Spaces:
Sleeping
Sleeping
| import math | |
| import torch | |
| from torch import nn | |
| # Protocol for positonal encodings. | |
| # __init__(d_model, max_len=..[, more optionals]) | |
| # forward(x: (seq_len, bs, d_model)) -> Tensor of shape (*x.shape[:2],d_model) containing pos. embeddings | |
| class NoPositionalEncoding(nn.Module): | |
| def __init__(self, d_model, max_len=None): | |
| super(NoPositionalEncoding, self).__init__() | |
| pass | |
| def forward(self, x): | |
| return x #* math.sqrt(x.shape[-1]) | |
| class PositionalEncoding(nn.Module): | |
| def __init__(self, d_model, max_len=5000): | |
| super(PositionalEncoding, self).__init__() | |
| pe = torch.zeros(max_len, d_model) | |
| position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | |
| div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) | |
| pe[:, 0::2] = torch.sin(position * div_term) | |
| pe[:, 1::2] = torch.cos(position * div_term) | |
| pe = pe.unsqueeze(0).transpose(0, 1) | |
| self.register_buffer('pe', pe) | |
| def forward(self, x): | |
| x = self.pe[:x.size(0), :] + x # * math.sqrt(x.shape[-1]) | |
| return x | |
| class LearnedPositionalEncoding(nn.Module): | |
| def __init__(self, d_model, max_len=5000): | |
| super(LearnedPositionalEncoding, self).__init__() | |
| self.max_seq_len = max_len | |
| #self.positional_embeddings = nn.Embedding(max_len, d_model) | |
| self.positional_embeddings = nn.Parameter(torch.empty(max_len, d_model)) | |
| nn.init.normal_(self.positional_embeddings, mean=0, std=d_model ** -0.5) | |
| def forward(self, x): | |
| seq_len, bs, d_model = x.shape | |
| assert seq_len <= len(self.positional_embeddings), 'seq_len can be at most max_len.' | |
| pos_emb = self.positional_embeddings[:seq_len] | |
| return pos_emb.unsqueeze(1).expand(seq_len, bs, d_model) + x #* math.sqrt(x.shape[-1]) | |
| class PairedScrambledPositionalEncodings(LearnedPositionalEncoding): | |
| # TODO check whether it is a problem to use the same perm. for full batch | |
| def forward(self, x): | |
| seq_len, bs, d_model = x.shape | |
| assert seq_len <= len(self.positional_embeddings), 'seq_len can be at most max_len.' | |
| assert len(self.positional_embeddings) % 2 == 0, 'Please specify an even max_len.' | |
| paired_embs = self.positional_embeddings.view(len(self.positional_embeddings), -1, 2) | |
| pos_emb = paired_embs[torch.randperm(len(paired_embs))].view(*self.positional_embeddings.shape)[:seq_len] | |
| return pos_emb.unsqueeze(1).expand(seq_len, bs, d_model) + x #* math.sqrt(x.shape[-1]) | |