File size: 11,085 Bytes
1e8ceb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9023eee
1e8ceb8
9023eee
1e8ceb8
9023eee
1e8ceb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import time
from typing import Optional
import json

# Page configuration
st.set_page_config(
    page_title="Samaritan Hebrew to Samaritan Targumic Aramaic Translation",
    page_icon="πŸ“š",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for modern styling
st.markdown("""
<style>
    .main-header {
        font-size: 3rem;
        font-weight: 700;
        background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        text-align: center;
        margin-bottom: 2rem;
    }
    
    .sub-header {
        font-size: 1.2rem;
        color: #666;
        text-align: center;
        margin-bottom: 3rem;
    }
    
    .translation-box {
        background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
        padding: 2rem;
        border-radius: 15px;
        box-shadow: 0 8px 32px rgba(0,0,0,0.1);
        margin: 1rem 0;
    }
    
    .input-area {
        background: white;
        border-radius: 10px;
        padding: 1.5rem;
        box-shadow: 0 4px 16px rgba(0,0,0,0.05);
    }
    
    .output-area {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white;
        border-radius: 10px;
        padding: 1.5rem;
        box-shadow: 0 4px 16px rgba(0,0,0,0.1);
    }
    
    .direction-selector {
        background: white;
        border-radius: 10px;
        padding: 1rem;
        box-shadow: 0 4px 16px rgba(0,0,0,0.05);
        margin-bottom: 1rem;
    }
    
    .stButton > button {
        background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
        color: white;
        border: none;
        border-radius: 25px;
        padding: 0.75rem 2rem;
        font-weight: 600;
        transition: all 0.3s ease;
    }
    
    .stButton > button:hover {
        transform: translateY(-2px);
        box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4);
    }
    
    .model-info {
        background: #f8f9fa;
        border-radius: 10px;
        padding: 1rem;
        margin: 1rem 0;
        border-left: 4px solid #667eea;
    }
</style>
""", unsafe_allow_html=True)

@st.cache_resource
def load_model():
    """Load the Hugging Face model and tokenizer with caching."""
    model_name = "johnlockejrr/marianmt-he2arc-sam"
    
    with st.spinner("Loading translation model..."):
        try:
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            
            # Move to GPU if available
            device = "cuda" if torch.cuda.is_available() else "cpu"
            model.to(device)
            model.eval()
            
            return tokenizer, model, device
        except Exception as e:
            st.error(f"Error loading model: {str(e)}")
            return None, None, None

def translate_text(text: str, direction: str, tokenizer, model, device: str, max_length: int = 512) -> Optional[str]:
    """Translate text using the loaded model."""
    if not text.strip():
        return None
    
    try:
        # Add language prefix based on direction (using the correct sem-sem model format)
        if direction == "Hebrew to Aramaic":
            input_text = f">>heb<< {text}"
        else:  # Aramaic to Hebrew
            input_text = f">>arc<< {text}"
        
        # Tokenize input
        inputs = tokenizer(
            input_text,
            return_tensors="pt",
            max_length=max_length,
            truncation=True,
            padding=True
        ).to(device)
        
        # Generate translation
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_length=max_length,
                num_beams=4,
                length_penalty=0.6,
                early_stopping=True,
                do_sample=False
            )
        
        # Decode output
        translation = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return translation
        
    except Exception as e:
        st.error(f"Translation error: {str(e)}")
        return None

def main():
    # Header
    st.markdown('<h1 class="main-header">πŸ“š Samaritan Hebrew-Aramaic Translator</h1>', unsafe_allow_html=True)
    st.markdown('<p class="sub-header">Powered by the johnlockejrr/marianmt-he2arc-sam model</p>', unsafe_allow_html=True)
    
    # Load model
    tokenizer, model, device = load_model()
    
    if tokenizer is None or model is None:
        st.error("Failed to load the translation model. Please check your internet connection and try again.")
        return
    
    # Sidebar for settings
    with st.sidebar:
        st.markdown("### βš™οΈ Settings")
        
        # Max length setting
        max_length = st.slider(
            "Maximum Output Length",
            min_value=64,
            max_value=512,
            value=256,
            step=32,
            help="Maximum length of the generated translation"
        )
        
        # Model info
        st.markdown("### πŸ“Š Model Information")
        st.markdown(f"**Model:** johnlockejrr/marianmt-he2arc-sam")
        st.markdown(f"**Device:** {device.upper()}")
        st.markdown(f"**Tokenizer:** {tokenizer.__class__.__name__}")
        st.markdown(f"**Model Type:** {model.__class__.__name__}")
        st.markdown(f"**Direction:** Samaritan Hebrew β†’ Samaritan Aramaic")
        
        # Clear button
        if st.button("πŸ—‘οΈ Clear All"):
            st.rerun()
    
    # Main content area
    col1, col2 = st.columns([1, 1])
    
    with col1:
        st.markdown('<div class="input-area">', unsafe_allow_html=True)
        st.markdown("### πŸ“ Input Text")
        
        # Text input
        input_text = st.text_area(
            "Enter Samaritan Hebrew text to translate",
            height=200,
            placeholder="Enter your Samaritan Hebrew text here...",
            help="Type or paste the Samaritan Hebrew text you want to translate to Samaritan Aramaic"
        )
        
        # Translate button
        translate_button = st.button(
            "πŸ”„ Translate to Samaritan Aramaic",
            type="primary",
            use_container_width=True
        )
        st.markdown('</div>', unsafe_allow_html=True)
    
    with col2:
        st.markdown('<div class="output-area">', unsafe_allow_html=True)
        st.markdown("### 🎯 Samaritan Aramaic Translation")
        
        if translate_button and input_text.strip():
            with st.spinner("Translating to Samaritan Aramaic..."):
                # Add a small delay for better UX
                time.sleep(0.5)
                
                translation = translate_text(
                    input_text, 
                    "Hebrew to Aramaic", 
                    tokenizer, 
                    model, 
                    device, 
                    max_length
                )
                
                if translation:
                    st.markdown(f"**Samaritan Aramaic:**")
                    # Display translation in a code block that can be easily copied
                    st.code(translation, language=None)
                else:
                    st.error("Translation failed. Please try again.")
        else:
            st.markdown("*Samaritan Aramaic translation will appear here*")
        st.markdown('</div>', unsafe_allow_html=True)
    
    # Additional features
    st.markdown("---")
    
    # Batch translation section
    st.markdown("### πŸ“š Batch Translation")
    st.markdown("Upload a text file with multiple Samaritan Hebrew lines to translate them all to Samaritan Aramaic.")
    
    uploaded_file = st.file_uploader(
        "Choose a text file",
        type=['txt'],
        help="Upload a .txt file with one Samaritan Hebrew text per line"
    )
    
    if uploaded_file is not None:
        try:
            # Read file content
            content = uploaded_file.read().decode('utf-8')
            lines = [line.strip() for line in content.split('\n') if line.strip()]
            
            if lines:
                st.success(f"πŸ“„ Loaded {len(lines)} lines from {uploaded_file.name}")
                
                if st.button("πŸ”„ Translate All to Samaritan Aramaic", type="primary"):
                    st.markdown("### πŸ“‹ Batch Translation Results")
                    
                    # Create a progress bar
                    progress_bar = st.progress(0)
                    status_text = st.empty()
                    
                    results = []
                    for i, line in enumerate(lines):
                        status_text.text(f"Translating line {i+1}/{len(lines)}: {line[:50]}...")
                        
                        translation = translate_text(
                            line, 
                            "Hebrew to Aramaic", 
                            tokenizer, 
                            model, 
                            device, 
                            max_length
                        )
                        
                        results.append({
                            'original': line,
                            'translation': translation or "Translation failed"
                        })
                        
                        # Update progress
                        progress_bar.progress((i + 1) / len(lines))
                    
                    status_text.text("βœ… Translation complete!")
                    
                    # Display results
                    for i, result in enumerate(results):
                        with st.expander(f"Line {i+1}: {result['original'][:50]}..."):
                            st.markdown(f"**Samaritan Hebrew:** {result['original']}")
                            st.markdown(f"**Samaritan Aramaic:** {result['translation']}")
                    
                    # Download results
                    csv_content = "Samaritan Hebrew,Samaritan Aramaic\n"
                    for result in results:
                        csv_content += f'"{result["original"]}","{result["translation"]}"\n'
                    
                    st.download_button(
                        label="πŸ“₯ Download Results as CSV",
                        data=csv_content,
                        file_name="samaritan_translations.csv",
                        mime="text/csv"
                    )
        
        except Exception as e:
            st.error(f"Error reading file: {str(e)}")
    
    # Footer
    st.markdown("---")
    st.markdown("""
    <div style="text-align: center; color: #666; padding: 2rem;">
        <p>Built with ❀️ using Streamlit and Hugging Face Transformers</p>
        <p>Samaritan Hebrew to Samaritan Aramaic Translation</p>
        <p>Model: johnlockejrr/marianmt-he2arc-sam</p>
    </div>
    """, unsafe_allow_html=True)

if __name__ == "__main__":
    main()