Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,478 Bytes
931e0eb ad7badd 931e0eb ad7badd 6515e9a 931e0eb ad7badd 6515e9a 931e0eb ad7badd 6515e9a 931e0eb 6515e9a 931e0eb 6515e9a 931e0eb ad7badd 931e0eb ad7badd 6515e9a 931e0eb 6515e9a 931e0eb 6515e9a 931e0eb ad7badd 6515e9a 931e0eb ad7badd 6515e9a ad7badd 6515e9a ad7badd 6515e9a ad7badd 6515e9a ad7badd 6515e9a 931e0eb ad7badd 6515e9a 931e0eb ad7badd 6515e9a ad7badd 6515e9a 931e0eb 6515e9a ad7badd 6515e9a ad7badd 6515e9a ad7badd 6515e9a ad7badd 6515e9a 931e0eb 6515e9a ad7badd 931e0eb ad7badd 6515e9a ad7badd 6515e9a ad7badd 6515e9a ad7badd 6515e9a 931e0eb 6515e9a ad7badd 6515e9a ad7badd 6515e9a ad7badd 6515e9a ad7badd 6515e9a ad7badd 6515e9a ad7badd 6515e9a ad7badd 931e0eb ad7badd 6515e9a ad7badd 6515e9a 931e0eb ad7badd 6515e9a 931e0eb 6515e9a ad7badd 6515e9a ad7badd 6515e9a 931e0eb 6515e9a ad7badd 6515e9a ad7badd 6515e9a ad7badd 931e0eb ad7badd 6515e9a ad7badd 6515e9a ad7badd 931e0eb 6515e9a ad7badd 6515e9a ad7badd 931e0eb ad7badd 6515e9a 931e0eb ad7badd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# Multi-LoRA Image Editing Implementation (Simplified)
## Overview
This implementation provides a simplified multi-LoRA (Low-Rank Adaptation) system for the Qwen-Image-Edit application, focusing on **Lightning LoRA always active as the base optimization** with only **Object Remover** as an additional LoRA for testing.
## Architecture
### Core Components
1. **LoRAManager** (`lora_manager.py`)
- Centralized management of multiple LoRA adapters
- Registry system for storing LoRA configurations
- Dynamic loading and fusion capabilities
- Memory management and cleanup
2. **LoRA Configuration** (`app.py`)
- Centralized `LORA_CONFIG` dictionary
- Lightning LoRA configured as always-loaded base
- Simplified to Object Remover for focused testing
3. **Dynamic UI System** (`app.py`)
- Conditional component visibility based on LoRA selection
- Lightning LoRA status indication
- Type-specific UI adaptations (edit vs base)
- Real-time interface updates
## β‘ Lightning LoRA Always-On Architecture
### Core Principle
**Lightning LoRA is always loaded as the base model** for fast 4-step generation, regardless of which other LoRA is selected. This provides:
- **Consistent Performance**: Always-on 4-step generation
- **Enhanced Speed**: Lightning's optimization applies to all operations
- **Multi-LoRA Fusion**: Combine Lightning speed with Object Remover capabilities
### Implementation Details
#### 1. Always-On Loading
```python
# Lightning LoRA is loaded first and always remains active
LIGHTNING_LORA_NAME = "Lightning (4-Step)"
print(f"Loading always-active Lightning LoRA: {LIGHTNING_LORA_NAME}")
lightning_lora_path = hf_hub_download(
repo_id=lightning_config["repo_id"],
filename=lightning_config["filename"]
)
lora_manager.register_lora(LIGHTNING_LORA_NAME, lightning_lora_path, **lightning_config)
lora_manager.configure_lora(LIGHTNING_LORA_NAME, {
"description": lightning_config["description"],
"is_base": True
})
# Load Lightning LoRA and keep it always active
lora_manager.load_lora(LIGHTNING_LORA_NAME)
lora_manager.fuse_lora(LIGHTNING_LORA_NAME)
```
#### 2. Multi-LoRA Combination
```python
def load_and_fuse_additional_lora(lora_name):
"""
Load an additional LoRA while keeping Lightning LoRA always active.
This enables combining Lightning's speed with Object Remover capabilities.
"""
# Always keep Lightning LoRA loaded
# Load additional LoRA without resetting to base state
if config["method"] == "standard":
print("Using standard loading method...")
# Load additional LoRA without fusing (to preserve Lightning)
pipe.load_lora_weights(lora_path, adapter_names=[lora_name])
# Set both adapters as active
pipe.set_adapters([LIGHTNING_LORA_NAME, lora_name])
print(f"Lightning + {lora_name} now active.")
```
#### 3. Lightning Preservation in Inference
```python
def infer(lora_name, ...):
"""Main inference function with Lightning always active"""
# Load additional LoRA while keeping Lightning active
load_and_fuse_lora(lora_name)
print("--- Running Inference ---")
print(f"LoRA: {lora_name} (with Lightning always active)")
# Generate with Lightning + additional LoRA
result_image = pipe(
image=image_for_pipeline,
prompt=final_prompt,
num_inference_steps=int(num_inference_steps),
# ... other parameters
).images[0]
# Don't unfuse Lightning - keep it active for next inference
if lora_name != LIGHTNING_LORA_NAME:
pipe.disable_adapters() # Disable additional LoRA but keep Lightning
```
## Simplified LoRA Configuration
### Current Supported LoRAs
| LoRA Name | Type | Method | Always-On | Description |
|-----------|------|--------|-----------|-------------|
| **β‘ Lightning (4-Step)** | base | standard | β
**Always** | Fast 4-step generation - always active |
| **None** | edit | none | β | Base model with Lightning optimization |
| **Object Remover** | edit | standard | β‘ Lightning+ | Removes objects from an image while maintaining background consistency |
### Lightning + Object Remover Combination
**Lightning + Object Remover**: Fast object removal with 4-step generation optimization
### LoRA Type Classifications
- **Base LoRA**: Lightning (always loaded, always active)
- **Edit LoRAs**: Object Remover (requires input images, uses standard fusion)
- **None**: Base model with Lightning optimization
## Key Features
### 1. Dynamic UI Components
The system automatically adapts the user interface and shows Lightning status:
```python
def on_lora_change(lora_name):
"""Dynamic UI component visibility handler"""
config = LORA_CONFIG[lora_name]
is_style_lora = config["type"] == "style"
# Lightning LoRA info
lightning_info = "β‘ **Lightning LoRA always active** - Fast 4-step generation enabled"
return {
lora_description: gr.Markdown(visible=True, value=f"**{lightning_info}** \n\n**Description:** {config['description']}"),
input_image_box: gr.Image(visible=not is_style_lora, type="pil"),
style_image_box: gr.Image(visible=is_style_lora, type="pil"),
prompt_box: gr.Textbox(visible=(config["prompt_template"] != "change the face to face segmentation mask"))
}
```
### 2. Always-On Lightning Performance
```python
# Lightning configuration as always-loaded base
"Lightning (4-Step)": {
"repo_id": "lightx2v/Qwen-Image-Lightning",
"filename": "Qwen-Image-Lightning-4steps-V2.0.safetensors",
"type": "base",
"method": "standard",
"always_load": True,
"prompt_template": "{prompt}",
"description": "Fast 4-step generation LoRA - always loaded as base optimization.",
}
```
### 3. Simplified Multi-LoRA Fusion
- **Lightning Base**: Always loaded, always active
- **Object Remover**: Loaded alongside Lightning using standard fusion
- **None**: Lightning-only operation
### 4. Memory Management with Lightning
- Lightning LoRA remains loaded throughout session
- Object Remover LoRA loaded/unloaded as needed
- GPU memory optimized for Lightning + one additional LoRA
- Automatic cleanup of non-Lightning adapters
### 5. Prompt Template System
Each LoRA has a custom prompt template (Lightning provides base 4-step generation):
```python
"Object Remover": {
"prompt_template": "Remove {prompt}",
"type": "edit"
}
```
## Usage
### Basic Usage with Always-On Lightning
1. **Lightning is Always Active**: No selection needed - Lightning runs all operations
2. **Select Additional LoRA**: Choose "Object Remover" to combine with Lightning
3. **Upload Images**: Upload input image to edit
4. **Enter Prompt**: Describe the object to remove
5. **Configure Settings**: Adjust advanced parameters (4-step generation always enabled)
6. **Generate**: Click "Generate!" to process with Lightning optimization
### Object Remover Usage
1. **Select "Object Remover"** from the dropdown
2. **Upload Input Image**: The image containing the object to remove
3. **Enter Prompt**: Describe the object to remove (e.g., "person", "car", "tree")
4. **Generate**: Lightning + Object Remover will remove the specified object
### Advanced Configuration
#### Adding New LoRAs (with Lightning Always-On)
1. **Add to LORA_CONFIG**:
```python
"Custom LoRA": {
"repo_id": "username/custom-lora",
"filename": "custom.safetensors",
"type": "edit", # or "style"
"method": "standard", # or "manual_fuse"
"prompt_template": "Custom instruction: {prompt}",
"description": "Description of the LoRA capabilities"
}
```
2. **Register with LoRAManager**:
```python
lora_path = hf_hub_download(repo_id=config["repo_id"], filename=config["filename"])
lora_manager.register_lora("Custom LoRA", lora_path, **config)
```
3. **Lightning + Custom LoRA**: Automatically combines with always-on Lightning
## Technical Implementation
### Lightning Always-On Process
1. **Initialization**: Load Lightning LoRA first
2. **Fusion**: Fuse Lightning weights permanently
3. **Persistence**: Keep Lightning active throughout session
4. **Combination**: Load Object Remover alongside Lightning
5. **Preservation**: Never unload Lightning LoRA
### Lightning Loading Process
```python
def load_and_fuse_lora(lora_name):
"""Legacy function for backward compatibility"""
if lora_name == LIGHTNING_LORA_NAME:
# Lightning is already loaded, just ensure it's active
print("Lightning LoRA is already active.")
pipe.set_adapters([LIGHTNING_LORA_NAME])
return
load_and_fuse_additional_lora(lora_name)
```
### Memory Management with Lightning
```python
# Don't unfuse Lightning - keep it active for next inference
if lora_name != LIGHTNING_LORA_NAME:
pipe.disable_adapters() # Disable additional LoRA but keep Lightning
gc.collect()
torch.cuda.empty_cache()
```
## Testing and Validation
### Validation Scripts
- **test_lora_logic.py**: Validates implementation logic without dependencies
- **test_lightning_always_on.py**: Validates Lightning always-on functionality
- **test_lora_implementation.py**: Full integration testing (requires PyTorch)
### Lightning Always-On Test Coverage
β
**Lightning LoRA configured as always-loaded base**
β
**Lightning LoRA loaded and fused on startup**
β
**Inference preserves Lightning LoRA state**
β
**Multi-LoRA combination supported**
β
**UI indicates Lightning always active**
β
**Proper loading sequence implemented**
### Object Remover Testing
β
**Object Remover loads alongside Lightning**
β
**Lightning + Object Remover combination works**
β
**Prompt template "Remove {prompt}" functions correctly**
β
**Memory management for Lightning + Object Remover**
## Performance Considerations
### Lightning Always-On Benefits
- **Consistent Speed**: All operations use 4-step generation
- **Reduced Latency**: No loading time for Lightning between requests
- **Enhanced Performance**: Lightning optimization applies to Object Remover
- **Memory Efficiency**: Lightning stays in memory, Object Remover loaded as needed
### Speed Optimization
- **4-Step Generation**: Lightning provides ultra-fast inference
- **AOT Compilation**: Ahead-of-time compilation with Lightning active
- **Adapter Combination**: Lightning + Object Remover for optimal results
- **Optimized Attention Processors**: FA3 attention with Lightning
### Memory Optimization
- Lightning LoRA always in memory (base memory usage)
- Object Remover LoRA loaded on-demand
- Efficient adapter switching
- GPU memory management for multiple adapters
## Troubleshooting
### Common Issues
1. **Lightning Not Loading**
- Check HuggingFace Hub connectivity for Lightning repo
- Verify `lightx2v/Qwen-Image-Lightning` repository exists
- Ensure sufficient GPU memory for Lightning LoRA
2. **Slow Performance (Lightning Not Active)**
- Check Lightning LoRA is loaded: Look for "Lightning LoRA is already active"
- Verify adapter status: `pipe.get_active_adapters()`
- Ensure Lightning is not being disabled
3. **Object Remover Issues**
- Check Object Remover loading: Look for "Lightning + Object Remover now active"
- Verify prompt format: Should be "Remove {object}"
- Monitor memory usage for Lightning + Object Remover
### Debug Mode
Enable debug logging to see Lightning always-on status:
```python
import logging
logging.basicConfig(level=logging.DEBUG)
# Check Lightning status
print(f"Lightning active: {LIGHTNING_LORA_NAME in pipe.get_active_adapters()}")
print(f"All active adapters: {pipe.get_active_adapters()}")
```
## Future Enhancements
### Planned Features
1. **Additional LoRAs**: Add more LoRAs after successful Object Remover testing
2. **LoRA Blending**: Advanced blending of multiple LoRAs with Lightning
3. **Lightning Optimization**: Dynamic Lightning parameter adjustment
4. **Performance Monitoring**: Real-time Lightning performance metrics
5. **Batch Processing**: Process multiple images with Lightning always-on
### Extension Points
- Custom Lightning optimization strategies
- Multiple base LoRAs (beyond Lightning)
- Advanced multi-LoRA combination algorithms
- Lightning performance profiling
## Simplified Configuration Benefits
### Focused Testing
- **Reduced Complexity**: Only Lightning + Object Remover to test
- **Clear Validation**: Easy to verify Lightning always-on functionality
- **Debugging**: Simplified troubleshooting with fewer variables
- **Performance**: Clear performance benefits of Lightning always-on
### Risk Mitigation
- **Gradual Rollout**: Test one LoRA before adding more
- **Validation**: Ensure Lightning + LoRA combination works correctly
- **Memory Management**: Verify memory usage with Lightning + one LoRA
- **User Experience**: Validate simplified UI with fewer options
## References
- [Qwen-Image-Edit Model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509)
- [Lightning LoRA Repository](https://huggingface.co/lightx2v/Qwen-Image-Lightning)
- [Object Remover LoRA Repository](https://huggingface.co/valiantcat/Qwen-Image-Edit-Remover-General-LoRA)
- [Diffusers LoRA Documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
- [PEFT Library](https://github.com/huggingface/peft)
- [HuggingFace Spaces Pattern](https://huggingface.co/spaces)
## License
This implementation follows the same license as the original Qwen-Image-Edit project. |