Spaces:
Sleeping
Sleeping
| import torch | |
| import numpy as np | |
| from botorch.test_functions.synthetic import Rosenbrock | |
| device = torch.device("cpu") | |
| dtype = torch.double | |
| def Rosenbrock3DEmbedd(X_input): | |
| # assert torch.is_tensor(X) and X.size(1) == 2, "Input must be an n-by-2 PyTorch tensor." | |
| # Set function here: | |
| X = X_input[:,[1,2,3]] | |
| n = X.size(0) | |
| dimm = 3 | |
| fun = Rosenbrock(dim=dimm, negate=True) | |
| fun.bounds[0, :].fill_(-2.0) | |
| fun.bounds[1, :].fill_(2.0) | |
| dim = fun.dim | |
| lb, ub = fun.bounds | |
| fx = fun(X) | |
| fx = fx.reshape((n, 1)) | |
| gx = 0 | |
| return gx, fx | |
| def Rosenbrock3DEmbedd_Scaling(X): | |
| X_scaled = X.clone() | |
| X_scaled[:,1] = X_scaled[:,1]*4 - 2 | |
| X_scaled[:,2] = X_scaled[:,2]*4 - 2 | |
| X_scaled[:,3] = X_scaled[:,3]*4 - 2 | |
| return X_scaled | |