Spaces:
Sleeping
Sleeping
| # #refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb | |
| # #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main | |
| import gradio as gr | |
| from openai import OpenAI | |
| import os | |
| ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
| client = OpenAI( | |
| base_url="https://integrate.api.nvidia.com/v1", | |
| api_key=ACCESS_TOKEN, | |
| ) | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat.completions.create( | |
| model="nvidia/llama-3.1-nemotron-70b-instruct", | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| messages=messages, | |
| ): | |
| token = message.choices[0].delta.content | |
| if token is not None: | |
| response += token | |
| yield response | |
| chatbot = gr.Chatbot(height=600) | |
| service = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Максимальная длина ответа"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Температура"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="top_p", | |
| ), | |
| ], | |
| fill_height=True, | |
| chatbot=chatbot, | |
| theme=gr.themes.Soft(), | |
| ) | |
| if __name__ == "__main__": | |
| service.launch() | |