Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import joblib
|
| 3 |
+
import numpy as np
|
| 4 |
+
import sklearn
|
| 5 |
+
|
| 6 |
+
# Load the saved model
|
| 7 |
+
loaded_model = joblib.load('iris_model.sav')
|
| 8 |
+
|
| 9 |
+
def predict_iris(sepal_length, sepal_width, petal_length, petal_width):
|
| 10 |
+
input_data = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
|
| 11 |
+
prediction = loaded_model.predict(input_data)[0]
|
| 12 |
+
iris_classes = ['setosa', 'versicolor', 'virginica']
|
| 13 |
+
return iris_classes[prediction]
|
| 14 |
+
|
| 15 |
+
iface = gr.Interface(
|
| 16 |
+
fn=predict_iris,
|
| 17 |
+
inputs=[
|
| 18 |
+
gr.Number(label="Sepal Length"),
|
| 19 |
+
gr.Number(label="Sepal Width"),
|
| 20 |
+
gr.Number(label="Petal Length"),
|
| 21 |
+
gr.Number(label="Petal Width")
|
| 22 |
+
],
|
| 23 |
+
outputs=gr.Textbox(label="Predicted Iris Class"),
|
| 24 |
+
title="Iris Flower Classification",
|
| 25 |
+
description="Enter sepal and petal measurements to predict the Iris species."
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
iface.launch()
|