import transformers from utils import printf import copy class prompt: def __init__(self, tokenizer, max_len, add_eos=True): self.tokenizer = tokenizer self.max_len = max_len self.add_eos=add_eos class instruct_prompt(prompt): prompt = ( "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Response:" ) prompt_input = ( "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n" "### Instruction:{instruction}\n\n### Input:{input}\n\n### Response:" ) prompt_history = "User:{input}\n\nAssistant:{output}\n\n" prompt_post = "User:{input}\n\nAssistant:" def preprocess_gen(self, data_point): if 'history' not in data_point: # single instruction format {'instruction':..,'input':..} if 'input' in data_point: user_prompt = self.prompt_input.format_map(data_point) else: user_prompt = self.prompt.format_map(data_point) else: # multi turn format {'history':[..], 'input':[..]} user_prompt = "\n".join(["User:" + i['input']+"\n"+"Assistant:" + i['output'] for i in data_point['history']]) + "\nUser:" + data_point['input'] + "\nAssistant:" user_prompt = user_prompt[-self.max_len:] user_prompt=self.prompt.format_map({'instruction':user_prompt}) input_ids = self.tokenizer(user_prompt)["input_ids"] return input_ids def preprocess_train(self, data_point): # single instruction format {'instruction':..,'input':..,'output':..} if 'instruction' in data_point: if 'input' in data_point: user_prompt = self.prompt_input.format_map(data_point) else: user_prompt = self.prompt.format_map(data_point) output = data_point["output"] # multi turn format {'input':[..], 'output':[..]} else: user_prompt = '' lens = len(data_point['input']) for i in range(lens-1): user_prompt += self.prompt_history.format_map({'input':data_point['input'][i],'output':data_point['output'][i]}) user_prompt += self.prompt_post.format_map({'input':data_point['input'][-1]}) user_prompt = self.prompt.format_map({'instruction': user_prompt}) output = data_point['output'][-1] len_user_prompt_tokens = (len(self.tokenizer( user_prompt, truncation=True, max_length=self.max_len + 1, )["input_ids"])- 1) # no eos token full_tokens = self.tokenizer( user_prompt + output, truncation=True, max_length=self.max_len + 1, padding="max_length", )["input_ids"][:-1] return { "input_ids": full_tokens, "labels": [-100] * len_user_prompt_tokens + full_tokens[len_user_prompt_tokens:], "attention_mask": [1] * (len(full_tokens)), } def data_collator(self,): return transformers.DataCollatorForLanguageModeling(self.tokenizer, mlm=False) def postprocess(self, text, render=True): #import pdb;pdb.set_trace() printf(text) output = text.split("### Response:")[1].strip() output = output.replace("Belle", "Vicuna") printf(output) if '###' in output: output = output.split("###")[0] if 'User' in output: output = output.split("User")[0] output = output.replace('�','').replace('', '') if render: # fix gradio chatbot markdown code render bug lines = output.split("\n") for i, line in enumerate(lines): if "```" in line: if line != "```": lines[i] = f'
'
else:
lines[i] = ''
else:
if i > 0:
lines[i] = "','\n') work for html; but not for gradio
return output
class chat_prompt(prompt):
prompt_pre = (
"The following is a conversation between an AI assistant called Assistant and a human user called User. "
"The assistant is intelligent, knowledgeable and polite to answer questions of user.\n\n"
)
prompt_history = "User:{input}\n\nAssistant:{output}\n\n"
prompt_post = "User:{input}\n\nAssistant:"
def preprocess_gen(self, data_point):
user_prompt = self.prompt_pre
len_avail = self.max_len - len(self.tokenizer(user_prompt, add_special_tokens=False)['input_ids'])
input_prompt = self.prompt_post.format_map({'input':data_point['input']})
len_avail -= len(self.tokenizer(input_prompt, add_special_tokens=False)['input_ids'])
lens = len(data_point['history'])
tokenized_lens = []
for i in range(lens):
tmp_prompt = self.prompt_history.format_map(data_point['history'][i])
tokenized_lens.append(len(self.tokenizer(tmp_prompt,add_special_tokens=False)["input_ids"]))
# 启发式:/2 优先除前面的
i = 0
while sum(tokenized_lens) > len_avail and i < lens:
history = data_point['history'][i]
tmp_len1 = len(history['input'])
tmp_len2 = len(history['output'])
if tmp_len2 > tmp_len1:
history['output'] = history['output'][:tmp_len2//2]
else:
history['input'] = history['input'][:tmp_len1//2]
prompt = self.prompt_history.format_map(history)
single_len =(len(self.tokenizer(prompt,add_special_tokens=False)["input_ids"]))
tokenized_lens[i] = single_len
i += 1
total_len = sum(tokenized_lens)
# 还不够的话 直接截断
while total_len > len_avail and i < lens - 1 :
total_len -= tokenized_lens[i]
data_point['history'] = data_point['history'][1:]
i += 1
# 最终合并
for i in range(lens):
user_prompt += self.prompt_history.format_map(data_point['history'][i])
user_prompt += input_prompt
printf({'real_input:':user_prompt})
inputs = self.tokenizer(user_prompt)["input_ids"]
return inputs
def preprocess_train(self, data_point):
user_prompt = self.prompt_pre
lens = len(data_point['input'])
# print("Length of data_point['input']: ", len(data_point['input']))
# print("Length of data_point['output']: ", len(data_point['output']))
# for i in range(lens-1):
# user_prompt += self.prompt_history.format_map({'input':data_point['input'][i].strip(),'output':data_point['output'][i].strip()})
user_prompt += self.prompt_post.format_map({'input':data_point['input'].strip()})
len_user_prompt_tokens = len(self.tokenizer(
user_prompt,
truncation=True,
max_length=self.max_len,
)["input_ids"]) - 1 # remove extra eos
if self.add_eos:
full_tokens = self.tokenizer(
user_prompt + data_point["output"].strip(),
truncation=True,
padding=False,
max_length=self.max_len,
)["input_ids"] # need eos
else:
full_tokens = self.tokenizer(
user_prompt + data_point["output"].strip(),
truncation=True,
padding=False,
max_length=self.max_len+1,
)["input_ids"][:-1] # delete eos
return {
"input_ids": full_tokens,
"labels": [-100] * len_user_prompt_tokens + full_tokens[len_user_prompt_tokens:],
"attention_mask": [1] * (len(full_tokens)),
}
def data_collator(self,):
return transformers.DataCollatorForSeq2Seq(self.tokenizer)
def postprocess(self, text, render=False):
output = text.split("Assistant:")[-1].strip()
if 'User:' in output:
output = output.split("User:")[0]
output = output.replace('�','')
if render:
# fix gradio chatbot markdown code render bug
lines = output.split("\n")
for i, line in enumerate(lines):
if "```" in line:
if line != "```":
lines[i] = f''
else:
lines[i] = '
'
else:
if i > 0:
lines[i] = "
" + line.replace("<", "<").replace(">", ">").replace("__", '\_\_')
output = "".join(lines)
# output = output.replace('
','\n') work for html; but not for gradio
return output
def get_data_collator():
return transformers.DataCollatorForLanguageModeling