True
|
| 124 |
+
max_active_dims: Optional[int] = 0
|
| 125 |
+
top_k: Optional[int] = 5
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class SimilarityHit(BaseModel):
|
| 129 |
+
doc_index: int
|
| 130 |
+
score: float
|
| 131 |
+
text: str
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class SimilarityResponse(BaseModel):
|
| 135 |
+
results: List[List[SimilarityHit]] # one list per query
|
| 136 |
+
info: Dict[str, Any]
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# --- Explain API ---
|
| 140 |
+
class TokenContribution(BaseModel):
|
| 141 |
+
token_id: int
|
| 142 |
+
token: str
|
| 143 |
+
query_weight: float
|
| 144 |
+
doc_weight: float
|
| 145 |
+
contribution: float
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class ExplainRequest(BaseModel):
|
| 149 |
+
query: str
|
| 150 |
+
document: str
|
| 151 |
+
normalize: bool = True
|
| 152 |
+
max_active_dims: Optional[int] = 0
|
| 153 |
+
top_k_tokens: int = 15
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class ExplainResponse(BaseModel):
|
| 157 |
+
score: float
|
| 158 |
+
top_tokens: List[TokenContribution]
|
| 159 |
+
info: Dict[str, Any]
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
# --------------------------------------------------------------------------------------
|
| 163 |
+
# Helpers
|
| 164 |
+
# --------------------------------------------------------------------------------------
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def torch_sparse_batch_to_rows(t: torch.Tensor) -> List[Dict[str, Any]]:
|
| 168 |
+
"""Convert a 2D torch sparse tensor [batch, dim] to list of {indices, weights} per row."""
|
| 169 |
+
if not isinstance(t, torch.Tensor):
|
| 170 |
+
raise TypeError("Expected a torch.Tensor from SparseEncoder")
|
| 171 |
+
if not t.is_sparse:
|
| 172 |
+
# Dense fallback (shouldn't happen with SparseEncoder). Convert per-row.
|
| 173 |
+
t = t.to("cpu")
|
| 174 |
+
rows = []
|
| 175 |
+
for r in t:
|
| 176 |
+
nz = torch.nonzero(r, as_tuple=True)[0]
|
| 177 |
+
rows.append({"indices": nz.tolist(), "weights": r[nz].tolist()})
|
| 178 |
+
return rows
|
| 179 |
+
|
| 180 |
+
# COO expected; coalesce and split by row
|
| 181 |
+
t = t.coalesce() # merge duplicates
|
| 182 |
+
idx = t.indices() # [2, nnz]
|
| 183 |
+
vals = t.values() # [nnz]
|
| 184 |
+
batch_size = t.size(0)
|
| 185 |
+
|
| 186 |
+
rows_out: List[Dict[str, Any]] = []
|
| 187 |
+
row_ids = idx[0]
|
| 188 |
+
col_ids = idx[1]
|
| 189 |
+
|
| 190 |
+
# For each row, mask and gather its entries
|
| 191 |
+
for i in range(batch_size):
|
| 192 |
+
m = row_ids == i
|
| 193 |
+
if torch.count_nonzero(m) == 0:
|
| 194 |
+
rows_out.append({"indices": [], "weights": []})
|
| 195 |
+
continue
|
| 196 |
+
cols_i = col_ids[m].to("cpu")
|
| 197 |
+
vals_i = vals[m].to("cpu")
|
| 198 |
+
rows_out.append({"indices": cols_i.tolist(), "weights": vals_i.tolist()})
|
| 199 |
+
return rows_out
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def top_token_contributions(q_row: Dict[str, Any], d_row: Dict[str, Any], k: int) -> List[Dict[str, Any]]:
|
| 203 |
+
"""Intersect query/doc indices and score tokens by product of weights."""
|
| 204 |
+
q_map = {int(i): float(w) for i, w in zip(q_row.get("indices", []), q_row.get("weights", []))}
|
| 205 |
+
contribs = []
|
| 206 |
+
for i, dw in zip(d_row.get("indices", []), d_row.get("weights", [])):
|
| 207 |
+
i = int(i)
|
| 208 |
+
dw = float(dw)
|
| 209 |
+
qw = q_map.get(i)
|
| 210 |
+
if qw is not None:
|
| 211 |
+
contribs.append((i, qw, dw, qw * dw))
|
| 212 |
+
contribs.sort(key=lambda t: t[3], reverse=True)
|
| 213 |
+
top = contribs[: max(k, 0) or 15]
|
| 214 |
+
out: List[Dict[str, Any]] = []
|
| 215 |
+
for tok_id, qw, dw, c in top:
|
| 216 |
+
try:
|
| 217 |
+
# RobBERT uses RoBERTa/BPE-style tokens (Ġ denotes a leading space)
|
| 218 |
+
tok = tokenizer.convert_ids_to_tokens([tok_id])[0]
|
| 219 |
+
pretty = tok.replace("Ġ", " ").replace("▁", " ")
|
| 220 |
+
except Exception:
|
| 221 |
+
tok = pretty = str(tok_id)
|
| 222 |
+
out.append({
|
| 223 |
+
"token_id": tok_id,
|
| 224 |
+
"token": pretty,
|
| 225 |
+
"query_weight": qw,
|
| 226 |
+
"doc_weight": dw,
|
| 227 |
+
"contribution": c,
|
| 228 |
+
})
|
| 229 |
+
return out
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
# --------------------------------------------------------------------------------------
|
| 233 |
+
# Routes
|
| 234 |
+
# --------------------------------------------------------------------------------------
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@app.get("/health", response_model=HealthResponse)
|
| 238 |
+
async def health() -> HealthResponse:
|
| 239 |
+
return HealthResponse(
|
| 240 |
+
model_loaded=model is not None,
|
| 241 |
+
model_name=MODEL_ID,
|
| 242 |
+
device=DEVICE,
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
@app.post("/embeddings", response_model=EmbeddingsResponse)
|
| 247 |
+
async def embeddings(req: EmbeddingsRequest) -> EmbeddingsResponse:
|
| 248 |
+
if model is None:
|
| 249 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 250 |
+
if not req.texts:
|
| 251 |
+
raise HTTPException(status_code=400, detail="'texts' must be a non-empty list")
|
| 252 |
+
|
| 253 |
+
prompt_name = "query" if req.mode == "query" else "document"
|
| 254 |
+
max_k = req.max_active_dims or None
|
| 255 |
+
|
| 256 |
+
logger.info(f"Processing {len(req.texts)} texts in {req.mode} mode")
|
| 257 |
+
|
| 258 |
+
try:
|
| 259 |
+
if req.mode == "query":
|
| 260 |
+
embs = model.encode_query(
|
| 261 |
+
req.texts,
|
| 262 |
+
convert_to_tensor=True,
|
| 263 |
+
device=DEVICE,
|
| 264 |
+
normalize=req.normalize,
|
| 265 |
+
max_active_dims=max_k,
|
| 266 |
+
)
|
| 267 |
+
else:
|
| 268 |
+
embs = model.encode_document(
|
| 269 |
+
req.texts,
|
| 270 |
+
convert_to_tensor=True,
|
| 271 |
+
device=DEVICE,
|
| 272 |
+
normalize=req.normalize,
|
| 273 |
+
max_active_dims=max_k,
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
rows = torch_sparse_batch_to_rows(embs)
|
| 277 |
+
# Model card states ~50k dims; we can read the 2nd dimension from the tensor
|
| 278 |
+
dim = int(embs.size(1)) if isinstance(embs, torch.Tensor) else 0
|
| 279 |
+
|
| 280 |
+
return EmbeddingsResponse(
|
| 281 |
+
data=[EmbeddingRow(**r) for r in rows],
|
| 282 |
+
dim=dim,
|
| 283 |
+
info={
|
| 284 |
+
"mode": req.mode,
|
| 285 |
+
"normalize": req.normalize,
|
| 286 |
+
"max_active_dims": max_k,
|
| 287 |
+
"device": DEVICE,
|
| 288 |
+
},
|
| 289 |
+
)
|
| 290 |
+
except RuntimeError as e:
|
| 291 |
+
# If anything MPS-related sneaks in, hard-move to CPU and retry once
|
| 292 |
+
msg = str(e)
|
| 293 |
+
if "MPS" in msg or "to_sparse" in msg:
|
| 294 |
+
logger.warning("Encountered MPS/sparse op issue; retrying on CPU.")
|
| 295 |
+
try:
|
| 296 |
+
model.to("cpu")
|
| 297 |
+
if req.mode == "query":
|
| 298 |
+
embs = model.encode_query(
|
| 299 |
+
req.texts,
|
| 300 |
+
convert_to_tensor=True,
|
| 301 |
+
device="cpu",
|
| 302 |
+
normalize=req.normalize,
|
| 303 |
+
max_active_dims=max_k,
|
| 304 |
+
)
|
| 305 |
+
else:
|
| 306 |
+
embs = model.encode_document(
|
| 307 |
+
req.texts,
|
| 308 |
+
convert_to_tensor=True,
|
| 309 |
+
device="cpu",
|
| 310 |
+
normalize=req.normalize,
|
| 311 |
+
max_active_dims=max_k,
|
| 312 |
+
)
|
| 313 |
+
rows = torch_sparse_batch_to_rows(embs)
|
| 314 |
+
dim = int(embs.size(1)) if isinstance(embs, torch.Tensor) else 0
|
| 315 |
+
return EmbeddingsResponse(
|
| 316 |
+
data=[EmbeddingRow(**r) for r in rows],
|
| 317 |
+
dim=dim,
|
| 318 |
+
info={
|
| 319 |
+
"mode": req.mode,
|
| 320 |
+
"normalize": req.normalize,
|
| 321 |
+
"max_active_dims": max_k,
|
| 322 |
+
"device": "cpu",
|
| 323 |
+
"retry": True,
|
| 324 |
+
},
|
| 325 |
+
)
|
| 326 |
+
except Exception:
|
| 327 |
+
logger.exception("CPU retry failed")
|
| 328 |
+
raise HTTPException(status_code=500, detail=msg)
|
| 329 |
+
# Unknown runtime error
|
| 330 |
+
logger.exception("Error generating embeddings")
|
| 331 |
+
raise HTTPException(status_code=500, detail=msg)
|
| 332 |
+
except Exception as e:
|
| 333 |
+
logger.exception("Error generating embeddings")
|
| 334 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
@app.post("/similarity", response_model=SimilarityResponse)
|
| 338 |
+
async def similarity(req: SimilarityRequest) -> SimilarityResponse:
|
| 339 |
+
if model is None:
|
| 340 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 341 |
+
if not req.queries:
|
| 342 |
+
raise HTTPException(status_code=400, detail="'queries' must be a non-empty list")
|
| 343 |
+
if not req.documents:
|
| 344 |
+
raise HTTPException(status_code=400, detail="'documents' must be a non-empty list")
|
| 345 |
+
|
| 346 |
+
max_k = req.max_active_dims or None
|
| 347 |
+
|
| 348 |
+
try:
|
| 349 |
+
q = model.encode_query(
|
| 350 |
+
req.queries,
|
| 351 |
+
convert_to_tensor=True,
|
| 352 |
+
device=DEVICE,
|
| 353 |
+
normalize=req.normalize,
|
| 354 |
+
max_active_dims=max_k,
|
| 355 |
+
)
|
| 356 |
+
d = model.encode_document(
|
| 357 |
+
req.documents,
|
| 358 |
+
convert_to_tensor=True,
|
| 359 |
+
device=DEVICE,
|
| 360 |
+
normalize=req.normalize,
|
| 361 |
+
max_active_dims=max_k,
|
| 362 |
+
)
|
| 363 |
+
scores = model.similarity(q, d).to("cpu") # [num_queries, num_docs]
|
| 364 |
+
|
| 365 |
+
results: List[List[SimilarityHit]] = []
|
| 366 |
+
k = min(req.top_k or 5, len(req.documents))
|
| 367 |
+
for i in range(scores.size(0)):
|
| 368 |
+
vals, idxs = torch.topk(scores[i], k=k)
|
| 369 |
+
q_hits: List[SimilarityHit] = []
|
| 370 |
+
for v, j in zip(vals.tolist(), idxs.tolist()):
|
| 371 |
+
q_hits.append(SimilarityHit(doc_index=j, score=float(v), text=req.documents[j]))
|
| 372 |
+
results.append(q_hits)
|
| 373 |
+
|
| 374 |
+
return SimilarityResponse(
|
| 375 |
+
results=results,
|
| 376 |
+
info={
|
| 377 |
+
"normalize": req.normalize,
|
| 378 |
+
"max_active_dims": max_k,
|
| 379 |
+
"device": DEVICE,
|
| 380 |
+
},
|
| 381 |
+
)
|
| 382 |
+
except Exception as e:
|
| 383 |
+
logger.exception("Error computing similarity")
|
| 384 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
# --------------------------------------------------------------------------------------
|
| 388 |
+
# Routes
|
| 389 |
+
# --------------------------------------------------------------------------------------
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
@app.get("/health", response_model=HealthResponse)
|
| 393 |
+
async def health() -> HealthResponse:
|
| 394 |
+
return HealthResponse(
|
| 395 |
+
model_loaded=model is not None,
|
| 396 |
+
model_name=MODEL_ID,
|
| 397 |
+
device=DEVICE,
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
@app.post("/embeddings", response_model=EmbeddingsResponse)
|
| 402 |
+
async def embeddings(req: EmbeddingsRequest) -> EmbeddingsResponse:
|
| 403 |
+
if model is None:
|
| 404 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 405 |
+
if not req.texts:
|
| 406 |
+
raise HTTPException(status_code=400, detail="'texts' must be a non-empty list")
|
| 407 |
+
|
| 408 |
+
prompt_name = "query" if req.mode == "query" else "document"
|
| 409 |
+
max_k = req.max_active_dims or None
|
| 410 |
+
|
| 411 |
+
logger.info(f"Processing {len(req.texts)} texts in {req.mode} mode")
|
| 412 |
+
|
| 413 |
+
try:
|
| 414 |
+
if req.mode == "query":
|
| 415 |
+
embs = model.encode_query(
|
| 416 |
+
req.texts,
|
| 417 |
+
convert_to_tensor=True,
|
| 418 |
+
device=DEVICE,
|
| 419 |
+
normalize=req.normalize,
|
| 420 |
+
max_active_dims=max_k,
|
| 421 |
+
)
|
| 422 |
+
else:
|
| 423 |
+
embs = model.encode_document(
|
| 424 |
+
req.texts,
|
| 425 |
+
convert_to_tensor=True,
|
| 426 |
+
device=DEVICE,
|
| 427 |
+
normalize=req.normalize,
|
| 428 |
+
max_active_dims=max_k,
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
rows = torch_sparse_batch_to_rows(embs)
|
| 432 |
+
# Model card states ~50k dims; we can read the 2nd dimension from the tensor
|
| 433 |
+
dim = int(embs.size(1)) if isinstance(embs, torch.Tensor) else 0
|
| 434 |
+
|
| 435 |
+
return EmbeddingsResponse(
|
| 436 |
+
data=[EmbeddingRow(**r) for r in rows],
|
| 437 |
+
dim=dim,
|
| 438 |
+
info={
|
| 439 |
+
"mode": req.mode,
|
| 440 |
+
"normalize": req.normalize,
|
| 441 |
+
"max_active_dims": max_k,
|
| 442 |
+
"device": DEVICE,
|
| 443 |
+
},
|
| 444 |
+
)
|
| 445 |
+
except RuntimeError as e:
|
| 446 |
+
# If anything MPS-related sneaks in, hard-move to CPU and retry once
|
| 447 |
+
msg = str(e)
|
| 448 |
+
if "MPS" in msg or "to_sparse" in msg:
|
| 449 |
+
logger.warning("Encountered MPS/sparse op issue; retrying on CPU.")
|
| 450 |
+
try:
|
| 451 |
+
model.to("cpu")
|
| 452 |
+
if req.mode == "query":
|
| 453 |
+
embs = model.encode_query(
|
| 454 |
+
req.texts,
|
| 455 |
+
convert_to_tensor=True,
|
| 456 |
+
device="cpu",
|
| 457 |
+
normalize=req.normalize,
|
| 458 |
+
max_active_dims=max_k,
|
| 459 |
+
)
|
| 460 |
+
else:
|
| 461 |
+
embs = model.encode_document(
|
| 462 |
+
req.texts,
|
| 463 |
+
convert_to_tensor=True,
|
| 464 |
+
device="cpu",
|
| 465 |
+
normalize=req.normalize,
|
| 466 |
+
max_active_dims=max_k,
|
| 467 |
+
)
|
| 468 |
+
rows = torch_sparse_batch_to_rows(embs)
|
| 469 |
+
dim = int(embs.size(1)) if isinstance(embs, torch.Tensor) else 0
|
| 470 |
+
return EmbeddingsResponse(
|
| 471 |
+
data=[EmbeddingRow(**r) for r in rows],
|
| 472 |
+
dim=dim,
|
| 473 |
+
info={
|
| 474 |
+
"mode": req.mode,
|
| 475 |
+
"normalize": req.normalize,
|
| 476 |
+
"max_active_dims": max_k,
|
| 477 |
+
"device": "cpu",
|
| 478 |
+
"retry": True,
|
| 479 |
+
},
|
| 480 |
+
)
|
| 481 |
+
except Exception:
|
| 482 |
+
logger.exception("CPU retry failed")
|
| 483 |
+
raise HTTPException(status_code=500, detail=msg)
|
| 484 |
+
# Unknown runtime error
|
| 485 |
+
logger.exception("Error generating embeddings")
|
| 486 |
+
raise HTTPException(status_code=500, detail=msg)
|
| 487 |
+
except Exception as e:
|
| 488 |
+
logger.exception("Error generating embeddings")
|
| 489 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
@app.post("/similarity", response_model=SimilarityResponse)
|
| 493 |
+
async def similarity(req: SimilarityRequest) -> SimilarityResponse:
|
| 494 |
+
if model is None:
|
| 495 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 496 |
+
if not req.queries:
|
| 497 |
+
raise HTTPException(status_code=400, detail="'queries' must be a non-empty list")
|
| 498 |
+
if not req.documents:
|
| 499 |
+
raise HTTPException(status_code=400, detail="'documents' must be a non-empty list")
|
| 500 |
+
|
| 501 |
+
max_k = req.max_active_dims or None
|
| 502 |
+
|
| 503 |
+
try:
|
| 504 |
+
q = model.encode_query(
|
| 505 |
+
req.queries,
|
| 506 |
+
convert_to_tensor=True,
|
| 507 |
+
device=DEVICE,
|
| 508 |
+
normalize=req.normalize,
|
| 509 |
+
max_active_dims=max_k,
|
| 510 |
+
)
|
| 511 |
+
d = model.encode_document(
|
| 512 |
+
req.documents,
|
| 513 |
+
convert_to_tensor=True,
|
| 514 |
+
device=DEVICE,
|
| 515 |
+
normalize=req.normalize,
|
| 516 |
+
max_active_dims=max_k,
|
| 517 |
+
)
|
| 518 |
+
scores = model.similarity(q, d).to("cpu") # [num_queries, num_docs]
|
| 519 |
+
|
| 520 |
+
results: List[List[SimilarityHit]] = []
|
| 521 |
+
k = min(req.top_k or 5, len(req.documents))
|
| 522 |
+
for i in range(scores.size(0)):
|
| 523 |
+
vals, idxs = torch.topk(scores[i], k=k)
|
| 524 |
+
q_hits: List[SimilarityHit] = []
|
| 525 |
+
for v, j in zip(vals.tolist(), idxs.tolist()):
|
| 526 |
+
q_hits.append(SimilarityHit(doc_index=j, score=float(v), text=req.documents[j]))
|
| 527 |
+
results.append(q_hits)
|
| 528 |
+
|
| 529 |
+
return SimilarityResponse(
|
| 530 |
+
results=results,
|
| 531 |
+
info={
|
| 532 |
+
"normalize": req.normalize,
|
| 533 |
+
"max_active_dims": max_k,
|
| 534 |
+
"device": DEVICE,
|
| 535 |
+
},
|
| 536 |
+
)
|
| 537 |
+
except Exception as e:
|
| 538 |
+
logger.exception("Error computing similarity")
|
| 539 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
@app.post("/explain", response_model=ExplainResponse)
|
| 543 |
+
async def explain(req: ExplainRequest) -> ExplainResponse:
|
| 544 |
+
if model is None or tokenizer is None:
|
| 545 |
+
raise HTTPException(status_code=503, detail="Model/tokenizer not loaded")
|
| 546 |
+
|
| 547 |
+
max_k = req.max_active_dims or None
|
| 548 |
+
|
| 549 |
+
try:
|
| 550 |
+
q = model.encode_query(
|
| 551 |
+
[req.query],
|
| 552 |
+
convert_to_tensor=True,
|
| 553 |
+
device=DEVICE,
|
| 554 |
+
normalize=req.normalize,
|
| 555 |
+
max_active_dims=max_k,
|
| 556 |
+
)
|
| 557 |
+
d = model.encode_document(
|
| 558 |
+
[req.document],
|
| 559 |
+
convert_to_tensor=True,
|
| 560 |
+
device=DEVICE,
|
| 561 |
+
normalize=req.normalize,
|
| 562 |
+
max_active_dims=max_k,
|
| 563 |
+
)
|
| 564 |
+
score = float(model.similarity(q, d)[0, 0].item())
|
| 565 |
+
|
| 566 |
+
q_row = torch_sparse_batch_to_rows(q)[0]
|
| 567 |
+
d_row = torch_sparse_batch_to_rows(d)[0]
|
| 568 |
+
tokens = top_token_contributions(q_row, d_row, req.top_k_tokens)
|
| 569 |
+
|
| 570 |
+
return ExplainResponse(
|
| 571 |
+
score=score,
|
| 572 |
+
top_tokens=[TokenContribution(**t) for t in tokens],
|
| 573 |
+
info={
|
| 574 |
+
"normalize": req.normalize,
|
| 575 |
+
"max_active_dims": max_k,
|
| 576 |
+
"device": DEVICE,
|
| 577 |
+
},
|
| 578 |
+
)
|
| 579 |
+
except Exception as e:
|
| 580 |
+
logger.exception("Error explaining match")
|
| 581 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
# --------------------------------------------------------------------------------------
|
| 585 |
+
# Local dev runner
|
| 586 |
+
# --------------------------------------------------------------------------------------
|
| 587 |
+
|
| 588 |
+
if __name__ == "__main__":
|
| 589 |
+
import uvicorn
|
| 590 |
+
|
| 591 |
+
uvicorn.run(
|
| 592 |
+
"main:app",
|
| 593 |
+
host="0.0.0.0",
|
| 594 |
+
port=8000,
|
| 595 |
+
reload=True,
|
| 596 |
+
log_level="info",
|
| 597 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.26.4
|
| 2 |
+
fastapi==0.115.0
|
| 3 |
+
uvicorn[standard]==0.32.0
|
| 4 |
+
sentence-transformers==5.0.0
|
| 5 |
+
torch>=2.6.0
|
| 6 |
+
scipy==1.13.1
|
| 7 |
+
pydantic==2.9.2
|
| 8 |
+
python-multipart==0.0.9
|