File size: 10,620 Bytes
7dec351
0104d06
 
 
 
 
7dec351
 
0104d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import gradio as gr
import os
import re
import json
import time
from google import genai


# Filter songs based on region and time period
def filter_songs(region, time_period):
    time_map = {
        "过去7天": 7,
        "过去30天": 30
    }
    region_map = {
        "美国": "us",
        "英国": "uk",
        "韩国": "kr",
        "日本": "jp"
    }
    
    file_name = f"trend_data_{region_map[region]}_{time_map[time_period]}.json"
    with open(file_name, "r", encoding="utf-8") as file:
        data = json.load(file)  # 解析 JSON 文件

    return data


# Initial song data
ALL_SONGS = filter_songs("美国", "过去7天")

# Simulate API call for song analysis
def analyze_song(song_name):
    prompt = """
    根据我上传的歌曲音频,站在乐评人的角度进行专业点评,要求包含两方面信息:
    ## 一. 对歌曲的详细解析,必须使用中文描述,需包含以下方面(确保每个部分尽可能详细和具体,以生成精准的音乐评价):
    1. 流派/风格 (Genre/Style):{在此处填写一个或多个音乐流派,多个流派可以用逗号或 "和" 连接,例如:classic rock, synthwave 和 nostalgic}
    2. 乐器 (Instrumentation)
        - 主要乐器:{列出主要乐器,并用形容词修饰其音色或演奏方式,例如:distorted electric guitar, soft piano melody}
        - 次要乐器(可选):{列出次要乐器,同样可以添加修饰,例如:pulsating bass, rhythmic percussion}
    3. 人声 (Vocal Style) (可选)
        - 性别:{male/female/无}
        - 音色/风格:{用形容词描述人声的特点,例如:raspy, warm, soulful, slight reverb}
        - 演唱方式(可选):{例如:call-and-response vocals, harmonies, spoken word}
    4. 情绪/氛围 (Mood/Atmosphere):{使用形容词或短语描述音乐的整体感觉,例如:high-energy, smooth, dreamy, uplifting, melancholic}
        - 场景描述(可选):{用简短的场景描述来进一步强化氛围,例如:late-night lounge setting, driving down a desert highway}
    5. 具体元素/参考 (Specific Elements/References) (可选):{提供更具体的风格指导、年代参考或特定元素,例如:anthemic chorus, '80s stadium rock, 80s-inspired, reminiscent of Vangelis}
    6. 节奏/动态 (Tempo/Dynamics) (可选):使用动词或形容词描述节奏的特点, 或乐器动态, 例如: Pulsating, driving, laid-back, syncopated,乐器动态: Crescendo, diminuendo, staccato 等
    
    基于上述详细解析,总结一句用于音乐生成的英文文本提示词,不要超过180个字符,必须使用英文描述,示例如下:An 80s-inspired synthwave track with analog synthesizers, pulsating bass, and dreamy atmospheric pads. Male vocals with slight reverb for a nostalgic, futuristic feel.

    最终使用json返回内容,json格式示例如下,禁止其他多余输出:
    {
        "chinese_description": "..."
        "english_prompt": "..."
    }
    """
    client = genai.Client(api_key=os.getenv("GOOGLE_GEN_KEY"))

    myfile = client.files.upload(file=f'media/{song_name}.mp3')

    response = client.models.generate_content(
        model='gemini-2.0-flash',
        contents=[prompt, myfile]
    )
    text = response.text
    print(text)
    match = re.search(r'```json\n(.*?)\n```', text, re.DOTALL)
    if match:
        json_str = match.group(1)
        try:
            result = json.loads(json_str)
        except json.JSONDecodeError as e:
            print(f"JSON parsing error: {e}")
            
    return {
        "song_description": result["chinese_description"],
        "suno_prompt": result["english_prompt"]
    }

# Simulate Suno API call
def generate_similar_song(suno_prompt):
    # Simulate API call delay
    time.sleep(3)
    
    # Simulated response
    return {
        "audio_url": "https://sf16-ies-music-sg.tiktokcdn.com/obj/tos-alisg-ve-2774/oYYOWM1aKGyB8Eixn0hiAfhWsAjzswMoIItQMI",
        "status": "success"
    }

# Create song list HTML
def create_song_list(songs):
    html = """
    <style>
    .song-container {
        display: flex;
        flex-direction: column;
        gap: 16px;
        padding: 16px;
    }
    .song-item {
        display: flex;
        align-items: center;
        gap: 16px;
        padding: 12px;
        border-radius: 8px;
        background-color: #f9f9f9;
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
    }
    .rank {
        font-size: 24px;
        font-weight: bold;
        min-width: 40px;
        text-align: center;
    }
    .cover {
        width: 80px;
        height: 80px;
        border-radius: 4px;
        object-fit: cover;
    }
    .song-info {
        flex: 1;
    }
    .song-name {
        font-size: 18px;
        font-weight: bold;
        margin-bottom: 4px;
    }
    .video-count {
        color: #666;
        font-size: 14px;
    }
    .button-group {
        display: flex;
        gap: 8px;
    }
    .button {
        padding: 8px 12px;
        border-radius: 4px;
        border: none;
        cursor: pointer;
        font-size: 14px;
        font-weight: bold;
    }
    .tiktok-btn {
        color: white;
    }
    .play-btn {
        background-color: #1db954;
        color: white;
    }
    .stats-btn {
        background-color: #0077b5;
        color: white;
    }
    .analyze-btn {
        background-color: #6c5ce7;
        color: white;
    }
    </style>
    <div class="song-container">
    """
    # <div class="video-count">{song['video_count']}</div>
    # <button class="button play-btn" onclick='playSong("{song['title']}")'>播放</button>
    # <button class="button analyze-btn" onclick='analyzeSong("{song['title']}")'>分析歌曲</button>
    for song in songs:
        html += f"""
        <div class="song-item" id="song-{song['rank']}">
            <div class="rank">{song['rank']}</div>
            <img class="cover" src="{song['cover_url']}" alt="{song['title']}">
            <div class="song-info">
                <div class="song-name">{song['title']} - {song['author']}</div>
               
            </div>
            <div class="button-group">
                <a href="{song['link']}" target="_blank" class="button tiktok-btn">TikTok地址</a>
            </div>
        </div>
        """
    
    html += "</div>"
    
    return html

# Main app function
def app():
    # Create the Gradio interface
    with gr.Blocks() as demo:
        # App title
        gr.Markdown("# TikTok Song Trends Analyzer")
        
        # Main tabs
        with gr.Tabs():
            # Song trends tab
            with gr.TabItem("Song Trends"):
                with gr.Row():
                    region_dropdown = gr.Dropdown(
                        choices=["美国", "英国", "韩国", "日本"],
                        #choices=["All Regions", "US", "UK", "JP", "KR", "CN", "IN", "BR", "FR", "DE", "ES"],
                        value="美国",
                        label="Region"
                    )
                    time_period = gr.Dropdown(
                        choices=["过去7天", "过去30天"],
                        value="过去7天",
                        label="Time Period"
                    )
                
                # Song list container
                song_list = gr.HTML(create_song_list(ALL_SONGS))
                
                # Update song list when filters change
                def update_song_list(region, time_period):
                    filtered_songs = filter_songs(region, time_period)
                    return create_song_list(filtered_songs)
                
                region_dropdown.change(
                    fn=update_song_list,
                    inputs=[region_dropdown, time_period],
                    outputs=song_list
                )
                
                time_period.change(
                    fn=update_song_list,
                    inputs=[region_dropdown, time_period],
                    outputs=song_list
                )
            
            # Song analysis tab
            with gr.TabItem("Song Analysis"):
                with gr.Row():
                    with gr.Column(scale=2):
                        song_name = gr.Dropdown(
                            choices=list(map(lambda x: x["title"], ALL_SONGS)),
                            label="Select a Song",
                            interactive=True
                        )
                        analysis_btn = gr.Button("分析歌曲")
                        song_description = gr.Markdown(label="Song Description")
                        suno_prompt = gr.Textbox(label="Suno Prompt", interactive=False, lines=5)
                    # with gr.Column(scale=2):
                    #     suno_prompt = gr.Textbox(label="Suno Prompt", interactive=False, lines=5)
                    #     generate_btn = gr.Button("生成相似歌曲")
                
                # Audio player for generated song
                audio_player = gr.Audio(label="Generated Song", type="filepath", interactive=False)
                
                # Handle song analysis
                def do_song_analysis(song_name):
                    if not song_name:
                        return "", "", "", "Please select a song from the trends list."
                    
                    analysis_result = analyze_song(song_name)
                    
                    return analysis_result["song_description"], analysis_result["suno_prompt"], f'media/{song_name}.mp3'
                
                # Handle similar song generation
                def do_generate_similar(suno_prompt):
                    if not suno_prompt:
                        return None, "Please analyze a song first to get a Suno prompt."
                    
                    result = generate_similar_song(suno_prompt)
                    
                    if result["status"] == "success":
                        return result["audio_url"]
                    else:
                        return None
                
                # generate_btn.click(
                #     fn=do_generate_similar,
                #     inputs=suno_prompt,
                #     outputs=[audio_player]
                # )
                
                analysis_btn.click(
                    fn=do_song_analysis,
                    inputs=song_name,
                    outputs=[song_description, suno_prompt, audio_player]
                )
        
    # Launch the app
    demo.launch()

if __name__ == "__main__":
    app()