Spaces:
Running
Running
Yanlin Zhang
commited on
Commit
·
899327c
1
Parent(s):
543ad60
add app.py
Browse files- README.md +21 -0
- app.py +401 -0
- requirements.txt +7 -0
README.md
CHANGED
|
@@ -11,3 +11,24 @@ license: apache-2.0
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 14 |
+
|
| 15 |
+
## SAM3 Vehicle Trajectory Space
|
| 16 |
+
|
| 17 |
+
This Space turns `facebook/sam3` into a ready-to-use pipeline for extracting
|
| 18 |
+
small- and large-vehicle trajectories from aerial surveillance videos.
|
| 19 |
+
|
| 20 |
+
### Quick start
|
| 21 |
+
|
| 22 |
+
1. Authenticate with Hugging Face to access the gated SAM3 checkpoint:
|
| 23 |
+
```bash
|
| 24 |
+
hf auth login
|
| 25 |
+
```
|
| 26 |
+
2. Upload an aerial MP4/MOV clip. The app automatically sends the prompts
|
| 27 |
+
`small-vehicle` and `large-vehicle` to SAM3, overlays the resulting masks,
|
| 28 |
+
and links detections over time to form trajectories.
|
| 29 |
+
3. Download the rendered video and inspect the per-track summary table.
|
| 30 |
+
|
| 31 |
+
The UI exposes stride, resize, and frame-limit controls so you can trade off
|
| 32 |
+
latency versus coverage depending on the clip length. All heavy lifting (frame
|
| 33 |
+
decoding, segmentation, mask rendering, trajectory stitching) happens on the
|
| 34 |
+
Space so you only need to provide the footage.
|
app.py
ADDED
|
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Vehicle trajectory extractor powered by SAM3.
|
| 3 |
+
|
| 4 |
+
The app takes an aerial video, segments small and large vehicles frame-by-frame
|
| 5 |
+
with text prompts (`small-vehicle`, `large-vehicle`), and draws their
|
| 6 |
+
trajectories on top of the footage.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
from __future__ import annotations
|
| 10 |
+
|
| 11 |
+
import math
|
| 12 |
+
import os
|
| 13 |
+
import tempfile
|
| 14 |
+
import uuid
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Dict, List, Sequence, Tuple
|
| 17 |
+
|
| 18 |
+
import cv2
|
| 19 |
+
import gradio as gr
|
| 20 |
+
import numpy as np
|
| 21 |
+
from PIL import Image
|
| 22 |
+
import torch
|
| 23 |
+
from transformers import AutoImageProcessor, AutoModel
|
| 24 |
+
|
| 25 |
+
# -----------------------------------------------------------------------------
|
| 26 |
+
# Configuration
|
| 27 |
+
# -----------------------------------------------------------------------------
|
| 28 |
+
|
| 29 |
+
MODEL_ID = "facebook/sam3"
|
| 30 |
+
TEXT_PROMPTS = ["small-vehicle", "large-vehicle"]
|
| 31 |
+
MIN_MASK_PIXELS = 150 # filter spurious detections
|
| 32 |
+
MAX_TRACK_GAP = 3 # frames
|
| 33 |
+
DEFAULT_FRAME_STRIDE = 5
|
| 34 |
+
MAX_PROCESSED_FRAMES = 720
|
| 35 |
+
|
| 36 |
+
CLASS_COLORS: Dict[str, Tuple[int, int, int]] = {
|
| 37 |
+
"small-vehicle": (20, 148, 245), # RGB
|
| 38 |
+
"large-vehicle": (255, 120, 30),
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 42 |
+
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
|
| 43 |
+
|
| 44 |
+
# -----------------------------------------------------------------------------
|
| 45 |
+
# Model + processor
|
| 46 |
+
# -----------------------------------------------------------------------------
|
| 47 |
+
|
| 48 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
|
| 49 |
+
model = AutoModel.from_pretrained(MODEL_ID, torch_dtype=DTYPE).to(DEVICE)
|
| 50 |
+
model.eval()
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# -----------------------------------------------------------------------------
|
| 54 |
+
# Tracking utilities
|
| 55 |
+
# -----------------------------------------------------------------------------
|
| 56 |
+
|
| 57 |
+
@dataclass
|
| 58 |
+
class Track:
|
| 59 |
+
track_id: int
|
| 60 |
+
label: str
|
| 61 |
+
points: List[Tuple[int, float, float]]
|
| 62 |
+
last_frame: int
|
| 63 |
+
score: float | None
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def _post_process(outputs, height: int, width: int):
|
| 67 |
+
target_sizes = [(height, width)]
|
| 68 |
+
|
| 69 |
+
if hasattr(processor, "post_process_instance_segmentation"):
|
| 70 |
+
return processor.post_process_instance_segmentation(
|
| 71 |
+
outputs=outputs,
|
| 72 |
+
target_sizes=target_sizes,
|
| 73 |
+
threshold=0.35,
|
| 74 |
+
mask_threshold=0.4,
|
| 75 |
+
overlap_mask_area_threshold=0.5,
|
| 76 |
+
)[0]
|
| 77 |
+
|
| 78 |
+
if hasattr(processor, "post_process_semantic_segmentation"):
|
| 79 |
+
segmentation = processor.post_process_semantic_segmentation(
|
| 80 |
+
outputs=outputs,
|
| 81 |
+
target_sizes=target_sizes,
|
| 82 |
+
)[0]
|
| 83 |
+
return {
|
| 84 |
+
"masks": segmentation.unsqueeze(0),
|
| 85 |
+
"scores": torch.ones(1),
|
| 86 |
+
"labels": torch.zeros(1, dtype=torch.int64),
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
raise gr.Error(
|
| 90 |
+
"This version of transformers does not expose SAM3 post-processing helpers. "
|
| 91 |
+
"Please ensure transformers>=4.46.0 is installed."
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def _extract_detections(frame_rgb: np.ndarray) -> List[Dict]:
|
| 96 |
+
pil_image = Image.fromarray(frame_rgb)
|
| 97 |
+
detections: List[Dict] = []
|
| 98 |
+
|
| 99 |
+
for label in TEXT_PROMPTS:
|
| 100 |
+
inputs = processor(images=pil_image, text=label, return_tensors="pt")
|
| 101 |
+
inputs = {
|
| 102 |
+
k: (v.to(DEVICE) if isinstance(v, torch.Tensor) else v)
|
| 103 |
+
for k, v in inputs.items()
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
with torch.inference_mode():
|
| 107 |
+
outputs = model(**inputs)
|
| 108 |
+
|
| 109 |
+
processed = _post_process(outputs, pil_image.height, pil_image.width)
|
| 110 |
+
masks = processed.get("masks", [])
|
| 111 |
+
scores = processed.get("scores", [None] * len(masks))
|
| 112 |
+
|
| 113 |
+
for mask_tensor, score in zip(masks, scores):
|
| 114 |
+
mask_np = mask_tensor.squeeze().detach().cpu().numpy()
|
| 115 |
+
if mask_np.ndim == 3:
|
| 116 |
+
mask_np = mask_np[0]
|
| 117 |
+
|
| 118 |
+
binary_mask = mask_np > 0.5
|
| 119 |
+
area = int(binary_mask.sum())
|
| 120 |
+
if area < MIN_MASK_PIXELS:
|
| 121 |
+
continue
|
| 122 |
+
|
| 123 |
+
ys, xs = np.nonzero(binary_mask)
|
| 124 |
+
if len(xs) == 0:
|
| 125 |
+
continue
|
| 126 |
+
|
| 127 |
+
centroid = (float(xs.mean()), float(ys.mean()))
|
| 128 |
+
detections.append(
|
| 129 |
+
{
|
| 130 |
+
"label": label,
|
| 131 |
+
"mask": binary_mask,
|
| 132 |
+
"score": float(score) if score is not None else None,
|
| 133 |
+
"centroid": centroid,
|
| 134 |
+
"area": area,
|
| 135 |
+
}
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
return detections
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def _update_tracks(
|
| 142 |
+
tracks: List[Track],
|
| 143 |
+
detections: Sequence[Dict],
|
| 144 |
+
frame_idx: int,
|
| 145 |
+
max_distance: float,
|
| 146 |
+
) -> None:
|
| 147 |
+
for detection in detections:
|
| 148 |
+
centroid = np.array(detection["centroid"])
|
| 149 |
+
best_track = None
|
| 150 |
+
best_distance = math.inf
|
| 151 |
+
|
| 152 |
+
for track in tracks:
|
| 153 |
+
if track.label != detection["label"]:
|
| 154 |
+
continue
|
| 155 |
+
if frame_idx - track.last_frame > MAX_TRACK_GAP:
|
| 156 |
+
continue
|
| 157 |
+
|
| 158 |
+
prev_point = np.array(track.points[-1][1:])
|
| 159 |
+
dist = np.linalg.norm(centroid - prev_point)
|
| 160 |
+
if dist < best_distance and dist <= max_distance:
|
| 161 |
+
best_distance = dist
|
| 162 |
+
best_track = track
|
| 163 |
+
|
| 164 |
+
if best_track:
|
| 165 |
+
best_track.points.append((frame_idx, *detection["centroid"]))
|
| 166 |
+
best_track.last_frame = frame_idx
|
| 167 |
+
best_track.score = detection["score"]
|
| 168 |
+
else:
|
| 169 |
+
new_track = Track(
|
| 170 |
+
track_id=len(tracks) + 1,
|
| 171 |
+
label=detection["label"],
|
| 172 |
+
points=[(frame_idx, *detection["centroid"])],
|
| 173 |
+
last_frame=frame_idx,
|
| 174 |
+
score=detection["score"],
|
| 175 |
+
)
|
| 176 |
+
tracks.append(new_track)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def _blend_mask(frame: np.ndarray, mask: np.ndarray, color: Tuple[int, int, int], alpha: float = 0.45):
|
| 180 |
+
overlay = frame.copy()
|
| 181 |
+
overlay[mask] = (1 - alpha) * overlay[mask] + alpha * np.array(color, dtype=np.float32)
|
| 182 |
+
return overlay
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def _draw_annotations(
|
| 186 |
+
frame_rgb: np.ndarray,
|
| 187 |
+
detections: Sequence[Dict],
|
| 188 |
+
tracks: Sequence[Track],
|
| 189 |
+
frame_idx: int,
|
| 190 |
+
):
|
| 191 |
+
annotated = frame_rgb.astype(np.float32)
|
| 192 |
+
|
| 193 |
+
for det in detections:
|
| 194 |
+
color_rgb = CLASS_COLORS.get(det["label"], (255, 255, 255))
|
| 195 |
+
color_bgr = tuple(int(c) for c in reversed(color_rgb))
|
| 196 |
+
|
| 197 |
+
annotated = _blend_mask(annotated, det["mask"], color_rgb)
|
| 198 |
+
|
| 199 |
+
cx, cy = det["centroid"]
|
| 200 |
+
cv2.circle(annotated, (int(cx), int(cy)), 4, color_bgr, -1)
|
| 201 |
+
cv2.putText(
|
| 202 |
+
annotated,
|
| 203 |
+
det["label"],
|
| 204 |
+
(int(cx) + 4, int(cy) - 4),
|
| 205 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 206 |
+
0.4,
|
| 207 |
+
color_bgr,
|
| 208 |
+
1,
|
| 209 |
+
cv2.LINE_AA,
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
for track in tracks:
|
| 213 |
+
if len(track.points) < 2:
|
| 214 |
+
continue
|
| 215 |
+
if track.points[-1][0] < frame_idx - MAX_TRACK_GAP:
|
| 216 |
+
continue
|
| 217 |
+
|
| 218 |
+
color_rgb = CLASS_COLORS.get(track.label, (255, 255, 255))
|
| 219 |
+
color_bgr = tuple(int(c) for c in reversed(color_rgb))
|
| 220 |
+
pts = [
|
| 221 |
+
(int(x), int(y))
|
| 222 |
+
for (f_idx, x, y) in track.points
|
| 223 |
+
if f_idx <= frame_idx
|
| 224 |
+
]
|
| 225 |
+
|
| 226 |
+
for i in range(1, len(pts)):
|
| 227 |
+
cv2.line(annotated, pts[i - 1], pts[i], color_bgr, 2, cv2.LINE_AA)
|
| 228 |
+
|
| 229 |
+
cv2.circle(annotated, pts[-1], 5, color_bgr, -1)
|
| 230 |
+
|
| 231 |
+
return np.clip(annotated, 0, 255).astype(np.uint8)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def _summarize_tracks(tracks: Sequence[Track]) -> List[Dict]:
|
| 235 |
+
summary = []
|
| 236 |
+
for track in tracks:
|
| 237 |
+
if len(track.points) < 2:
|
| 238 |
+
continue
|
| 239 |
+
|
| 240 |
+
distances = []
|
| 241 |
+
for (prev_frame, x1, y1), (curr_frame, x2, y2) in zip(track.points, track.points[1:]):
|
| 242 |
+
distances.append(math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))
|
| 243 |
+
|
| 244 |
+
summary.append(
|
| 245 |
+
{
|
| 246 |
+
"track_id": track.track_id,
|
| 247 |
+
"label": track.label,
|
| 248 |
+
"frames": len(track.points),
|
| 249 |
+
"start_frame": track.points[0][0],
|
| 250 |
+
"end_frame": track.points[-1][0],
|
| 251 |
+
"path_px": round(float(sum(distances)), 2),
|
| 252 |
+
}
|
| 253 |
+
)
|
| 254 |
+
return summary
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
# -----------------------------------------------------------------------------
|
| 258 |
+
# Video processing
|
| 259 |
+
# -----------------------------------------------------------------------------
|
| 260 |
+
|
| 261 |
+
def analyze_video(
|
| 262 |
+
video_path: str,
|
| 263 |
+
frame_stride: int = DEFAULT_FRAME_STRIDE,
|
| 264 |
+
max_frames: int = MAX_PROCESSED_FRAMES,
|
| 265 |
+
resize_long_edge: int = 1280,
|
| 266 |
+
) -> Tuple[str, List[Dict]]:
|
| 267 |
+
if not video_path:
|
| 268 |
+
raise gr.Error("Please upload an aerial video (MP4, MOV, ...).")
|
| 269 |
+
|
| 270 |
+
capture = cv2.VideoCapture(video_path)
|
| 271 |
+
if not capture.isOpened():
|
| 272 |
+
raise gr.Error("Unable to read the uploaded video.")
|
| 273 |
+
|
| 274 |
+
fps = capture.get(cv2.CAP_PROP_FPS) or 15
|
| 275 |
+
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 276 |
+
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 277 |
+
diag = math.sqrt(width**2 + height**2)
|
| 278 |
+
max_assign_distance = 0.04 * diag
|
| 279 |
+
|
| 280 |
+
processed_frames = []
|
| 281 |
+
tracks: List[Track] = []
|
| 282 |
+
|
| 283 |
+
frame_index = 0
|
| 284 |
+
processed_count = 0
|
| 285 |
+
|
| 286 |
+
while processed_count < max_frames:
|
| 287 |
+
ret, frame_bgr = capture.read()
|
| 288 |
+
if not ret:
|
| 289 |
+
break
|
| 290 |
+
|
| 291 |
+
if frame_index % frame_stride != 0:
|
| 292 |
+
frame_index += 1
|
| 293 |
+
continue
|
| 294 |
+
|
| 295 |
+
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
|
| 296 |
+
frame_rgb = _resize_long_edge(frame_rgb, resize_long_edge)
|
| 297 |
+
|
| 298 |
+
detections = _extract_detections(frame_rgb)
|
| 299 |
+
_update_tracks(tracks, detections, frame_index, max_assign_distance)
|
| 300 |
+
annotated = _draw_annotations(frame_rgb, detections, tracks, frame_index)
|
| 301 |
+
|
| 302 |
+
processed_frames.append(cv2.cvtColor(annotated, cv2.COLOR_RGB2BGR))
|
| 303 |
+
processed_count += 1
|
| 304 |
+
frame_index += 1
|
| 305 |
+
|
| 306 |
+
capture.release()
|
| 307 |
+
|
| 308 |
+
if not processed_frames:
|
| 309 |
+
raise gr.Error("No frames were processed. Try lowering the stride or uploading a different video.")
|
| 310 |
+
|
| 311 |
+
output_path = _write_video(processed_frames, fps / max(frame_stride, 1))
|
| 312 |
+
summary = _summarize_tracks(tracks)
|
| 313 |
+
|
| 314 |
+
return output_path, summary
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def _resize_long_edge(frame_rgb: np.ndarray, target_long_edge: int) -> np.ndarray:
|
| 318 |
+
h, w, _ = frame_rgb.shape
|
| 319 |
+
long_edge = max(h, w)
|
| 320 |
+
if long_edge <= target_long_edge:
|
| 321 |
+
return frame_rgb
|
| 322 |
+
|
| 323 |
+
scale = target_long_edge / long_edge
|
| 324 |
+
new_size = (int(w * scale), int(h * scale))
|
| 325 |
+
resized = cv2.resize(frame_rgb, new_size, interpolation=cv2.INTER_AREA)
|
| 326 |
+
return resized
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def _write_video(frames: Sequence[np.ndarray], fps: float) -> str:
|
| 330 |
+
height, width, _ = frames[0].shape
|
| 331 |
+
tmp_path = os.path.join(tempfile.gettempdir(), f"sam3-trajectories-{uuid.uuid4().hex}.mp4")
|
| 332 |
+
|
| 333 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 334 |
+
writer = cv2.VideoWriter(tmp_path, fourcc, max(fps, 1.0), (width, height))
|
| 335 |
+
for frame in frames:
|
| 336 |
+
writer.write(frame)
|
| 337 |
+
writer.release()
|
| 338 |
+
return tmp_path
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
# -----------------------------------------------------------------------------
|
| 342 |
+
# Gradio UI
|
| 343 |
+
# -----------------------------------------------------------------------------
|
| 344 |
+
|
| 345 |
+
with gr.Blocks(title="SAM3 Vehicle Trajectories") as demo:
|
| 346 |
+
gr.Markdown(
|
| 347 |
+
"""
|
| 348 |
+
### SAM3 for Vehicle Trajectories
|
| 349 |
+
1. Upload an aerial surveillance video.
|
| 350 |
+
2. The app prompts SAM3 with `small-vehicle` and `large-vehicle`.
|
| 351 |
+
3. Segmentations are linked across frames to render motion trails.
|
| 352 |
+
"""
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
with gr.Row():
|
| 356 |
+
video_input = gr.Video(label="Aerial video (MP4/MOV)")
|
| 357 |
+
controls = gr.Column()
|
| 358 |
+
with controls:
|
| 359 |
+
stride_slider = gr.Slider(
|
| 360 |
+
label="Frame stride",
|
| 361 |
+
minimum=1,
|
| 362 |
+
maximum=12,
|
| 363 |
+
value=DEFAULT_FRAME_STRIDE,
|
| 364 |
+
step=1,
|
| 365 |
+
info="Process one frame every N frames",
|
| 366 |
+
)
|
| 367 |
+
max_frames_slider = gr.Slider(
|
| 368 |
+
label="Max frames to process",
|
| 369 |
+
minimum=30,
|
| 370 |
+
maximum=1000,
|
| 371 |
+
value=MAX_PROCESSED_FRAMES,
|
| 372 |
+
step=10,
|
| 373 |
+
)
|
| 374 |
+
resize_slider = gr.Slider(
|
| 375 |
+
label="Resize longest edge (px)",
|
| 376 |
+
minimum=640,
|
| 377 |
+
maximum=1920,
|
| 378 |
+
value=1280,
|
| 379 |
+
step=40,
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
output_video = gr.Video(label="Overlay with trajectories")
|
| 383 |
+
track_table = gr.Dataframe(
|
| 384 |
+
headers=["track_id", "label", "frames", "start_frame", "end_frame", "path_px"],
|
| 385 |
+
datatype=["number", "str", "number", "number", "number", "number"],
|
| 386 |
+
wrap=True,
|
| 387 |
+
label="Track summary",
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
run_button = gr.Button("Extract trajectories", variant="primary")
|
| 391 |
+
|
| 392 |
+
run_button.click(
|
| 393 |
+
fn=analyze_video,
|
| 394 |
+
inputs=[video_input, stride_slider, max_frames_slider, resize_slider],
|
| 395 |
+
outputs=[output_video, track_table],
|
| 396 |
+
api_name="analyze",
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
if __name__ == "__main__":
|
| 401 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers>=4.46.0
|
| 3 |
+
accelerate
|
| 4 |
+
gradio
|
| 5 |
+
pillow
|
| 6 |
+
opencv-python
|
| 7 |
+
numpy
|