File size: 13,569 Bytes
8b4913f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d1414
8b4913f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d1414
8b4913f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de48493
8b4913f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import json
import os
import warnings
from typing import List, Dict, Optional
import argparse

import faiss
import torch
import numpy as np
from transformers import AutoConfig, AutoTokenizer, AutoModel
from tqdm import tqdm
import datasets

import uvicorn
from fastapi import FastAPI
from pydantic import BaseModel


parser = argparse.ArgumentParser(description="Launch the local faiss retriever.")
parser.add_argument("--index_path", type=str, help="Corpus indexing file.")
parser.add_argument("--corpus_path", type=str, help="Local corpus file.")
parser.add_argument("--topk", type=int, default=3, help="Number of retrieved passages for one query.")
parser.add_argument("--retriever_model", type=str, default="intfloat/e5-base-v2", help="Name of the retriever model.")

args = parser.parse_args()

def load_corpus(corpus_path: str):
    corpus = datasets.load_dataset(
        'json', 
        data_files=corpus_path,
        split="train",
        num_proc=4
    )
    return corpus

def read_jsonl(file_path):
    data = []
    with open(file_path, "r") as f:
        for line in f:
            data.append(json.loads(line))
    return data

def load_docs(corpus, doc_idxs):
    results = [corpus[int(idx)] for idx in doc_idxs]
    return results

def load_model(model_path: str, use_fp16: bool = False):
    model_config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
    model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
    model.eval()
    model
    if use_fp16: 
        model = model.half()
    tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=True)
    return model, tokenizer

def pooling(
    pooler_output,
    last_hidden_state,
    attention_mask = None,
    pooling_method = "mean"
):
    if pooling_method == "mean":
        last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
        return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
    elif pooling_method == "cls":
        return last_hidden_state[:, 0]
    elif pooling_method == "pooler":
        return pooler_output
    else:
        raise NotImplementedError("Pooling method not implemented!")

class Encoder:
    def __init__(self, model_name, model_path, pooling_method, max_length, use_fp16):
        self.model_name = model_name
        self.model_path = model_path
        self.pooling_method = pooling_method
        self.max_length = max_length
        self.use_fp16 = use_fp16

        self.model, self.tokenizer = load_model(model_path=model_path, use_fp16=use_fp16)
        self.model.eval()

    @torch.no_grad()
    def encode(self, query_list: List[str], is_query=True) -> np.ndarray:
        # processing query for different encoders
        if isinstance(query_list, str):
            query_list = [query_list]

        if "e5" in self.model_name.lower():
            if is_query:
                query_list = [f"query: {query}" for query in query_list]
            else:
                query_list = [f"passage: {query}" for query in query_list]

        if "bge" in self.model_name.lower():
            if is_query:
                query_list = [f"Represent this sentence for searching relevant passages: {query}" for query in query_list]

        inputs = self.tokenizer(query_list,
                                max_length=self.max_length,
                                padding=True,
                                truncation=True,
                                return_tensors="pt"
                                )
        inputs = {k: v for k, v in inputs.items()}

        if "T5" in type(self.model).__name__:
            # T5-based retrieval model
            decoder_input_ids = torch.zeros(
                (inputs['input_ids'].shape[0], 1), dtype=torch.long
            ).to(inputs['input_ids'].device)
            output = self.model(
                **inputs, decoder_input_ids=decoder_input_ids, return_dict=True
            )
            query_emb = output.last_hidden_state[:, 0, :]
        else:
            output = self.model(**inputs, return_dict=True)
            query_emb = pooling(output.pooler_output,
                                output.last_hidden_state,
                                inputs['attention_mask'],
                                self.pooling_method)
            if "dpr" not in self.model_name.lower():
                query_emb = torch.nn.functional.normalize(query_emb, dim=-1)

        query_emb = query_emb.detach().cpu().numpy()
        query_emb = query_emb.astype(np.float32, order="C")
        
        del inputs, output
        torch.cuda.empty_cache()

        return query_emb

class BaseRetriever:
    def __init__(self, config):
        self.config = config
        self.retrieval_method = config.retrieval_method
        self.topk = config.retrieval_topk
        
        self.index_path = config.index_path
        self.corpus_path = config.corpus_path

    def _search(self, query: str, num: int, return_score: bool):
        raise NotImplementedError

    def _batch_search(self, query_list: List[str], num: int, return_score: bool):
        raise NotImplementedError

    def search(self, query: str, num: int = None, return_score: bool = False):
        return self._search(query, num, return_score)
    
    def batch_search(self, query_list: List[str], num: int = None, return_score: bool = False):
        return self._batch_search(query_list, num, return_score)

class BM25Retriever(BaseRetriever):
    def __init__(self, config):
        super().__init__(config)
        from pyserini.search.lucene import LuceneSearcher
        self.searcher = LuceneSearcher(self.index_path)
        self.contain_doc = self._check_contain_doc()
        if not self.contain_doc:
            self.corpus = load_corpus(self.corpus_path)
        self.max_process_num = 8
    
    def _check_contain_doc(self):
        return self.searcher.doc(0).raw() is not None

    def _search(self, query: str, num: int = None, return_score: bool = False):
        if num is None:
            num = self.topk
        hits = self.searcher.search(query, num)
        if len(hits) < 1:
            if return_score:
                return [], []
            else:
                return []
        scores = [hit.score for hit in hits]
        if len(hits) < num:
            warnings.warn('Not enough documents retrieved!')
        else:
            hits = hits[:num]

        if self.contain_doc:
            all_contents = [
                json.loads(self.searcher.doc(hit.docid).raw())['contents'] 
                for hit in hits
            ]
            results = [
                {
                    'title': content.split("\n")[0].strip("\""),
                    'text': "\n".join(content.split("\n")[1:]),
                    'contents': content
                } 
                for content in all_contents
            ]
        else:
            results = load_docs(self.corpus, [hit.docid for hit in hits])

        if return_score:
            return results, scores
        else:
            return results

    def _batch_search(self, query_list: List[str], num: int = None, return_score: bool = False):
        results = []
        scores = []
        for query in query_list:
            item_result, item_score = self._search(query, num, True)
            results.append(item_result)
            scores.append(item_score)
        if return_score:
            return results, scores
        else:
            return results

class DenseRetriever(BaseRetriever):
    def __init__(self, config):
        super().__init__(config)
        self.index = faiss.read_index(self.index_path)
        if config.faiss_gpu:
            co = faiss.GpuMultipleClonerOptions()
            co.useFloat16 = True
            co.shard = True
            self.index = faiss.index_cpu_to_all_gpus(self.index, co=co)

        self.corpus = load_corpus(self.corpus_path)
        self.encoder = Encoder(
            model_name = self.retrieval_method,
            model_path = config.retrieval_model_path,
            pooling_method = config.retrieval_pooling_method,
            max_length = config.retrieval_query_max_length,
            use_fp16 = config.retrieval_use_fp16
        )
        self.topk = config.retrieval_topk
        self.batch_size = config.retrieval_batch_size

    def _search(self, query: str, num: int = None, return_score: bool = False):
        if num is None:
            num = self.topk
        query_emb = self.encoder.encode(query)
        scores, idxs = self.index.search(query_emb, k=num)
        idxs = idxs[0]
        scores = scores[0]
        results = load_docs(self.corpus, idxs)
        if return_score:
            return results, scores.tolist()
        else:
            return results

    def _batch_search(self, query_list: List[str], num: int = None, return_score: bool = False):
        if isinstance(query_list, str):
            query_list = [query_list]
        if num is None:
            num = self.topk
        
        results = []
        scores = []
        for start_idx in tqdm(range(0, len(query_list), self.batch_size), desc='Retrieval process: '):
            query_batch = query_list[start_idx:start_idx + self.batch_size]
            batch_emb = self.encoder.encode(query_batch)
            batch_scores, batch_idxs = self.index.search(batch_emb, k=num)
            batch_scores = batch_scores.tolist()
            batch_idxs = batch_idxs.tolist()

            # load_docs is not vectorized, but is a python list approach
            flat_idxs = sum(batch_idxs, [])
            batch_results = load_docs(self.corpus, flat_idxs)
            # chunk them back
            batch_results = [batch_results[i*num : (i+1)*num] for i in range(len(batch_idxs))]
            
            results.extend(batch_results)
            scores.extend(batch_scores)
            
            del batch_emb, batch_scores, batch_idxs, query_batch, flat_idxs, batch_results
            torch.cuda.empty_cache()
            
        if return_score:
            return results, scores
        else:
            return results

def get_retriever(config):
    if config.retrieval_method == "bm25":
        return BM25Retriever(config)
    else:
        return DenseRetriever(config)


#####################################
# FastAPI server below
#####################################

class Config:
    """
    Minimal config class (simulating your argparse) 
    Replace this with your real arguments or load them dynamically.
    """
    def __init__(
        self, 
        retrieval_method: str = "bm25", 
        retrieval_topk: int = 10,
        index_path: str = "./index/bm25",
        corpus_path: str = "./data/corpus.jsonl",
        dataset_path: str = "./data",
        data_split: str = "train",
        faiss_gpu: bool = True,
        retrieval_model_path: str = "./model",
        retrieval_pooling_method: str = "mean",
        retrieval_query_max_length: int = 256,
        retrieval_use_fp16: bool = False,
        retrieval_batch_size: int = 128
    ):
        self.retrieval_method = retrieval_method
        self.retrieval_topk = retrieval_topk
        self.index_path = index_path
        self.corpus_path = corpus_path
        self.dataset_path = dataset_path
        self.data_split = data_split
        self.faiss_gpu = faiss_gpu
        self.retrieval_model_path = retrieval_model_path
        self.retrieval_pooling_method = retrieval_pooling_method
        self.retrieval_query_max_length = retrieval_query_max_length
        self.retrieval_use_fp16 = retrieval_use_fp16
        self.retrieval_batch_size = retrieval_batch_size


class QueryRequest(BaseModel):
    queries: List[str]
    topk: Optional[int] = None
    return_scores: bool = False


app = FastAPI()

# 1) Build a config (could also parse from arguments).
#    In real usage, you'd parse your CLI arguments or environment variables.
config = Config(
    retrieval_method = "e5",  # or "dense"
    index_path=args.index_path,
    corpus_path=args.corpus_path,
    retrieval_topk=args.topk,
    faiss_gpu=False,
    retrieval_model_path=args.retriever_model,
    retrieval_pooling_method="mean",
    retrieval_query_max_length=256,
    retrieval_use_fp16=True,
    retrieval_batch_size=512,
)

# 2) Instantiate a global retriever so it is loaded once and reused.
retriever = get_retriever(config)

@app.post("/retrieve")
def retrieve_endpoint(request: QueryRequest):
    """
    Endpoint that accepts queries and performs retrieval.
    Input format:
    {
      "queries": ["What is Python?", "Tell me about neural networks."],
      "topk": 3,
      "return_scores": true
    }
    """
    if not request.topk:
        request.topk = config.retrieval_topk  # fallback to default

    # Perform batch retrieval
    results, scores = retriever.batch_search(
        query_list=request.queries,
        num=request.topk,
        return_score=request.return_scores
    )
    
    # Format response
    resp = []
    for i, single_result in enumerate(results):
        if request.return_scores:
            # If scores are returned, combine them with results
            combined = []
            for doc, score in zip(single_result, scores[i]):
                combined.append({"document": doc, "score": score})
            resp.append(combined)
        else:
            resp.append(single_result)
    return {"result": resp}


if __name__ == "__main__":
    # 3) Launch the server. By default, it listens on http://127.0.0.1:8000
    uvicorn.run(app, host="0.0.0.0", port=8000)