Spaces:
Runtime error
Runtime error
| INDIC_NLP_LIB_HOME = "indic_nlp_library" | |
| INDIC_NLP_RESOURCES = "indic_nlp_resources" | |
| import sys | |
| sys.path.append(r"{}".format(INDIC_NLP_LIB_HOME)) | |
| from indicnlp import common | |
| common.set_resources_path(INDIC_NLP_RESOURCES) | |
| from indicnlp import loader | |
| loader.load() | |
| from sacremoses import MosesPunctNormalizer | |
| from sacremoses import MosesTokenizer | |
| from sacremoses import MosesDetokenizer | |
| from collections import defaultdict | |
| from tqdm import tqdm | |
| from joblib import Parallel, delayed | |
| from indicnlp.tokenize import indic_tokenize | |
| from indicnlp.tokenize import indic_detokenize | |
| from indicnlp.normalize import indic_normalize | |
| from indicnlp.transliterate import unicode_transliterate | |
| import re | |
| from typing import Union | |
| from flores_codes_map_indic import flores_codes | |
| en_tok = MosesTokenizer(lang="en") | |
| en_normalizer = MosesPunctNormalizer() | |
| def preprocess_line( | |
| line: str, | |
| normalizer: Union[MosesPunctNormalizer, indic_normalize.IndicNormalizerFactory], | |
| lang: str, | |
| transliterate: bool = False, | |
| remove_tag: bool = True | |
| ) -> str: | |
| """ | |
| Preprocess a line of text by normalizing, tokenization, and possibly transliterating it. | |
| Args: | |
| line (str): the line of text to preprocess. | |
| normalizer (Union[MosesPunctNormalizer, indic_normalize.IndicNormalizerFactory]): an object that performs normalization on the text. | |
| lang (str): the language of the line of text | |
| transliterate (bool, optional): whether to transliterate the line of text to devanagari (default: False). | |
| remove_tag (bool, optional): whether to remove the do not translate tags (`<dnt>` and `</dnt>`) from the line of text (default: True). | |
| Returns: | |
| str: preprocessed line of text. | |
| """ | |
| iso_lang = flores_codes[lang] | |
| pattern = r'<dnt>(.*?)</dnt>' | |
| raw_matches = re.findall(pattern, line) | |
| if iso_lang == "en": | |
| processed_line = " ".join(en_tok.tokenize(en_normalizer.normalize(line.strip()), escape=False)) | |
| elif transliterate: | |
| # transliterates from the any specific language to devanagari | |
| # which is why we specify lang2_code as "hi". | |
| # line = indic_detokenize.trivial_detokenize(line.strip(), lang) | |
| processed_line = unicode_transliterate.UnicodeIndicTransliterator.transliterate( | |
| " ".join(indic_tokenize.trivial_tokenize(normalizer.normalize(line.strip()), iso_lang)), | |
| iso_lang, | |
| "hi", | |
| ).replace(" ् ", "्") | |
| else: | |
| # we only need to transliterate for joint training | |
| processed_line = " ".join( | |
| indic_tokenize.trivial_tokenize(normalizer.normalize(line.strip()), iso_lang) | |
| ) | |
| processed_line = processed_line.replace("< dnt >", "<dnt>") | |
| processed_line = processed_line.replace("< / dnt >", "</dnt>") | |
| processed_line_matches = re.findall(pattern, processed_line) | |
| for raw_match, processed_line_match in zip(raw_matches, processed_line_matches): | |
| processed_line = processed_line.replace(processed_line_match, raw_match) | |
| if remove_tag: | |
| processed_line = re.sub("\s+", " ", processed_line.replace("<dnt>", " ")).strip() | |
| processed_line = re.sub("\s+", " ", processed_line.replace("</dnt>", " ")).strip() | |
| return processed_line | |
| def preprocess( | |
| infname: str, | |
| outfname: str, | |
| lang: str, | |
| transliterate: bool = False, | |
| remove_tag: bool= True | |
| ) -> int: | |
| """ | |
| Preprocess the text in the input file by normalizing, tokenizing and | |
| script conversation and write the output to a new file. | |
| Args: | |
| infname (str): path of the input file. | |
| outfname (str): path of the output file. | |
| lang (str): language of the text in the input file. | |
| transliterate (bool, optional): whether to transliterate the text in input file to devanagari (default: False). | |
| remove_tag (bool, optional): whether to remove the do not translate tags (`<dnt>` and `</dnt>`) from the text in input file (default: True). | |
| Returns: | |
| int: number of sentences in the input file | |
| """ | |
| iso_lang = flores_codes[lang] | |
| n = 0 | |
| num_lines = sum(1 for line in open(infname, "r")) | |
| if iso_lang == "en": | |
| with open(infname, "r", encoding="utf-8") as infile, open( | |
| outfname, "w", encoding="utf-8" | |
| ) as outfile: | |
| out_lines = Parallel(n_jobs=-1, backend="multiprocessing")( | |
| delayed(preprocess_line)(line, None, lang, transliterate, remove_tag) for line in tqdm(infile, total=num_lines) | |
| ) | |
| for line in out_lines: | |
| outfile.write(line + "\n") | |
| n += 1 | |
| else: | |
| normfactory = indic_normalize.IndicNormalizerFactory() | |
| normalizer = normfactory.get_normalizer(iso_lang) | |
| # reading | |
| with open(infname, "r", encoding="utf-8") as infile, open( | |
| outfname, "w", encoding="utf-8" | |
| ) as outfile: | |
| out_lines = Parallel(n_jobs=-1, backend="multiprocessing")( | |
| delayed(preprocess_line)(line, normalizer, lang, transliterate, remove_tag) | |
| for line in tqdm(infile, total=num_lines) | |
| ) | |
| for line in out_lines: | |
| outfile.write(line + "\n") | |
| n += 1 | |
| return n | |
| if __name__ == "__main__": | |
| infname = sys.argv[1] | |
| outfname = sys.argv[2] | |
| lang = sys.argv[3] | |
| transliterate = sys.argv[4] | |
| remove_tag = sys.argv[5] | |
| if transliterate.lower() == "true": | |
| transliterate = True | |
| else: | |
| transliterate = False | |
| if remove_tag.lower() == "true": | |
| remove_tag = True | |
| else: | |
| remove_tag = False | |
| print(preprocess(infname, outfname, lang, transliterate, remove_tag)) | |