Spaces:
Paused
Paused
Update app_quant_latent.py
Browse files- app_quant_latent.py +39 -43
app_quant_latent.py
CHANGED
|
@@ -12,6 +12,7 @@ import time
|
|
| 12 |
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 13 |
from diffusers import ZImagePipeline, AutoModel
|
| 14 |
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
|
|
|
| 15 |
|
| 16 |
# ============================================================
|
| 17 |
# LOGGING BUFFER
|
|
@@ -248,58 +249,53 @@ log_system_stats("AFTER PIPELINE BUILD")
|
|
| 248 |
|
| 249 |
@spaces.GPU
|
| 250 |
def generate_image(prompt, height, width, steps, seed):
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
for step, _ in pipe(
|
| 263 |
-
prompt=prompt,
|
| 264 |
-
height=height,
|
| 265 |
-
width=width,
|
| 266 |
-
num_inference_steps=steps,
|
| 267 |
-
guidance_scale=0.0,
|
| 268 |
-
generator=generator,
|
| 269 |
-
callback=save_latents,
|
| 270 |
-
callback_steps=1
|
| 271 |
-
).iter():
|
| 272 |
-
pass # only capturing latents, ignoring intermediate images
|
| 273 |
-
|
| 274 |
-
# Convert latents to PIL images for gallery
|
| 275 |
-
latent_images = []
|
| 276 |
-
for latent in latent_history:
|
| 277 |
-
try:
|
| 278 |
-
img_tensor = pipe.vae.decode(latent)
|
| 279 |
-
img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
|
| 280 |
-
pil_img = T.ToPILImage()(img_tensor[0].cpu())
|
| 281 |
-
latent_images.append(pil_img)
|
| 282 |
-
except Exception as e:
|
| 283 |
-
log(f"⚠️ Failed to convert latent to image: {e}")
|
| 284 |
-
|
| 285 |
-
# Original final image generation
|
| 286 |
-
output = pipe(
|
| 287 |
prompt=prompt,
|
| 288 |
height=height,
|
| 289 |
width=width,
|
| 290 |
num_inference_steps=steps,
|
| 291 |
-
guidance_scale=0.0,
|
| 292 |
generator=generator,
|
|
|
|
| 293 |
)
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
-
|
| 301 |
-
log(f"❌ Inference error: {e}")
|
| 302 |
-
return None, None, LOGS
|
| 303 |
|
| 304 |
|
| 305 |
# ============================================================
|
|
|
|
| 12 |
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 13 |
from diffusers import ZImagePipeline, AutoModel
|
| 14 |
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
| 15 |
+
latent_history = []
|
| 16 |
|
| 17 |
# ============================================================
|
| 18 |
# LOGGING BUFFER
|
|
|
|
| 249 |
|
| 250 |
@spaces.GPU
|
| 251 |
def generate_image(prompt, height, width, steps, seed):
|
| 252 |
+
global latent_history
|
| 253 |
+
latent_history = [] # reset every run
|
| 254 |
+
|
| 255 |
+
generator = torch.Generator("cuda").manual_seed(int(seed))
|
| 256 |
+
|
| 257 |
+
logs = []
|
| 258 |
+
def log(msg):
|
| 259 |
+
logs.append(msg)
|
| 260 |
+
|
| 261 |
+
# Run pipeline manually step by step
|
| 262 |
+
out = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
prompt=prompt,
|
| 264 |
height=height,
|
| 265 |
width=width,
|
| 266 |
num_inference_steps=steps,
|
|
|
|
| 267 |
generator=generator,
|
| 268 |
+
output_type="latent"
|
| 269 |
)
|
| 270 |
|
| 271 |
+
latents = out.latents
|
| 272 |
+
|
| 273 |
+
# Denoising loop - MANUAL callback
|
| 274 |
+
for i, t in enumerate(pipe.scheduler.timesteps):
|
| 275 |
+
latents = pipe.unet(latents, t, encoder_hidden_states=out.prompt_embeds).sample
|
| 276 |
+
|
| 277 |
+
# Store cloned latent
|
| 278 |
+
latent_history.append(latents.detach().cpu().clone())
|
| 279 |
+
|
| 280 |
+
# Log GPU memory
|
| 281 |
+
gpu = torch.cuda.memory_allocated() / 1e9
|
| 282 |
+
log(f"Step {i+1}/{steps} — GPU: {gpu:.2f} GB")
|
| 283 |
+
|
| 284 |
+
# Step scheduler
|
| 285 |
+
latents = pipe.scheduler.step(latents, timestep=t).prev_sample
|
| 286 |
+
|
| 287 |
+
# Decode final image
|
| 288 |
+
final_image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor).sample[0]
|
| 289 |
+
final_image = (final_image / 2 + 0.5).clamp(0,1).cpu().permute(1,2,0).numpy()
|
| 290 |
|
| 291 |
+
# Convert latents to preview images
|
| 292 |
+
latent_imgs = []
|
| 293 |
+
for l in latent_history:
|
| 294 |
+
img = pipe.vae.decode(l / pipe.vae.config.scaling_factor).sample[0]
|
| 295 |
+
img = (img / 2 + 0.5).clamp(0,1).cpu().permute(1,2,0).numpy()
|
| 296 |
+
latent_imgs.append(img)
|
| 297 |
|
| 298 |
+
return final_image, latent_imgs, "\n".join(logs)
|
|
|
|
|
|
|
| 299 |
|
| 300 |
|
| 301 |
# ============================================================
|