yuripeyamashita
feat: update app.py
6e80e89
raw
history blame
2.96 kB
import spaces
import torch
import gradio as gr
import tempfile
import os
import uuid
import scipy.io.wavfile
import time
import numpy as np
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperTokenizer, pipeline
# import subprocess
# subprocess.run(
# "pip install flash-attn --no-build-isolation",
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
# shell=True,
# )
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
MODEL_NAME = "openai/whisper-large-v3-turbo"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
MODEL_NAME, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="flash_attention_2"
)
model.to(device)
processor = AutoProcessor.from_pretrained(MODEL_NAME)
tokenizer = WhisperTokenizer.from_pretrained(MODEL_NAME)
pipe = pipeline(
task="automatic-speech-recognition",
model=model,
tokenizer=tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=10,
torch_dtype=torch_dtype,
device=device,
)
# @spaces.GPU
def stream_transcribe(stream, new_chunk):
start_time = time.time()
try:
sr, y = new_chunk
# Convert to mono if stereo
if y.ndim > 1:
y = y.mean(axis=1)
y = y.astype(np.float32)
y /= np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
transcription = pipe({"sampling_rate": sr, "raw": stream})["text"]
end_time = time.time()
latency = end_time - start_time
return stream, transcription, f"{latency:.2f}"
except Exception as e:
print(f"Error during Transcription: {e}")
return stream, e, "Error"
def clear():
return ""
def clear_state():
return None
with gr.Blocks() as microphone:
with gr.Column():
gr.Markdown(
f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.")
with gr.Row():
input_audio_microphone = gr.Audio(streaming=True)
output = gr.Textbox(label="Transcription", value="")
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0)
with gr.Row():
clear_button = gr.Button("Clear Output")
state = gr.State()
input_audio_microphone.stream(stream_transcribe, [state, input_audio_microphone], [
state, output, latency_textbox], time_limit=30, stream_every=2, concurrency_limit=None)
clear_button.click(clear_state, outputs=[state]).then(clear, outputs=[output])
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.TabbedInterface([microphone], ["Microphone"])
demo.launch()