Spaces:
Runtime error
Runtime error
| #https://github.com/fpgaminer/GPTQ-triton | |
| """ | |
| Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100. | |
| """ | |
| import builtins | |
| import math | |
| import time | |
| from typing import Dict | |
| import triton | |
| class Autotuner(triton.KernelInterface): | |
| def __init__(self, fn, arg_names, configs, key, reset_to_zero, prune_configs_by: Dict = None, nearest_power_of_two: bool = False): | |
| ''' | |
| :param prune_configs_by: a dict of functions that are used to prune configs, fields: | |
| 'perf_model': performance model used to predicate running time with different configs, returns running time | |
| 'top_k': number of configs to bench | |
| 'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs. | |
| 'nearest_power_of_two'(optional): whether to round key arguments to the nearest power of two when caching tuning results | |
| ''' | |
| if not configs: | |
| self.configs = [triton.Config({}, num_warps=4, num_stages=2)] | |
| else: | |
| self.configs = configs | |
| self.key_idx = [arg_names.index(k) for k in key] | |
| self.nearest_power_of_two = nearest_power_of_two | |
| self.cache = {} | |
| # hook to reset all required tensor to zeros before relaunching a kernel | |
| self.hook = lambda args: 0 | |
| if reset_to_zero is not None: | |
| self.reset_idx = [arg_names.index(k) for k in reset_to_zero] | |
| def _hook(args): | |
| for i in self.reset_idx: | |
| args[i].zero_() | |
| self.hook = _hook | |
| self.arg_names = arg_names | |
| # prune configs | |
| if prune_configs_by: | |
| perf_model, top_k = prune_configs_by['perf_model'], prune_configs_by['top_k'] | |
| if 'early_config_prune' in prune_configs_by: | |
| early_config_prune = prune_configs_by['early_config_prune'] | |
| else: | |
| perf_model, top_k, early_config_prune = None, None, None | |
| self.perf_model, self.configs_top_k = perf_model, top_k | |
| self.early_config_prune = early_config_prune | |
| self.fn = fn | |
| def _bench(self, *args, config, **meta): | |
| # check for conflicts, i.e. meta-parameters both provided | |
| # as kwargs and by the autotuner | |
| conflicts = meta.keys() & config.kwargs.keys() | |
| if conflicts: | |
| raise ValueError( | |
| f"Conflicting meta-parameters: {', '.join(conflicts)}." | |
| " Make sure that you don't re-define auto-tuned symbols." | |
| ) | |
| # augment meta-parameters with tunable ones | |
| current = dict(meta, **config.kwargs) | |
| def kernel_call(): | |
| if config.pre_hook: | |
| config.pre_hook(self.nargs) | |
| self.hook(args) | |
| self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **current) | |
| try: | |
| # In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses | |
| # PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default | |
| return triton.testing.do_bench(kernel_call, rep=40) | |
| except triton.compiler.OutOfResources: | |
| return float('inf') | |
| def run(self, *args, **kwargs): | |
| self.nargs = dict(zip(self.arg_names, args)) | |
| if len(self.configs) > 1: | |
| key = tuple(args[i] for i in self.key_idx) | |
| # This reduces the amount of autotuning by rounding the keys to the nearest power of two | |
| # In my testing this gives decent results, and greatly reduces the amount of tuning required | |
| if self.nearest_power_of_two: | |
| key = tuple([2 ** int(math.log2(x) + 0.5) for x in key]) | |
| if key not in self.cache: | |
| # prune configs | |
| pruned_configs = self.prune_configs(kwargs) | |
| bench_start = time.time() | |
| timings = {config: self._bench(*args, config=config, **kwargs) | |
| for config in pruned_configs} | |
| bench_end = time.time() | |
| self.bench_time = bench_end - bench_start | |
| self.cache[key] = builtins.min(timings, key=timings.get) | |
| self.hook(args) | |
| self.configs_timings = timings | |
| config = self.cache[key] | |
| else: | |
| config = self.configs[0] | |
| self.best_config = config | |
| if config.pre_hook is not None: | |
| config.pre_hook(self.nargs) | |
| return self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs) | |
| def prune_configs(self, kwargs): | |
| pruned_configs = self.configs | |
| if self.early_config_prune: | |
| pruned_configs = self.early_config_prune(self.configs, self.nargs) | |
| if self.perf_model: | |
| top_k = self.configs_top_k | |
| if isinstance(top_k, float) and top_k <= 1.0: | |
| top_k = int(len(self.configs) * top_k) | |
| if len(pruned_configs) > top_k: | |
| est_timing = { | |
| config: self.perf_model(**self.nargs, **kwargs, **config.kwargs, num_stages=config.num_stages, | |
| num_warps=config.num_warps) | |
| for config in pruned_configs | |
| } | |
| pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k] | |
| return pruned_configs | |
| def warmup(self, *args, **kwargs): | |
| self.nargs = dict(zip(self.arg_names, args)) | |
| for config in self.prune_configs(kwargs): | |
| self.fn.warmup( | |
| *args, | |
| num_warps=config.num_warps, | |
| num_stages=config.num_stages, | |
| **kwargs, | |
| **config.kwargs, | |
| ) | |
| self.nargs = None | |
| def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False): | |
| """ | |
| Decorator for auto-tuning a :code:`triton.jit`'d function. | |
| .. highlight:: python | |
| .. code-block:: python | |
| @triton.autotune(configs=[ | |
| triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4), | |
| triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8), | |
| ], | |
| key=['x_size'] # the two above configs will be evaluated anytime | |
| # the value of x_size changes | |
| ) | |
| @triton.jit | |
| def kernel(x_ptr, x_size, **META): | |
| BLOCK_SIZE = META['BLOCK_SIZE'] | |
| :note: When all the configurations are evaluated, the kernel will run multiple time. | |
| This means that whatever value the kernel updates will be updated multiple times. | |
| To avoid this undesired behavior, you can use the `reset_to_zero` argument, which | |
| reset the value of the provided tensor to `zero` before running any configuration. | |
| :param configs: a list of :code:`triton.Config` objects | |
| :type configs: list[triton.Config] | |
| :param key: a list of argument names whose change in value will trigger the evaluation of all provided configs. | |
| :type key: list[str] | |
| :param prune_configs_by: a dict of functions that are used to prune configs, fields: | |
| 'perf_model': performance model used to predicate running time with different configs, returns running time | |
| 'top_k': number of configs to bench | |
| 'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs. | |
| :param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs. | |
| :type reset_to_zero: list[str] | |
| """ | |
| def decorator(fn): | |
| return Autotuner(fn, fn.arg_names, configs, key, reset_to_zero, prune_configs_by, nearest_power_of_two) | |
| return decorator | |