fnmodel / app.py
aeb56
Monkey-patch transformers to disable flash attention via wrapper script
2900b36
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import subprocess
import json
from datetime import datetime
import time
# Set environment variables for flash-linear-attention and memory management
os.environ["FLA_USE_TRITON"] = "1"
os.environ["PYTORCH_ALLOC_CONF"] = "expandable_segments:True" # Updated from PYTORCH_CUDA_ALLOC_CONF
# Model configuration
MODEL_NAME = "optiviseapp/kimi-linear-48b-a3b-instruct-fine-tune"
class ChatBot:
def __init__(self):
self.model = None
self.tokenizer = None
self.loaded = False
def _create_status_table(self, tasks, status="⏳ Waiting", results=None):
"""Create a markdown table showing evaluation status"""
table = "## πŸ“Š Evaluation Progress\n\n"
table += "| Benchmark | Status | Score | Details |\n"
table += "|-----------|--------|-------|----------|\n"
for task in tasks:
task_status = status
task_score = "-"
task_details = ""
if results and task in results:
task_status = "βœ… Complete"
if task == "ARC-Challenge" and "arc_challenge" in results[task]:
score_data = results[task]["arc_challenge"]
task_score = f"{score_data.get('acc_norm', 0):.2%}"
task_details = f"acc: {score_data.get('acc', 0):.2%}"
elif task == "TruthfulQA" and "truthfulqa_mc2" in results[task]:
score_data = results[task]["truthfulqa_mc2"]
task_score = f"{score_data.get('acc', 0):.2%}"
elif task == "Winogrande" and "winogrande" in results[task]:
score_data = results[task]["winogrande"]
task_score = f"{score_data.get('acc', 0):.2%}"
table += f"| {task} | {task_status} | {task_score} | {task_details} |\n"
return table
def load_model(self):
if self.loaded:
return "βœ… Model already loaded!"
try:
yield "πŸ”„ Loading tokenizer..."
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
yield "πŸ”„ Loading model (this takes 5-10 minutes)...\n\nThe 48B model is being distributed across 4 GPUs..."
# Configure memory for 4 GPUs
num_gpus = torch.cuda.device_count()
max_memory = {i: f"{int(23)}GB" for i in range(num_gpus)} # L4 has 24GB, leave 1GB
self.model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.bfloat16,
device_map="balanced",
max_memory=max_memory,
trust_remote_code=True,
low_cpu_mem_usage=True,
attn_implementation="eager",
)
self.model.eval()
# Patch model config to avoid flash attention issues
if hasattr(self.model.config, '_attn_implementation'):
self.model.config._attn_implementation = "eager"
if hasattr(self.model.config, 'attn_implementation'):
self.model.config.attn_implementation = "eager"
self.loaded = True
# Get GPU distribution info
if hasattr(self.model, 'hf_device_map'):
device_info = "\n\n**GPU Distribution:**\n"
devices = {}
for name, device in self.model.hf_device_map.items():
if device not in devices:
devices[device] = 0
devices[device] += 1
for device, count in devices.items():
device_info += f"- {device}: {count} layers\n"
else:
device_info = ""
yield f"βœ… **Model loaded successfully!**{device_info}\n\nYou can now use the Evaluation tab."
except Exception as e:
self.loaded = False
yield f"❌ **Error loading model:**\n\n{str(e)}"
def chat(self, message, history, system_prompt, max_tokens, temperature, top_p):
if not self.loaded:
return "❌ Please load the model first by clicking the 'Load Model' button in Controls."
try:
# Build prompt from history
conversation = []
if system_prompt.strip():
conversation.append(f"System: {system_prompt}")
for user_msg, bot_msg in history:
conversation.append(f"User: {user_msg}")
if bot_msg:
conversation.append(f"Assistant: {bot_msg}")
conversation.append(f"User: {message}")
conversation.append("Assistant:")
prompt = "\n".join(conversation)
# Tokenize
inputs = self.tokenizer(prompt, return_tensors="pt")
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
# Generate
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=temperature > 0,
pad_token_id=self.tokenizer.eos_token_id,
use_cache=True,
)
# Decode
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract assistant response
if "Assistant:" in response:
response = response.split("Assistant:")[-1].strip()
return response
except Exception as e:
return f"❌ Error: {str(e)}"
def run_evaluation(self, tasks_to_run):
"""Run lm_eval on selected tasks"""
# Note: We don't strictly require the model to be loaded first
# since we'll be unloading it anyway. The load step is just for verification.
try:
# Map friendly names to lm_eval task names
task_map = {
"ARC-Challenge": "arc_challenge",
"TruthfulQA": "truthfulqa_mc2",
"Winogrande": "winogrande"
}
selected_tasks = [task_map[t] for t in tasks_to_run]
task_string = ",".join(selected_tasks)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = f"/tmp/eval_results_{timestamp}"
# Initial status table
status_table = self._create_status_table(tasks_to_run, "⏳ Preparing")
logs = "πŸ”„ **Preparing for evaluation...**\n\nTasks: " + ", ".join(tasks_to_run) + "\n\n"
yield status_table, logs
# IMPORTANT: Clean up any loaded model to free VRAM for lm_eval
if self.loaded and self.model is not None:
logs += "πŸ”„ **Unloading model to free VRAM...**\n\n"
yield status_table, logs
if self.model is not None:
del self.model
self.model = None
if self.tokenizer is not None:
del self.tokenizer
self.tokenizer = None
self.loaded = False
else:
logs += "πŸ”„ **Cleaning up memory...**\n\n"
yield status_table, logs
# Aggressive memory cleanup
import gc
for _ in range(3):
gc.collect()
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
torch.cuda.empty_cache()
torch.cuda.synchronize(device=i)
torch.cuda.reset_peak_memory_stats(device=i)
torch.cuda.reset_accumulated_memory_stats(device=i)
# Wait for memory to be fully released
logs += "πŸ”„ **Waiting for memory cleanup (5s)...**\n\n"
yield status_table, logs
time.sleep(5)
# Final garbage collection
gc.collect()
status_table = self._create_status_table(tasks_to_run, "πŸ”„ Loading Model")
logs += "βœ… **Memory cleared! Starting evaluation...**\n\n"
logs += f"⏱️ Estimated time: 30-60 minutes\n\n"
yield status_table, logs
# Create a wrapper script that disables flash attention before running lm_eval
wrapper_script = f"/tmp/run_eval_{timestamp}.py"
with open(wrapper_script, 'w') as f:
f.write(f"""
import sys
import os
# Monkey-patch transformers to disable flash attention
import transformers.modeling_flash_attention_utils as flash_utils
def disabled_lazy_import(*args, **kwargs):
raise ImportError("Flash attention disabled - using eager attention")
flash_utils.lazy_import_flash_attention = disabled_lazy_import
# Now run lm_eval
sys.argv = [
'lm_eval',
'--model', 'hf',
'--model_args', 'pretrained={MODEL_NAME},trust_remote_code=True,dtype=bfloat16,low_cpu_mem_usage=True,parallelize=True,attn_implementation=eager',
'--tasks', '{task_string}',
'--batch_size', '1',
'--output_path', '{output_dir}',
'--log_samples'
]
from lm_eval.__main__ import cli_evaluate
cli_evaluate()
""")
logs += "⚠️ **Note:** Flash attention disabled, using eager attention (slower but compatible)\n\n"
yield status_table, logs
# Run lm_eval via wrapper script
cmd = ["python3", wrapper_script]
status_table = self._create_status_table(tasks_to_run, "πŸ”„ Running")
logs += f"πŸ”„ **Running lm_eval...**\n\nTasks: {task_string}\n\n"
logs += "---\n\n### πŸ“œ Live Logs (last 15 lines):\n\n```\n"
yield status_table, logs
# Run evaluation
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1
)
output_lines = []
log_update_counter = 0
for line in process.stdout:
output_lines.append(line)
log_update_counter += 1
# Update every 5 lines to reduce UI flickering
if log_update_counter % 5 == 0:
recent = ''.join(output_lines[-15:])
current_logs = logs + recent + "\n```"
yield status_table, current_logs
process.wait()
if process.returncode != 0:
status_table = self._create_status_table(tasks_to_run, "❌ Failed")
error_logs = logs + ''.join(output_lines[-50:]) + "\n```\n\n"
error_logs += f"❌ **Evaluation failed!**\n\nExit code: {process.returncode}\n"
yield status_table, error_logs
return
# Read results
results_file = os.path.join(output_dir, "results.json")
if os.path.exists(results_file):
with open(results_file, 'r') as f:
results = json.load(f)
# Parse results for status table
parsed_results = {}
for task in tasks_to_run:
task_key = task_map[task]
if task_key in results['results']:
parsed_results[task] = {task_key: results['results'][task_key]}
# Update status table with results
status_table = self._create_status_table(tasks_to_run, "βœ… Complete", parsed_results)
# Format detailed results
result_logs = "βœ… **Evaluation Complete!**\n\n"
result_logs += f"**Timestamp:** {timestamp}\n\n"
result_logs += "## πŸ“Š Detailed Results:\n\n"
for task in selected_tasks:
if task in results['results']:
task_results = results['results'][task]
result_logs += f"### {task}\n"
for metric, value in task_results.items():
if isinstance(value, float):
result_logs += f"- **{metric}:** {value:.4f}\n"
else:
result_logs += f"- **{metric}:** {value}\n"
result_logs += "\n"
# Add summary if available
if 'summary' in results:
result_logs += "## πŸ“ˆ Summary:\n\n"
for metric, value in results['summary'].items():
if isinstance(value, float):
result_logs += f"- **{metric}:** {value:.4f}\n"
else:
result_logs += f"- **{metric}:** {value}\n"
result_logs += f"\n\n**Full results saved to:** `{output_dir}`"
yield status_table, result_logs
else:
status_table = self._create_status_table(tasks_to_run, "⚠️ Unknown")
warning_logs = f"⚠️ **Evaluation completed but results file not found.**\n\nOutput:\n```\n{''.join(output_lines[-30:])}\n```"
yield status_table, warning_logs
except Exception as e:
status_table = self._create_status_table(tasks_to_run if 'tasks_to_run' in locals() else [], "❌ Error")
error_logs = f"❌ **Evaluation error:**\n\n{str(e)}"
yield status_table, error_logs
# Initialize
bot = ChatBot()
# UI with Tabs
with gr.Blocks(theme=gr.themes.Soft(), title="Kimi 48B Fine-tuned - Evaluation") as demo:
gr.Markdown("""
# πŸ“Š Kimi Linear 48B A3B - Evaluation
**Model:** `optiviseapp/kimi-linear-48b-a3b-instruct-fine-tune`
**This Space is configured for model evaluation only. Chat/inference is disabled.**
""")
# Show GPU info
if torch.cuda.is_available():
gpu_count = torch.cuda.device_count()
gpu_name = torch.cuda.get_device_name(0)
total_vram = sum(torch.cuda.get_device_properties(i).total_memory / 1024**3 for i in range(gpu_count))
gr.Markdown(f"**Hardware:** {gpu_count}x {gpu_name} ({total_vram:.0f}GB total VRAM)")
with gr.Tabs():
# Tab 1: Controls (always visible)
with gr.Tab("πŸŽ›οΈ Controls"):
gr.Markdown("### Load Model (Optional)")
load_btn = gr.Button("πŸš€ Load Model", variant="primary", size="lg")
status = gr.Markdown("**Status:** Model not loaded")
gr.Markdown("""
### ℹ️ Instructions
1. **(Optional)** Click "Load Model" to verify setup (takes 5-10 minutes)
2. **Go directly to Evaluation tab** to run benchmarks
**Note:**
- Chat/inference functionality is currently disabled. This Space focuses on model evaluation only.
- Loading the model first is optional - you can go straight to the Evaluation tab
- Any loaded model will be automatically unloaded before evaluation starts to free VRAM for lm_eval.
""")
# Tab 2: Chat - DISABLED
# Uncomment this section to re-enable chat functionality
"""
with gr.Tab("πŸ’¬ Chat"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### βš™οΈ Settings")
system_prompt = gr.Textbox(
label="System Prompt",
placeholder="You are a helpful assistant...",
lines=2
)
max_tokens = gr.Slider(50, 2048, 512, label="Max Tokens", step=1)
temperature = gr.Slider(0, 2, 0.7, label="Temperature", step=0.1)
top_p = gr.Slider(0, 1, 0.9, label="Top P", step=0.05)
with gr.Column(scale=2):
chatbot = gr.Chatbot(height=500, show_copy_button=True)
with gr.Row():
msg = gr.Textbox(label="Message", placeholder="Type here...", scale=4)
send = gr.Button("Send", variant="primary", scale=1)
clear = gr.Button("Clear Chat")
"""
# Tab 3: Evaluation
with gr.Tab("πŸ“Š Evaluation"):
gr.Markdown("""
### Run LM Evaluation Harness
Select benchmarks to evaluate your fine-tuned model. **Estimated time: 30-60 minutes total.**
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Select Benchmarks")
tasks = gr.CheckboxGroup(
choices=["ARC-Challenge", "TruthfulQA", "Winogrande"],
value=["ARC-Challenge", "TruthfulQA", "Winogrande"],
label="Tasks to Run",
info="Select one or more tasks"
)
eval_btn = gr.Button("πŸš€ Start Evaluation", variant="primary", size="lg")
gr.Markdown("""
### ⏱️ Estimated Time:
- **ARC-Challenge:** 15-30 min
- **TruthfulQA:** 10-20 min
- **Winogrande:** 15-30 min
**Total:** ~40-80 minutes for all 3
""")
with gr.Column(scale=2):
eval_status = gr.Markdown("## πŸ“Š Evaluation Progress\n\nClick 'πŸš€ Start Evaluation' to begin.")
eval_logs = gr.Markdown("### πŸ“œ Logs\n\nLogs will appear here during evaluation.")
gr.Markdown("""
---
**Note:**
- You can start evaluation immediately - no need to load the model first
- If you did load the model, it will be automatically unloaded before evaluation to free VRAM
- lm_eval will load its own fresh instance of the model for evaluation
- Results will be saved to `/tmp/eval_results_[timestamp]/`
""")
gr.Markdown("""
---
**Model:** [optiviseapp/kimi-linear-48b-a3b-instruct-fine-tune](https://huggingface.co/optiviseapp/kimi-linear-48b-a3b-instruct-fine-tune)
""")
# Events
load_btn.click(bot.load_model, outputs=status)
# Chat event handlers - DISABLED
# Uncomment these lines to re-enable chat functionality
"""
def respond(message, history, system, max_tok, temp, top):
bot_message = bot.chat(message, history, system, max_tok, temp, top)
history.append((message, bot_message))
return history, ""
msg.submit(respond, [msg, chatbot, system_prompt, max_tokens, temperature, top_p], [chatbot, msg])
send.click(respond, [msg, chatbot, system_prompt, max_tokens, temperature, top_p], [chatbot, msg])
clear.click(lambda: None, None, chatbot)
"""
# Evaluation event handler
eval_btn.click(bot.run_evaluation, inputs=tasks, outputs=[eval_status, eval_logs])
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)