Spaces:
Paused
Paused
| import math | |
| from typing import Callable | |
| import numpy as np | |
| import torch | |
| from einops import rearrange, repeat | |
| from PIL import Image | |
| from torch import Tensor | |
| from .model import Flux | |
| from .modules.autoencoder import AutoEncoder | |
| from .modules.conditioner import HFEmbedder | |
| from .modules.image_embedders import CannyImageEncoder, DepthImageEncoder, ReduxImageEncoder | |
| from .util import PREFERED_KONTEXT_RESOLUTIONS | |
| from einops import rearrange, repeat | |
| def get_noise( | |
| num_samples: int, | |
| height: int, | |
| width: int, | |
| device: torch.device, | |
| dtype: torch.dtype, | |
| seed: int, | |
| ): | |
| return torch.randn( | |
| num_samples, | |
| 16, | |
| # allow for packing | |
| 2 * math.ceil(height / 16), | |
| 2 * math.ceil(width / 16), | |
| dtype=dtype, | |
| device=device, | |
| generator=torch.Generator(device=device).manual_seed(seed), | |
| ) | |
| def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]: | |
| bs, c, h, w = img.shape | |
| if bs == 1 and not isinstance(prompt, str): | |
| bs = len(prompt) | |
| img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
| if img.shape[0] == 1 and bs > 1: | |
| img = repeat(img, "1 ... -> bs ...", bs=bs) | |
| img_ids = torch.zeros(h // 2, w // 2, 3) | |
| img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
| img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
| img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) | |
| if isinstance(prompt, str): | |
| prompt = [prompt] | |
| txt = t5(prompt) | |
| if txt.shape[0] == 1 and bs > 1: | |
| txt = repeat(txt, "1 ... -> bs ...", bs=bs) | |
| txt_ids = torch.zeros(bs, txt.shape[1], 3) | |
| vec = clip(prompt) | |
| if vec.shape[0] == 1 and bs > 1: | |
| vec = repeat(vec, "1 ... -> bs ...", bs=bs) | |
| return { | |
| "img": img, | |
| "img_ids": img_ids.to(img.device), | |
| "txt": txt.to(img.device), | |
| "txt_ids": txt_ids.to(img.device), | |
| "vec": vec.to(img.device), | |
| } | |
| def prepare_control( | |
| t5: HFEmbedder, | |
| clip: HFEmbedder, | |
| img: Tensor, | |
| prompt: str | list[str], | |
| ae: AutoEncoder, | |
| encoder: DepthImageEncoder | CannyImageEncoder, | |
| img_cond_path: str, | |
| ) -> dict[str, Tensor]: | |
| # load and encode the conditioning image | |
| bs, _, h, w = img.shape | |
| if bs == 1 and not isinstance(prompt, str): | |
| bs = len(prompt) | |
| img_cond = Image.open(img_cond_path).convert("RGB") | |
| width = w * 8 | |
| height = h * 8 | |
| img_cond = img_cond.resize((width, height), Image.Resampling.LANCZOS) | |
| img_cond = np.array(img_cond) | |
| img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0 | |
| img_cond = rearrange(img_cond, "h w c -> 1 c h w") | |
| with torch.no_grad(): | |
| img_cond = encoder(img_cond) | |
| img_cond = ae.encode(img_cond) | |
| img_cond = img_cond.to(torch.bfloat16) | |
| img_cond = rearrange(img_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
| if img_cond.shape[0] == 1 and bs > 1: | |
| img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs) | |
| return_dict = prepare(t5, clip, img, prompt) | |
| return_dict["img_cond"] = img_cond | |
| return return_dict | |
| def prepare_fill( | |
| t5: HFEmbedder, | |
| clip: HFEmbedder, | |
| img: Tensor, | |
| prompt: str | list[str], | |
| ae: AutoEncoder, | |
| img_cond_path: str, | |
| mask_path: str, | |
| ) -> dict[str, Tensor]: | |
| # load and encode the conditioning image and the mask | |
| bs, _, _, _ = img.shape | |
| if bs == 1 and not isinstance(prompt, str): | |
| bs = len(prompt) | |
| img_cond = Image.open(img_cond_path).convert("RGB") | |
| img_cond = np.array(img_cond) | |
| img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0 | |
| img_cond = rearrange(img_cond, "h w c -> 1 c h w") | |
| mask = Image.open(mask_path).convert("L") | |
| mask = np.array(mask) | |
| mask = torch.from_numpy(mask).float() / 255.0 | |
| mask = rearrange(mask, "h w -> 1 1 h w") | |
| with torch.no_grad(): | |
| img_cond = img_cond.to(img.device) | |
| mask = mask.to(img.device) | |
| img_cond = img_cond * (1 - mask) | |
| img_cond = ae.encode(img_cond) | |
| mask = mask[:, 0, :, :] | |
| mask = mask.to(torch.bfloat16) | |
| mask = rearrange( | |
| mask, | |
| "b (h ph) (w pw) -> b (ph pw) h w", | |
| ph=8, | |
| pw=8, | |
| ) | |
| mask = rearrange(mask, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
| if mask.shape[0] == 1 and bs > 1: | |
| mask = repeat(mask, "1 ... -> bs ...", bs=bs) | |
| img_cond = img_cond.to(torch.bfloat16) | |
| img_cond = rearrange(img_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
| if img_cond.shape[0] == 1 and bs > 1: | |
| img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs) | |
| img_cond = torch.cat((img_cond, mask), dim=-1) | |
| return_dict = prepare(t5, clip, img, prompt) | |
| return_dict["img_cond"] = img_cond.to(img.device) | |
| return return_dict | |
| def prepare_redux( | |
| t5: HFEmbedder, | |
| clip: HFEmbedder, | |
| img: Tensor, | |
| prompt: str | list[str], | |
| encoder: ReduxImageEncoder, | |
| img_cond_path: str, | |
| ) -> dict[str, Tensor]: | |
| bs, _, h, w = img.shape | |
| if bs == 1 and not isinstance(prompt, str): | |
| bs = len(prompt) | |
| img_cond = Image.open(img_cond_path).convert("RGB") | |
| with torch.no_grad(): | |
| img_cond = encoder(img_cond) | |
| img_cond = img_cond.to(torch.bfloat16) | |
| if img_cond.shape[0] == 1 and bs > 1: | |
| img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs) | |
| img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
| if img.shape[0] == 1 and bs > 1: | |
| img = repeat(img, "1 ... -> bs ...", bs=bs) | |
| img_ids = torch.zeros(h // 2, w // 2, 3) | |
| img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
| img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
| img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) | |
| if isinstance(prompt, str): | |
| prompt = [prompt] | |
| txt = t5(prompt) | |
| txt = torch.cat((txt, img_cond.to(txt)), dim=-2) | |
| if txt.shape[0] == 1 and bs > 1: | |
| txt = repeat(txt, "1 ... -> bs ...", bs=bs) | |
| txt_ids = torch.zeros(bs, txt.shape[1], 3) | |
| vec = clip(prompt) | |
| if vec.shape[0] == 1 and bs > 1: | |
| vec = repeat(vec, "1 ... -> bs ...", bs=bs) | |
| return { | |
| "img": img, | |
| "img_ids": img_ids.to(img.device), | |
| "txt": txt.to(img.device), | |
| "txt_ids": txt_ids.to(img.device), | |
| "vec": vec.to(img.device), | |
| } | |
| def prepare_kontext( | |
| t5: HFEmbedder, | |
| clip: HFEmbedder, | |
| prompt: str | list[str], | |
| ae: AutoEncoder, | |
| img_cond_list: list, | |
| seed: int, | |
| device: torch.device, | |
| target_width: int | None = None, | |
| target_height: int | None = None, | |
| bs: int = 1, | |
| ) -> tuple[dict[str, Tensor], int, int]: | |
| # load and encode the conditioning image | |
| if bs == 1 and not isinstance(prompt, str): | |
| bs = len(prompt) | |
| img_cond_seq = None | |
| img_cond_seq_ids = None | |
| if img_cond_list == None: img_cond_list = [] | |
| for cond_no, img_cond in enumerate(img_cond_list): | |
| width, height = img_cond.size | |
| aspect_ratio = width / height | |
| # Kontext is trained on specific resolutions, using one of them is recommended | |
| _, width, height = min((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS) | |
| width = 2 * int(width / 16) | |
| height = 2 * int(height / 16) | |
| img_cond = img_cond.resize((8 * width, 8 * height), Image.Resampling.LANCZOS) | |
| img_cond = np.array(img_cond) | |
| img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0 | |
| img_cond = rearrange(img_cond, "h w c -> 1 c h w") | |
| with torch.no_grad(): | |
| img_cond_latents = ae.encode(img_cond.to(device)) | |
| img_cond_latents = img_cond_latents.to(torch.bfloat16) | |
| img_cond_latents = rearrange(img_cond_latents, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
| if img_cond.shape[0] == 1 and bs > 1: | |
| img_cond_latents = repeat(img_cond_latents, "1 ... -> bs ...", bs=bs) | |
| img_cond = None | |
| # image ids are the same as base image with the first dimension set to 1 | |
| # instead of 0 | |
| img_cond_ids = torch.zeros(height // 2, width // 2, 3) | |
| img_cond_ids[..., 0] = cond_no + 1 | |
| img_cond_ids[..., 1] = img_cond_ids[..., 1] + torch.arange(height // 2)[:, None] | |
| img_cond_ids[..., 2] = img_cond_ids[..., 2] + torch.arange(width // 2)[None, :] | |
| img_cond_ids = repeat(img_cond_ids, "h w c -> b (h w) c", b=bs) | |
| if target_width is None: | |
| target_width = 8 * width | |
| if target_height is None: | |
| target_height = 8 * height | |
| img_cond_ids = img_cond_ids.to(device) | |
| if cond_no == 0: | |
| img_cond_seq, img_cond_seq_ids = img_cond_latents, img_cond_ids | |
| else: | |
| img_cond_seq, img_cond_seq_ids = torch.cat([img_cond_seq, img_cond_latents], dim=1), torch.cat([img_cond_seq_ids, img_cond_ids], dim=1) | |
| img = get_noise( | |
| bs, | |
| target_height, | |
| target_width, | |
| device=device, | |
| dtype=torch.bfloat16, | |
| seed=seed, | |
| ) | |
| return_dict = prepare(t5, clip, img, prompt) | |
| return_dict["img_cond_seq"] = img_cond_seq | |
| return_dict["img_cond_seq_ids"] = img_cond_seq_ids | |
| return return_dict, target_height, target_width | |
| def time_shift(mu: float, sigma: float, t: Tensor): | |
| return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | |
| def get_lin_function( | |
| x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 | |
| ) -> Callable[[float], float]: | |
| m = (y2 - y1) / (x2 - x1) | |
| b = y1 - m * x1 | |
| return lambda x: m * x + b | |
| def get_schedule( | |
| num_steps: int, | |
| image_seq_len: int, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.15, | |
| shift: bool = True, | |
| ) -> list[float]: | |
| # extra step for zero | |
| timesteps = torch.linspace(1, 0, num_steps + 1) | |
| # shifting the schedule to favor high timesteps for higher signal images | |
| if shift: | |
| # estimate mu based on linear estimation between two points | |
| mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) | |
| timesteps = time_shift(mu, 1.0, timesteps) | |
| return timesteps.tolist() | |
| def denoise( | |
| model: Flux, | |
| # model input | |
| img: Tensor, | |
| img_ids: Tensor, | |
| txt: Tensor, | |
| txt_ids: Tensor, | |
| vec: Tensor, | |
| # sampling parameters | |
| timesteps: list[float], | |
| guidance: float = 4.0, | |
| # extra img tokens (channel-wise) | |
| img_cond: Tensor | None = None, | |
| # extra img tokens (sequence-wise) | |
| img_cond_seq: Tensor | None = None, | |
| img_cond_seq_ids: Tensor | None = None, | |
| callback=None, | |
| pipeline=None, | |
| loras_slists=None, | |
| unpack_latent = None, | |
| ): | |
| kwargs = {'pipeline': pipeline, 'callback': callback} | |
| if callback != None: | |
| callback(-1, None, True) | |
| updated_num_steps= len(timesteps) -1 | |
| if callback != None: | |
| from wan.utils.loras_mutipliers import update_loras_slists | |
| update_loras_slists(model, loras_slists, updated_num_steps) | |
| callback(-1, None, True, override_num_inference_steps = updated_num_steps) | |
| from mmgp import offload | |
| # this is ignored for schnell | |
| guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) | |
| for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])): | |
| offload.set_step_no_for_lora(model, i) | |
| if pipeline._interrupt: | |
| return None | |
| t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) | |
| img_input = img | |
| img_input_ids = img_ids | |
| if img_cond is not None: | |
| img_input = torch.cat((img, img_cond), dim=-1) | |
| if img_cond_seq is not None: | |
| assert ( | |
| img_cond_seq_ids is not None | |
| ), "You need to provide either both or neither of the sequence conditioning" | |
| img_input = torch.cat((img_input, img_cond_seq), dim=1) | |
| img_input_ids = torch.cat((img_input_ids, img_cond_seq_ids), dim=1) | |
| pred = model( | |
| img=img_input, | |
| img_ids=img_input_ids, | |
| txt=txt, | |
| txt_ids=txt_ids, | |
| y=vec, | |
| timesteps=t_vec, | |
| guidance=guidance_vec, | |
| **kwargs | |
| ) | |
| if pred == None: return None | |
| if img_input_ids is not None: | |
| pred = pred[:, : img.shape[1]] | |
| img += (t_prev - t_curr) * pred | |
| if callback is not None: | |
| preview = unpack_latent(img).transpose(0,1) | |
| callback(i, preview, False) | |
| return img | |
| def unpack(x: Tensor, height: int, width: int) -> Tensor: | |
| return rearrange( | |
| x, | |
| "b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
| h=math.ceil(height / 16), | |
| w=math.ceil(width / 16), | |
| ph=2, | |
| pw=2, | |
| ) | |