Spaces:
Runtime error
Runtime error
| from dataclasses import dataclass | |
| from typing import List, Union | |
| import numpy as np | |
| import torch | |
| from diffusers.utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available | |
| class TextToVideoPipelineOutput(BaseOutput): | |
| """ | |
| Output class for text to video pipelines. | |
| Args: | |
| frames (`List[np.ndarray]` or `torch.FloatTensor`) | |
| List of denoised frames (essentially images) as NumPy arrays of shape `(height, width, num_channels)` or as | |
| a `torch` tensor. NumPy array present the denoised images of the diffusion pipeline. The length of the list | |
| denotes the video length i.e., the number of frames. | |
| """ | |
| frames: Union[List[np.ndarray], torch.FloatTensor] | |
| try: | |
| if not (is_transformers_available() and is_torch_available()): | |
| raise OptionalDependencyNotAvailable() | |
| except OptionalDependencyNotAvailable: | |
| from diffusers.utils.dummy_torch_and_transformers_objects import * # noqa F403 | |
| else: | |
| # from .pipeline_t2v_base_latent import TextToVideoSDPipeline # noqa: F401 | |
| # from .pipeline_t2v_base_latent_sdxl import TextToVideoSDXLPipeline | |
| from .pipeline_t2v_base_pixel import TextToVideoIFPipeline | |
| from .pipeline_t2v_interp_pixel import TextToVideoIFInterpPipeline | |
| # from .pipeline_t2v_sr_latent import TextToVideoSDSuperResolutionPipeline | |
| from .pipeline_t2v_sr_pixel import TextToVideoIFSuperResolutionPipeline | |
| # from .pipeline_t2v_base_latent_controlnet import TextToVideoSDControlNetPipeline | |