import gradio as gr import joblib import numpy as np import sklearn # Load the saved model loaded_model = joblib.load('iris_model.sav') def predict_iris(sepal_length, sepal_width, petal_length, petal_width): input_data = np.array([[sepal_length, sepal_width, petal_length, petal_width]]) prediction = loaded_model.predict(input_data)[0] iris_classes = ['setosa', 'versicolor', 'virginica'] return iris_classes[prediction] iface = gr.Interface( fn=predict_iris, inputs=[ gr.Number(label="Sepal Length"), gr.Number(label="Sepal Width"), gr.Number(label="Petal Length"), gr.Number(label="Petal Width") ], outputs=gr.Textbox(label="Predicted Iris Class"), title="Iris Flower Classification", description="Enter sepal and petal measurements to predict the Iris species." ) iface.launch()