|
|
|
|
|
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
|
print('Orpheus Humanizing Transformer Gradio App') |
|
|
|
|
|
print('=' * 70) |
|
|
print('Loading core Orpheus Humanizing Transformer modules...') |
|
|
|
|
|
import os |
|
|
import copy |
|
|
|
|
|
import time as reqtime |
|
|
import datetime |
|
|
from pytz import timezone |
|
|
|
|
|
print('=' * 70) |
|
|
print('Loading main Orpheus Humanizing Transformer modules...') |
|
|
|
|
|
os.environ['USE_FLASH_ATTENTION'] = '1' |
|
|
|
|
|
import torch |
|
|
|
|
|
torch.set_float32_matmul_precision('high') |
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
torch.backends.cudnn.allow_tf32 = True |
|
|
torch.backends.cuda.enable_flash_sdp(True) |
|
|
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
import TMIDIX |
|
|
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
|
|
|
|
from x_transformer_2_3_1 import * |
|
|
|
|
|
import random |
|
|
|
|
|
import tqdm |
|
|
|
|
|
print('=' * 70) |
|
|
print('Loading aux Orpheus Humanizing Transformer modules...') |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
import gradio as gr |
|
|
import spaces |
|
|
|
|
|
print('=' * 70) |
|
|
print('PyTorch version:', torch.__version__) |
|
|
print('=' * 70) |
|
|
print('Done!') |
|
|
print('Enjoy! :)') |
|
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
MODEL_CHECKPOINT = 'Orpheus_Music_Transformer_Trained_Model_128497_steps_0.6934_loss_0.7927_acc.pth' |
|
|
|
|
|
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' |
|
|
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
|
print('Instantiating model...') |
|
|
|
|
|
device_type = 'cuda' |
|
|
dtype = 'bfloat16' |
|
|
|
|
|
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] |
|
|
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) |
|
|
|
|
|
SEQ_LEN = 8192 |
|
|
PAD_IDX = 18819 |
|
|
|
|
|
model = TransformerWrapper(num_tokens = PAD_IDX+1, |
|
|
max_seq_len = SEQ_LEN, |
|
|
attn_layers = Decoder(dim = 2048, |
|
|
depth = 8, |
|
|
heads = 32, |
|
|
rotary_pos_emb = True, |
|
|
attn_flash = True |
|
|
) |
|
|
) |
|
|
|
|
|
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) |
|
|
|
|
|
print('=' * 70) |
|
|
print('Loading model checkpoint...') |
|
|
|
|
|
model_checkpoint = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', filename=MODEL_CHECKPOINT) |
|
|
|
|
|
model.load_state_dict(torch.load(model_checkpoint, map_location=device_type, weights_only=True)) |
|
|
|
|
|
model = torch.compile(model, mode='max-autotune') |
|
|
|
|
|
model.to(device_type) |
|
|
model.eval() |
|
|
|
|
|
print('=' * 70) |
|
|
print('Done!') |
|
|
print('=' * 70) |
|
|
print('Model will use', dtype, 'precision...') |
|
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
def load_midi(input_midi): |
|
|
|
|
|
raw_score = TMIDIX.midi2single_track_ms_score(input_midi) |
|
|
|
|
|
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True, apply_sustain=True) |
|
|
|
|
|
if escore_notes: |
|
|
|
|
|
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], sort_drums_last=True) |
|
|
|
|
|
dscore = TMIDIX.delta_score_notes(escore_notes) |
|
|
|
|
|
dcscore = TMIDIX.chordify_score([d[1:] for d in dscore]) |
|
|
|
|
|
melody_chords = [18816] |
|
|
|
|
|
chords = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i, c in enumerate(dcscore): |
|
|
|
|
|
delta_time = c[0][0] |
|
|
|
|
|
melody_chords.append(delta_time) |
|
|
|
|
|
cho = [] |
|
|
|
|
|
cho.append(delta_time) |
|
|
|
|
|
for e in c: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dur = max(1, min(255, e[1])) |
|
|
|
|
|
|
|
|
pat = max(0, min(128, e[5])) |
|
|
|
|
|
|
|
|
ptc = max(1, min(127, e[3])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vel = max(8, min(127, e[4])) |
|
|
velocity = round(vel / 15)-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pat_ptc = (128 * pat) + ptc |
|
|
dur_vel = (8 * dur) + velocity |
|
|
|
|
|
melody_chords.extend([pat_ptc+256, dur_vel+16768]) |
|
|
cho.extend([pat_ptc+256, dur_vel+16768]) |
|
|
|
|
|
chords.append(cho) |
|
|
|
|
|
print('Done!') |
|
|
print('=' * 70) |
|
|
print('Score has', len(melody_chords), 'tokens') |
|
|
print('Score has', len(chords), 'chords') |
|
|
print('=' * 70) |
|
|
|
|
|
return melody_chords, chords |
|
|
|
|
|
else: |
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU |
|
|
def Humanize_MIDI(input_midi, |
|
|
num_prime_toks, |
|
|
num_hum_notes, |
|
|
humanize_durations, |
|
|
humanize_velocities, |
|
|
model_temperature, |
|
|
model_sampling_top_p |
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
|
start_time = reqtime.time() |
|
|
print('=' * 70) |
|
|
|
|
|
print('=' * 70) |
|
|
print('Requested settings:') |
|
|
print('=' * 70) |
|
|
fn = os.path.basename(input_midi) |
|
|
fn1 = fn.split('.')[0] |
|
|
print('Input MIDI file name:', fn) |
|
|
print('Number of prime tokens:', num_prime_toks) |
|
|
print('Number of notes to humanize:', num_hum_notes) |
|
|
print('Humanize durations:', humanize_durations) |
|
|
print('Humanize velocities:', humanize_velocities) |
|
|
print('Model temperature:', model_temperature) |
|
|
print('Model top p:', model_sampling_top_p) |
|
|
|
|
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
if input_midi is not None: |
|
|
|
|
|
print('Loading MIDI...') |
|
|
|
|
|
score, chords = load_midi(input_midi.name) |
|
|
|
|
|
if score is not None and chords is not None: |
|
|
|
|
|
print('Sample score tokens', score[:10]) |
|
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
dur_vel_toks_num = len([t for t in score[num_prime_toks:] if 16767 < t < 18816]) |
|
|
|
|
|
print('Number of tokens to humanize:', dur_vel_toks_num) |
|
|
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
|
print('Generating...') |
|
|
|
|
|
final_song = score[:num_prime_toks] |
|
|
|
|
|
hn_count = 0 |
|
|
|
|
|
for t in tqdm.tqdm(score[num_prime_toks:]): |
|
|
|
|
|
if t < 16767 or t > 18815: |
|
|
final_song.append(t) |
|
|
|
|
|
else: |
|
|
|
|
|
fdur = ((t-16768) // 8) |
|
|
fvel = ((t-16768) % 8) |
|
|
|
|
|
x = torch.LongTensor(final_song).to(device_type) |
|
|
|
|
|
with ctx: |
|
|
out = model.generate(x, |
|
|
1, |
|
|
temperature=model_temperature, |
|
|
filter_logits_fn=top_p, |
|
|
filter_kwargs={'thres': model_sampling_top_p}, |
|
|
return_prime=False, |
|
|
eos_token=18818, |
|
|
verbose=False) |
|
|
|
|
|
y = out.tolist()[0] |
|
|
|
|
|
gdur = ((y-16768) // 8) |
|
|
gvel = ((y-16768) % 8) |
|
|
|
|
|
if humanize_durations: |
|
|
fdur = gdur |
|
|
|
|
|
if humanize_velocities: |
|
|
fvel = gvel |
|
|
|
|
|
dur_vel_tok = ((8 * fdur) + fvel) + 16768 |
|
|
|
|
|
final_song.append(dur_vel_tok) |
|
|
|
|
|
hn_count += 1 |
|
|
|
|
|
if hn_count == num_hum_notes: |
|
|
break |
|
|
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
|
print('Done!') |
|
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
print('Rendering results...') |
|
|
|
|
|
print('=' * 70) |
|
|
print('Sample INTs', final_song[:15]) |
|
|
print('=' * 70) |
|
|
|
|
|
song_f = [] |
|
|
|
|
|
if len(final_song) != 0: |
|
|
|
|
|
time = 0 |
|
|
dur = 1 |
|
|
vel = 90 |
|
|
pitch = 60 |
|
|
channel = 0 |
|
|
patch = 0 |
|
|
|
|
|
patches = [-1] * 16 |
|
|
|
|
|
channels = [0] * 16 |
|
|
channels[9] = 1 |
|
|
|
|
|
for ss in final_song: |
|
|
|
|
|
if 0 <= ss < 256: |
|
|
|
|
|
time += ss * 16 |
|
|
|
|
|
if 256 <= ss < 16768: |
|
|
|
|
|
patch = (ss-256) // 128 |
|
|
|
|
|
if patch < 128: |
|
|
|
|
|
if patch not in patches: |
|
|
if 0 in channels: |
|
|
cha = channels.index(0) |
|
|
channels[cha] = 1 |
|
|
else: |
|
|
cha = 15 |
|
|
|
|
|
patches[cha] = patch |
|
|
channel = patches.index(patch) |
|
|
else: |
|
|
channel = patches.index(patch) |
|
|
|
|
|
if patch == 128: |
|
|
channel = 9 |
|
|
|
|
|
pitch = (ss-256) % 128 |
|
|
|
|
|
|
|
|
if 16768 <= ss < 18816: |
|
|
|
|
|
dur = ((ss-16768) // 8) * 16 |
|
|
vel = (((ss-16768) % 8)+1) * 15 |
|
|
|
|
|
song_f.append(['note', time, dur, channel, pitch, vel, patch]) |
|
|
|
|
|
patches = [0 if x==-1 else x for x in patches] |
|
|
|
|
|
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f) |
|
|
|
|
|
fn1 = "Orpheus-Humanizing-Transformer-Composition" |
|
|
|
|
|
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, |
|
|
output_signature = 'Orpheus Humanizing Transformer', |
|
|
output_file_name = fn1, |
|
|
track_name='Project Los Angeles', |
|
|
list_of_MIDI_patches=patches |
|
|
) |
|
|
|
|
|
new_fn = fn1+'.mid' |
|
|
|
|
|
|
|
|
audio = midi_to_colab_audio(new_fn, |
|
|
soundfont_path=SOUDFONT_PATH, |
|
|
sample_rate=16000, |
|
|
volume_scale=10, |
|
|
output_for_gradio=True |
|
|
) |
|
|
|
|
|
print('Done!') |
|
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
output_midi = str(new_fn) |
|
|
output_audio = (16000, audio) |
|
|
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) |
|
|
|
|
|
print('Output MIDI file name:', output_midi) |
|
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
|
return None, None, None |
|
|
|
|
|
print('-' * 70) |
|
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
|
print('-' * 70) |
|
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
|
|
|
|
return output_audio, output_plot, output_midi |
|
|
|
|
|
else: |
|
|
return None, None, None |
|
|
|
|
|
|
|
|
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
|
|
print('=' * 70) |
|
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
|
|
|
|
|
|
|
|
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus Humanizing Transformer</h1>") |
|
|
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Humanize durations and/or velocities in any MIDI score</h1>") |
|
|
gr.HTML(""" |
|
|
<p> |
|
|
<a href="https://huggingface.co/spaces/projectlosangeles/Orpheus-Humanizing-Transformer?duplicate=true"> |
|
|
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face"> |
|
|
</a> |
|
|
</p> |
|
|
|
|
|
for faster execution and endless generation! |
|
|
""") |
|
|
|
|
|
|
|
|
|
|
|
gr.Markdown("## Upload source MIDI or select a sample MIDI on the bottom of the page") |
|
|
|
|
|
input_midi = gr.File(label="Input MIDI", |
|
|
file_types=[".midi", ".mid", ".kar"] |
|
|
) |
|
|
|
|
|
gr.Markdown("## Generation options") |
|
|
|
|
|
humanize_durations = gr.Checkbox(value=False, label="Humanize durations") |
|
|
humanize_velocities = gr.Checkbox(value=True, label="Humanize velocities") |
|
|
|
|
|
num_prime_toks = gr.Slider(0, 1024, value=0, step=1, label="Number of prime tokens") |
|
|
num_hum_notes = gr.Slider(128, 2048, value=512, step=1, label="Number of notes to humanize") |
|
|
|
|
|
model_temperature = gr.Slider(0.1, 1.5, value=1.2, step=0.01, label="Model temperature") |
|
|
model_sampling_top_p = gr.Slider(0.1, 0.99, value=0.96, step=0.01, label="Model sampling top p value") |
|
|
|
|
|
generate_btn = gr.Button("Generate", variant="primary") |
|
|
|
|
|
gr.Markdown("## Generation results") |
|
|
|
|
|
output_title = gr.Textbox(label="MIDI melody title") |
|
|
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio") |
|
|
output_plot = gr.Plot(label="MIDI score plot") |
|
|
output_midi = gr.File(label="MIDI file", file_types=[".mid"]) |
|
|
|
|
|
generate_btn.click(Humanize_MIDI, |
|
|
[input_midi, |
|
|
num_prime_toks, |
|
|
num_hum_notes, |
|
|
humanize_durations, |
|
|
humanize_velocities, |
|
|
model_temperature, |
|
|
model_sampling_top_p |
|
|
], |
|
|
[output_audio, |
|
|
output_plot, |
|
|
output_midi |
|
|
] |
|
|
) |
|
|
|
|
|
gr.Examples( |
|
|
[["Sharing The Night Together.kar", 0, 1024, False, True, 0.9, 0.96] |
|
|
], |
|
|
[input_midi, |
|
|
num_prime_toks, |
|
|
num_hum_notes, |
|
|
humanize_durations, |
|
|
humanize_velocities, |
|
|
model_temperature, |
|
|
model_sampling_top_p |
|
|
], |
|
|
[output_audio, |
|
|
output_plot, |
|
|
output_midi |
|
|
], |
|
|
Humanize_MIDI |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
demo.launch() |
|
|
|
|
|
|