Spaces:
Runtime error
Runtime error
| from mcp.server.fastmcp import FastMCP | |
| from typing import dict, list, Optional | |
| import os | |
| # Placeholder for configuration constants and dependencies (e.g., Tesseract, pdf2image) | |
| from config import CLIENT_ID, CLIENT_SECRET, REFRESH_TOKEN, API_BASE | |
| # --- Initialize the FastMCP Server --- | |
| # The server is focused on Zoho CRM actions [12, 13]. | |
| mcp = FastMCP("ZohoCRMAgent") | |
| # --- Conceptual Zoho API Handling Functions (Internal Logic) --- | |
| # NOTE: These functions simulate the logic that would use the existing CLIENT_ID, | |
| # CLIENT_SECRET, and REFRESH_TOKEN to make authenticated API calls to the | |
| # new API_BASE (Zoho CRM /crm/v2) [5, 6]. | |
| def _get_valid_token_headers() -> dict: | |
| """Internal function to ensure a valid Zoho access token is available.""" | |
| # This logic reuses the pattern of handling OAuth and token refresh | |
| # from the original zoho_client.py [1, 5, 6]. | |
| # In a real implementation, it would use the stored REFRESH_TOKEN to get a new Access Token. | |
| return {"Authorization": "Zoho-oauthtoken <ACCESS_TOKEN_HERE>"} | |
| # --- MCP Tools for Zoho CRM CRUD Operations (Required actions) --- | |
| def authenticate_zoho() -> str: | |
| """ | |
| Performs the OAuth 2.0 flow to ensure the agent has a valid Zoho CRM | |
| access token for subsequent API calls [7, 14]. | |
| """ | |
| # Placeholder for the actual OAuth flow [6]. | |
| return "Zoho CRM access token successfully refreshed." | |
| def create_record(module_name: str, record_data: dict) -> str: | |
| """ | |
| Creates a new record (e.g., Contact, Lead, Account, Deal) in the | |
| specified Zoho CRM module [6, 12]. | |
| Example: create_record("Contacts", {"Last_Name": "Alice", "Email": "[email protected]"}) | |
| """ | |
| # This tool fulfills the 'create user/contact' requirement [12, 13]. | |
| headers = _get_valid_token_headers() | |
| # Logic: POST to f"{API_BASE}/{module_name}" with record_data | |
| if module_name in ["Contacts", "Leads", "Accounts", "Deals"]: | |
| return f"Successfully created a new record in {module_name}." | |
| else: | |
| return f"Error: Module {module_name} is not supported or recognized." | |
| def get_records(module_name: str, page: int=1, per_page: int=200) -> list: | |
| """ | |
| Fetches records from a CRM module based on module name, used for searches | |
| or getting lists [6, 15]. | |
| """ | |
| headers = _get_valid_token_headers() | |
| # Logic: GET from f"{API_BASE}/{module_name}" | |
| return [f"List of records retrieved from {module_name} module on page {page}."] | |
| def update_record(module_name: str, record_id: str, data: dict) -> str: | |
| """ | |
| Updates fields on an existing record identified by module and ID [6, 10, 15]. | |
| """ | |
| headers = _get_valid_token_headers() | |
| # Logic: PUT to f"{API_BASE}/{module_name}/{record_id}" | |
| return f"Record {record_id} in {module_name} updated successfully." | |
| def delete_record(module_name: str, record_id: str) -> str: | |
| """ | |
| Deletes a record from the specified CRM module [6, 10, 15]. | |
| """ | |
| headers = _get_valid_token_headers() | |
| # Logic: DELETE to f"{API_BASE}/{module_name}/{record_id}" | |
| return f"Record {record_id} in {module_name} deleted." | |
| # --- MCP Tool for File Processing (Incorporating old ai_engine logic) --- | |
| # This tool handles the requirement for accepting uploaded images or PDFs [13, 16, 17]. | |
| # NOTE: The FastMCP framework handles file references automatically, passing | |
| # a path or URL to the tool function [10, 18]. | |
| def process_document(file_path: str, target_module: Optional[str] = "Contacts") -> dict: | |
| """ | |
| Analyzes an attached PDF or image using OCR and AI, extracts structured data, | |
| and returns fields ready for Zoho entry [8-10]. | |
| The internal process reuses perform_ocr and extract_intelligent_json logic [1, 9]. | |
| """ | |
| # 1. OCR Step (Uses Tesseract/pdf2image from existing pipeline) [1, 9]. | |
| # raw_text = perform_ocr(file_path) | |
| # 2. AI Parsing Step (Uses Gemini to parse text into JSON) [1, 11]. | |
| # extracted_data = gemini_parse_json(raw_text) | |
| # 3. If successful, the LLM will decide whether to call 'create_record' next. | |
| return { | |
| "status": "success", | |
| "file": os.path.basename(file_path), | |
| "extracted_data": f"Structured data extracted from {target_module} document." | |
| } | |