File size: 21,905 Bytes
71f5363
7d4ee71
 
 
 
 
2772ab2
ad7badd
fc90811
 
 
ad7badd
 
 
 
fc90811
6571814
 
 
 
ad7badd
6571814
ad7badd
7d4ee71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad7badd
7d4ee71
ad7badd
7d4ee71
 
 
 
 
 
 
 
 
 
931e0eb
7d4ee71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad7badd
7d4ee71
ad7badd
 
7d4ee71
 
ad7badd
7d4ee71
 
 
 
 
 
 
ad7badd
7d4ee71
ad7badd
 
 
 
 
 
 
 
4db4904
ad7badd
 
 
e0ec356
 
 
 
cada4f8
e0ec356
 
ad7badd
 
 
e0ec356
 
c7d3879
e0ec356
 
 
 
ad7badd
 
 
e0ec356
ad7badd
 
 
 
 
e0ec356
 
ad7badd
 
 
 
e0ec356
 
c7d3879
e0ec356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cada4f8
7d4ee71
931e0eb
ad7badd
6515e9a
 
 
 
 
 
 
 
 
ad7badd
 
 
 
 
 
931e0eb
ad7badd
 
 
 
 
 
 
 
 
 
7d4ee71
ad7badd
 
7d4ee71
 
 
b6713ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54c487a
 
 
 
 
 
 
 
 
b6713ac
54c487a
 
7d4ee71
ad7badd
b6713ac
 
7d4ee71
6515e9a
 
 
 
ad7badd
 
 
6515e9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
931e0eb
ad7badd
6515e9a
ad7badd
 
 
 
6515e9a
ad7badd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6515e9a
 
 
 
 
ad7badd
 
6515e9a
ad7badd
 
 
 
 
 
 
 
6515e9a
 
ad7badd
 
6515e9a
 
 
 
 
ad7badd
 
 
6515e9a
ad7badd
6515e9a
ad7badd
 
 
6515e9a
 
 
 
 
 
 
 
 
 
ad7badd
d9f9a42
 
 
3544bd9
 
7d4ee71
ad7badd
7d4ee71
ad7badd
 
 
7d4ee71
ad7badd
 
 
 
7d4ee71
 
6515e9a
ad7badd
 
97978bf
 
 
 
ad7badd
a5e5505
 
 
 
 
 
 
ad7badd
 
 
 
6515e9a
ad7badd
 
 
7d4ee71
 
ad7badd
 
7d4ee71
ad7badd
6515e9a
ad7badd
 
7d4ee71
ad7badd
 
 
 
 
 
 
97978bf
ad7badd
97978bf
ad7badd
6515e9a
 
 
ad7badd
 
 
 
 
 
 
 
 
6515e9a
 
 
 
ad7badd
6515e9a
ad7badd
 
 
 
 
 
7d4ee71
ad7badd
 
7758b4a
 
ad7badd
931e0eb
7758b4a
 
7d4ee71
ad7badd
 
 
6515e9a
ad7badd
6515e9a
 
7d4ee71
ad7badd
7d4ee71
931e0eb
6515e9a
7d4ee71
931e0eb
7d4ee71
ad7badd
 
 
97978bf
ad7badd
 
 
 
 
 
6515e9a
ad7badd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from tqdm import tqdm
import gc
import math
import os
import base64
import json

from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
from lora_manager import LoRAManager

# System prompt for prompt enhancement
SYSTEM_PROMPT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.  

Please strictly follow the rewriting rules below:

## 1. General Principles
- Keep the rewritten prompt **concise and comprehensive**. Avoid overly long sentences and unnecessary descriptive language.  
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.  
- Keep the main part of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.  
- All added objects or modifications must align with the logic and style of the scene in the input images.  
- If multiple sub-images are to be generated, describe the content of each sub-image individually.  

## 2. Task-Type Handling Rules

### 1. Add, Delete, Replace Tasks
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.  
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:  
    > Original: "Add an animal"  
    > Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"  
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.  
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.  

### 2. Text Editing Tasks
- All text content must be enclosed in English double quotes `" "`. Keep the original language of the text, and keep the capitalization.  
- Both adding new text and replacing existing text are text replacement tasks, For example:  
    - Replace "xx" to "yy"  
    - Replace the mask / bounding box to "yy"  
    - Replace the visual object to "yy"  
- Specify text position, color, and layout only if user has required.  
- If font is specified, keep the original language of the font.  

### 3. Human Editing Tasks
- Make the smallest changes to the given user's prompt.  
- If changes to background, action, expression, camera shot, or ambient lighting are required, please list each modification individually.
- **Edits to makeup or facial features / expression must be subtle, not exaggerated, and must preserve the subject's identity consistency.**
    > Original: "Add eyebrows to the face"  
    > Rewritten: "Slightly thicken the person's eyebrows with little change, look natural."

### 4. Style Conversion or Enhancement Tasks
- If a style is specified, describe it concisely using key visual features. For example:  
    > Original: "Disco style"  
    > Rewritten: "1970s disco style: flashing lights, disco ball, mirrored walls, vibrant colors"  
- For style reference, analyze the original image and extract key characteristics (color, composition, texture, lighting, artistic style, etc.), integrating them into the instruction.  
- **Colorization tasks (including old photo restoration) must use the fixed template:**  
  "Restore and colorize the old photo."  
- Clearly specify the object to be modified. For example:  
    > Original: Modify the subject in Picture 1 to match the style of Picture 2.  
    > Rewritten: "Change the girl in Picture 1 to the ink-wash style of Picture 2 — rendered in black-and-white watercolor with soft color transitions.

### 5. Material Replacement
- Clearly specify the object and the material. For example: "Change the material of the apple to papercut style."
- For text material replacement, use the fixed template:
    "Change the material of text "xxxx" to laser style"

### 6. Logo/Pattern Editing
- Material replacement should preserve the original shape and structure as much as possible. For example:
   > Original: "Convert to sapphire material"  
   > Rewritten: "Convert the main subject in the image to sapphire material, preserving similar shape and structure"
- When migrating logos/patterns to new scenes, ensure shape and structure consistency. For example:
   > Original: "Migrate the logo in the image to a new scene"  
   > Rewritten: "Migrate the logo in the image to a new scene, preserving similar shape and structure"

### 7. Multi-Image Tasks
- Rewritten prompts must clearly point out which image's element is being modified. For example:  
    > Original: "Replace the subject of picture 1 with the subject of picture 2"  
    > Rewritten: "Replace the girl of picture 1 with the boy of picture 2, keeping picture 2's background unchanged"  
- For stylization tasks, describe the reference image's style in the rewritten prompt, while preserving the visual content of the source image.  

## 3. Rationale and Logic Check
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" requires logical correction.
- Supplement missing critical information: e.g., if position is unspecified, choose a reasonable area based on composition (near subject, blank space, center/edge, etc.).

# Output Format Example
```json
{
   "Rewritten": "..."
}
```
'''

def encode_image(pil_image):
    """Encode PIL image to base64 string for API calls"""
    import io
    buffered = io.BytesIO()
    pil_image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")

def polish_prompt_hf(prompt, img_list):
    """Rewrite prompt using Hugging Face InferenceClient"""
    from huggingface_hub import InferenceClient
    
    # Ensure HF_TOKEN is set
    api_key = os.environ.get("HF_TOKEN")
    if not api_key:
        print("Warning: HF_TOKEN not set. Falling back to original prompt.")
        return prompt

    try:
        # Format the prompt for the API
        formatted_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
        
        # Initialize the client
        client = InferenceClient(
            provider="novita",
            api_key=api_key,
        )

        # Format the messages for the chat completions API
        sys_prompt = "you are a helpful assistant, you should provide useful answers to users."
        
        # Create messages structure
        messages = [
            {"role": "system", "content": sys_prompt},
            {"role": "user", "content": []}
        ]
        
        # Add images to the message
        for img in img_list:
            messages[1]["content"].append(
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encode_image(img)}"}})
        
        # Add text to the message
        messages[1]["content"].append({"type": "text", "text": f"{formatted_prompt}"})

        completion = client.chat.completions.create(
            model="Qwen/Qwen3-Next-80B-A3B-Instruct",
            messages=messages,
        )
        
        # Parse the response
        result = completion.choices[0].message.content
        
        # Try to extract JSON if present
        if '{"Rewritten"' in result:
            try:
                # Clean up the response
                result = result.replace('```json', '').replace('```', '')
                result_json = json.loads(result)
                polished_prompt = result_json.get('Rewritten', result)
            except:
                polished_prompt = result
        else:
            polished_prompt = result
            
        polished_prompt = polished_prompt.strip().replace("\n", " ")
        return polished_prompt
        
    except Exception as e:
        print(f"Error during API call to Hugging Face: {e}")
        # Fallback to original prompt if enhancement fails
        return prompt

# Define simplified LoRA configurations with Lightning as always-loaded base
LORA_CONFIG = {
    "Lightning (4-Step)": {
        "repo_id": "lightx2v/Qwen-Image-Lightning",
        "filename": "Qwen-Image-Lightning-4steps-V2.0.safetensors",
        "type": "base",
        "method": "standard",
        "always_load": True,
        "prompt_template": "{prompt}",
        "description": "Fast 4-step generation LoRA - always loaded as base optimization.",
    },
    "None": {
        "repo_id": None,
        "filename": None,
        "type": "edit",
        "method": "none",
        "prompt_template": "{prompt}",
        "description": "Use the base Qwen-Image-Edit model with Lightning optimization.",
    },
    "Object Remover": {
        "repo_id": "valiantcat/Qwen-Image-Edit-Remover-General-LoRA",
        "filename": "qwen-edit-remover.safetensors",
        "type": "edit",
        "method": "standard",
        "prompt_template": "Remove {prompt}",
        "description": "Removes objects from an image while maintaining background consistency.",
    },
}

# Initialize LoRA Manager
print("Initializing model...")
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Scheduler configuration for Lightning
scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": math.log(3),
    "invert_sigmas": False,
    "max_image_seq_len": 8192,
    "max_shift": math.log(3),
    "num_train_timesteps": 1000,
    "shift": 1.0,
    "shift_terminal": None,
    "stochastic_sampling": False,
    "time_shift_type": "exponential",
    "use_beta_sigmas": False,
    "use_dynamic_shifting": True,
    "use_exponential_sigmas": False,
    "use_karras_sigmas": False,
}

# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
# Load the model pipeline
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", torch_dtype=dtype).to(device)

# Apply the same optimizations from the first version
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())

# --- Ahead-of-time compilation ---
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")

# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
# Load the model pipeline
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
                                                 scheduler=scheduler,
                                                 torch_dtype=dtype).to(device)

# Apply model optimizations
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())

# Initialize LoRA Manager
lora_manager = LoRAManager(pipe, device)

# Always load Lightning LoRA first
LIGHTNING_LORA_NAME = "Lightning (4-Step)"
print(f"Loading always-active Lightning LoRA: {LIGHTNING_LORA_NAME}")

# Load and register Lightning LoRA
lightning_config = LORA_CONFIG[LIGHTNING_LORA_NAME]
lightning_lora_path = hf_hub_download(
    repo_id=lightning_config["repo_id"], 
    filename=lightning_config["filename"]
)

lora_manager.register_lora(LIGHTNING_LORA_NAME, lightning_lora_path, **lightning_config)
lora_manager.configure_lora(LIGHTNING_LORA_NAME, {
    "description": lightning_config["description"],
    "is_base": True
})

# Load Lightning LoRA and keep it always active
lora_manager.load_lora(LIGHTNING_LORA_NAME)
lora_manager.fuse_lora(LIGHTNING_LORA_NAME)

# Register other LoRAs (only Object Remover for testing)
for lora_name, config in LORA_CONFIG.items():
    if lora_name != LIGHTNING_LORA_NAME and config["repo_id"] is not None:
        lora_path = hf_hub_download(repo_id=config["repo_id"], filename=config["filename"])
        lora_manager.register_lora(lora_name, lora_path, **config)

original_transformer_state_dict = pipe.transformer.state_dict()
print("Base model and Lightning LoRA loaded and ready.")

def fuse_lora_manual(transformer, lora_state_dict, alpha=1.0):
    """Manual LoRA fusion method"""
    key_mapping = {}
    for key in lora_state_dict.keys():
        base_key = key.replace('diffusion_model.', '').rsplit('.lora_', 1)[0]
        if base_key not in key_mapping:
            key_mapping[base_key] = {}
        if 'lora_A' in key:
            key_mapping[base_key]['down'] = lora_state_dict[key]
        elif 'lora_B' in key:
            key_mapping[base_key]['up'] = lora_state_dict[key]

    for name, module in tqdm(transformer.named_modules(), desc="Fusing layers"):
        if name in key_mapping and isinstance(module, torch.nn.Linear):
            lora_weights = key_mapping[name]
            if 'down' in lora_weights and 'up' in lora_weights:
                device = module.weight.device
                dtype = module.weight.dtype
                lora_down = lora_weights['down'].to(device, dtype=dtype)
                lora_up = lora_weights['up'].to(device, dtype=dtype)
                merged_delta = lora_up @ lora_down
                module.weight.data += alpha * merged_delta
    return transformer

def load_and_fuse_additional_lora(lora_name):
    """
    Load an additional LoRA while keeping Lightning LoRA always active.
    This enables combining Lightning's speed with other LoRA capabilities.
    """
    config = LORA_CONFIG[lora_name]
    
    print(f"Loading additional LoRA: {lora_name} (Lightning will remain active)")
    
    # Get LoRA path from registry
    if lora_name in lora_manager.lora_registry:
        lora_path = lora_manager.lora_registry[lora_name]["lora_path"]
    else:
        print(f"LoRA {lora_name} not found in registry")
        return

    # Always keep Lightning LoRA loaded
    # Load additional LoRA without resetting to base state
    if config["method"] == "standard":
        print("Using standard loading method...")
        # Load additional LoRA without fusing (to preserve Lightning)
        pipe.load_lora_weights(lora_path, adapter_names=[lora_name])
        # Set both adapters as active
        pipe.set_adapters([LIGHTNING_LORA_NAME, lora_name])
        print(f"Lightning + {lora_name} now active.")
    elif config["method"] == "manual_fuse":
        print("Using manual fusion method...")
        lora_state_dict = load_file(lora_path)
        # Manual fusion on top of Lightning
        pipe.transformer = fuse_lora_manual(pipe.transformer, lora_state_dict)
        print(f"Lightning + {lora_name} manually fused.")
    
    gc.collect()
    torch.cuda.empty_cache()

def load_and_fuse_lora(lora_name):
    """Legacy function for backward compatibility"""
    if lora_name == LIGHTNING_LORA_NAME:
        # Lightning is already loaded, just ensure it's active
        print("Lightning LoRA is already active.")
        pipe.set_adapters([LIGHTNING_LORA_NAME])
        return
    
    load_and_fuse_additional_lora(lora_name)

# Ahead-of-time compilation with minimal memory footprint
# Use tiny images to minimize memory during compilation
optimize_pipeline_(pipe, image=[Image.new("RGB", (64, 64)), Image.new("RGB", (64, 64))], prompt="test")

print("Model compilation complete.")

@spaces.GPU(duration=60)
def infer(
    lora_name,
    input_image,
    style_image,
    prompt,
    seed,
    randomize_seed,
    true_guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    """Main inference function with Lightning always active"""
    if not lora_name:
        raise gr.Error("Please select a LoRA model.")
    expected_key = os.environ.get("hf_key")
    if expected_key not in prompt:
        print("❌ Invalid key.")
        return None
    config = LORA_CONFIG[lora_name]

    default_path = os.path.join(os.path.dirname(__file__), "1.jpg")
    if os.path.exists(default_path):
        image_for_pipeline = [Image.open(default_path).convert("RGB")]
        print("Loaded default image: 1.jpg")
    else:
        raise gr.Error("No input images and '1.jpg' not found in app directory.")

    if not prompt and config["prompt_template"] != "change the face to face segmentation mask":
        raise gr.Error("A text prompt is required for this LoRA.")
    
    # Load additional LoRA while keeping Lightning active
    load_and_fuse_lora(lora_name)
    
    final_prompt = config["prompt_template"].format(prompt=prompt)
    
    if randomize_seed:
        seed = random.randint(0, np.iinfo(np.int32).max)
    generator = torch.Generator(device=device).manual_seed(int(seed))
    
    print("--- Running Inference ---")
    print(f"LoRA: {lora_name} (with Lightning always active)")
    print(f"Prompt: {final_prompt}")
    print(f"Seed: {seed}, Steps: {num_inference_steps}, CFG: {true_guidance_scale}")
    
    with torch.inference_mode():
        result_image = pipe(
            image=image_for_pipeline,
            prompt=final_prompt,
            negative_prompt=" ",
            num_inference_steps=int(num_inference_steps),
            generator=generator,
            num_images_per_prompt = 4,
            true_cfg_scale=true_guidance_scale,
        ).images
        
    # Don't unfuse Lightning - keep it active for next inference
    if lora_name != LIGHTNING_LORA_NAME:
        pipe.disable_adapters()  # Disable additional LoRA but keep Lightning
    gc.collect()
    torch.cuda.empty_cache()
    
    return result_image, seed

def on_lora_change(lora_name):
    """Dynamic UI component visibility handler"""
    config = LORA_CONFIG[lora_name]
    is_style_lora = config["type"] == "style"
    
    # Lightning LoRA info
    lightning_info = "⚡ **Lightning LoRA always active** - Fast 4-step generation enabled"
    
    return {
        lora_description: gr.Markdown(visible=True, value=f"**{lightning_info}**  \n\n**Description:** {config['description']}"),
        input_image_box: gr.Image(visible=not is_style_lora, type="pil"),
        style_image_box: gr.Image(visible=is_style_lora, type="pil"),
        prompt_box: gr.Textbox(visible=(config["prompt_template"] != "change the face to face segmentation mask"))
    }

with gr.Blocks(css="#col-container { margin: 0 auto; max-width: 1024px; }") as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Logo" style="width: 400px; margin: 0 auto; display: block;">')
        gr.Markdown("<h2 style='text-align: center;'>Qwen-Image-Edit Multi-LoRA Playground</h2>")
        gr.Markdown("""
        [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. 
        This demo uses the new [Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) with support for multiple LoRA adapters.
        **⚡ Lightning LoRA is always active for fast 4-step generation** - combine it with Object Remover for optimized performance.
        Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) to run locally with ComfyUI or diffusers.
        """)

        with gr.Row():
            with gr.Column(scale=1):
                lora_selector = gr.Dropdown(
                    label="Select Additional LoRA (Lightning Always Active)",
                    choices=list(LORA_CONFIG.keys()),
                    value=LIGHTNING_LORA_NAME,
                    info="Lightning LoRA provides fast 4-step generation and is always active"
                )
                lora_description = gr.Markdown(visible=False)
                
                input_image_box = gr.Image(label="Input Image", type="pil", visible=True)
                style_image_box = gr.Image(label="Style Reference Image", type="pil", visible=False)
                
                prompt_box = gr.Textbox(label="Prompt", placeholder="Describe the object to remove...")
                
                run_button = gr.Button("Generate!", variant="primary")

            with gr.Column(scale=1):
                result_image = gr.Gallery(label="", show_label=False, type="pil")
                used_seed = gr.Number(label="Used Seed", interactive=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed_slider = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=42)
            randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
            cfg_slider = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, step=0.1, value=4.0)
            steps_slider = gr.Slider(label="Inference Steps", minimum=4, maximum=50, step=1, value=4, info="Optimized for Lightning's 4-step generation")

        lora_selector.change(
            fn=on_lora_change,
            inputs=lora_selector,
            outputs=[lora_description, input_image_box, style_image_box, prompt_box]
        )

        demo.load(
            fn=on_lora_change,
            inputs=lora_selector,
            outputs=[lora_description, input_image_box, style_image_box, prompt_box]
        )

        run_button.click(
            fn=infer,
            inputs=[
                lora_selector,
                input_image_box, style_image_box,
                prompt_box,
                seed_slider, randomize_seed_checkbox,
                cfg_slider, steps_slider
            ],
            outputs=[result_image, used_seed]
        )

if __name__ == "__main__":
    demo.launch()