Add all files
Browse files- README.md +16 -3
- app.py +30 -0
- requirements.txt +4 -0
README.md
CHANGED
|
@@ -1,13 +1,26 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: yellow
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.11.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Image Classification with ViT
|
| 3 |
+
emoji: 🖼️
|
| 4 |
colorFrom: yellow
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.11.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
+
tags:
|
| 12 |
+
- image-classification
|
| 13 |
+
- vision
|
| 14 |
+
- transformers
|
| 15 |
+
- vit
|
| 16 |
+
- deep-learning
|
| 17 |
+
- gradio
|
| 18 |
+
datasets:
|
| 19 |
+
- imagenet-1k
|
| 20 |
+
- cifar10
|
| 21 |
+
- cifar100
|
| 22 |
+
models:
|
| 23 |
+
- google/vit-base-patch16-224
|
| 24 |
---
|
| 25 |
|
| 26 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
# Load model and feature extractor
|
| 6 |
+
model_name = "google/vit-base-patch16-224"
|
| 7 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 8 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# Define the prediction function
|
| 11 |
+
def classify_image(image):
|
| 12 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 13 |
+
outputs = model(**inputs)
|
| 14 |
+
logits = outputs.logits
|
| 15 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 16 |
+
label = model.config.id2label[predicted_class_idx]
|
| 17 |
+
return f"Predicted Class: {label}"
|
| 18 |
+
|
| 19 |
+
# Create Gradio interface
|
| 20 |
+
interface = gr.Interface(
|
| 21 |
+
fn=classify_image,
|
| 22 |
+
inputs=gr.Image(type="pil"),
|
| 23 |
+
outputs="text",
|
| 24 |
+
title="Image Classification App",
|
| 25 |
+
description="Upload an image to classify it using the Vision Transformer model.",
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Launch the app
|
| 29 |
+
if __name__ == "__main__":
|
| 30 |
+
interface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
gradio
|
| 3 |
+
transformers
|
| 4 |
+
pillow
|