Spaces:
Sleeping
Sleeping
| import torch | |
| import numpy as np | |
| # | |
| # | |
| # ReinforcedConcreteBeam: 3D objective, 9 constraints | |
| # | |
| # Reference: | |
| # Gandomi AH, Yang XS, Alavi AH (2011) Mixed | |
| # variable structural optimization using firefly | |
| # algorithm. Computers & Structures 89(23- | |
| # 24):2325–2336 | |
| # | |
| # | |
| def ReinforcedConcreteBeam(individuals): | |
| assert torch.is_tensor(individuals) and individuals.size(1) == 3, "Input must be an n-by-3 PyTorch tensor." | |
| fx = [] | |
| gx1 = [] | |
| gx2 = [] | |
| gx3 = [] | |
| gx4 = [] | |
| n = individuals.size(0) | |
| for i in range(n): | |
| x = individuals[i,:] | |
| As = x[0] | |
| h = x[1] | |
| b = x[2] | |
| test_function = - ( 29.4*As + 0.6*b*h ) | |
| fx.append(test_function) | |
| g1 = h/b - 4 | |
| g2 = 180 + 7.35*As*As/b - As*h | |
| gx1.append( g1 ) | |
| gx2.append( g2 ) | |
| fx = torch.tensor(fx) | |
| fx = torch.reshape(fx, (len(fx),1)) | |
| gx1 = torch.tensor(gx1) | |
| gx1 = gx1.reshape((n, 1)) | |
| gx2 = torch.tensor(gx2) | |
| gx2 = gx2.reshape((n, 1)) | |
| gx = torch.cat((gx1, gx2), 1) | |
| return gx, fx | |
| def ReinforcedConcreteBeam_Scaling(X): | |
| assert torch.is_tensor(X) and X.size(1) == 3, "Input must be an n-by-3 PyTorch tensor." | |
| As = (X[:,0] * (15-0.2) + 0.2).reshape(X.shape[0],1) | |
| b = (X[:,1] * (40-28) +28).reshape(X.shape[0],1) | |
| h = (X[:,2] * 5 + 5).reshape(X.shape[0],1) | |
| X_scaled = torch.cat((As, b, h), dim=1) | |
| return X_scaled | |