Spaces:
Sleeping
Sleeping
| import os | |
| from fastapi import FastAPI, Query | |
| from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| import torch | |
| app = FastAPI() | |
| checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct" | |
| min_pixels = 256*28*28 | |
| max_pixels = 1280*28*28 | |
| processor = AutoProcessor.from_pretrained( | |
| checkpoint, | |
| min_pixels=min_pixels, | |
| max_pixels=max_pixels | |
| ) | |
| model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| checkpoint, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| # attn_implementation="flash_attention_2", | |
| ) | |
| def read_root(): | |
| return { | |
| "api_url": os.getenv("HF_INFERENCE_ENDPOINT", "") + "/predict", | |
| "message": "API is live. Use the /predict endpoint.", "code": """ | |
| import requests | |
| url = "https://<uname>-<spacename>.hf.space/predict" | |
| # Define the parameters | |
| params = { | |
| "image_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", | |
| "prompt": "describe" | |
| } | |
| # Send the GET request | |
| response = requests.get(url, params=params) | |
| if response.status_code == 200: | |
| print("Response:", response.json()) | |
| else: | |
| print("Error:", response.status_code, response.text) | |
| """} | |
| def predict(image_url: str = Query(...), prompt: str = Query(...)): | |
| messages = [ | |
| {"role": "system", "content": "You are a helpful assistant with vision abilities."}, | |
| {"role": "user", "content": [{"type": "image", "image": image_url}, {"type": "text", "text": prompt}]}, | |
| ] | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ).to(model.device) | |
| with torch.no_grad(): | |
| generated_ids = model.generate(**inputs, max_new_tokens=128) | |
| generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
| output_texts = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return {"response": output_texts[0]} | |