File size: 9,851 Bytes
23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa 5ff5c15 23279aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
---
language:
- ko
license: llama3
library_name: peft
tags:
- patent
- legal
- qa
- qlora
- law
- korean
- intellectual-property
- trademark
- llama-3
base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
datasets:
- custom
metrics:
- accuracy
- perplexity
pipeline_tag: text-generation
model-index:
- name: patent-qa-llama3-qlora
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: Korean Patent Decision QA
type: custom
metrics:
- type: token_accuracy
value: 0.810
name: Token Accuracy
- type: loss
value: 0.651
name: Validation Loss
- type: entropy
value: 0.665
name: Entropy
---
# Korean Patent QA - LLaMA-3 QLoRA Adapter
<div align="center">
[](https://huggingface.co/tree193nn/patent-qa-llama3-qlora)
[](https://github.com/CocoaSoymilk/patent-qa-llama3-qlora)
[](https://ai.meta.com/llama/)
[](https://en.wikipedia.org/wiki/Korean_language)
</div>
## Model Description
This is a **QLoRA adapter** for [LLaMA-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B), fine-tuned on **8,502 Korean patent and trademark decision documents** from the Korean Intellectual Property Tribunal. The model specializes in answering questions about Korean patent law, trademark law, and design rights with high accuracy and confidence.
### Key Features
- π― **81% Token Accuracy** on validation set
- π **Low Entropy (0.665)** indicating confident predictions
- πΎ **Memory Efficient** using QLoRA (4-bit quantization)
- ποΈ **Legal Domain Expertise** in intellectual property law
- π°π· **Korean Language** optimized for Korean legal terminology
## Model Details
### Base Model
- **Model**: [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B)
- **Architecture**: LLaMA-3
- **Parameters**: 8 Billion
- **Language**: Korean
### Training
- **Method**: QLoRA (Quantized Low-Rank Adaptation)
- **Quantization**: 4-bit (NF4) with double quantization
- **LoRA Rank**: 16
- **LoRA Alpha**: 32
- **Target Modules**: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- **Training Time**: ~7.5 hours (3 epochs)
- **GPU**: NVIDIA GPU with CUDA support
### Dataset
- **Source**: Korean Intellectual Property Tribunal Decision Documents
- **Size**: 8,502 QA pairs
- **Split**: 90% train (7,651), 10% validation (851)
- **Domain**: Patent Law, Trademark Law, Design Rights
- **Format**: Question-Answer pairs with legal citations
- **Language**: Korean
## Performance
| Metric | Value | Description |
|--------|-------|-------------|
| Token Accuracy | 81.0% | Percentage of correctly predicted tokens |
| Validation Loss | 0.651 | Cross-entropy loss on validation set |
| Entropy | 0.665 | Low entropy indicates confident predictions |
| Training Loss | 0.494 | Final training loss (epoch 3) |
### Training Curve
The model showed consistent improvement across 3 epochs:
- **Epoch 1**: Loss 0.777 β 0.612, Accuracy 78.2% β 80.2%
- **Epoch 2**: Loss 0.589 β 0.480, Accuracy 80.9% β 81.0%
- **Epoch 3**: Loss stabilized at 0.494, Accuracy maintained at 81.0%
## Usage
### Installation
```bash
pip install torch transformers peft bitsandbytes accelerate
```
### Quick Start
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
# Configuration for 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load base model
base_model_name = "MLP-KTLim/llama-3-Korean-Bllossom-8B"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.bfloat16,
)
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "tree193nn/patent-qa-llama3-qlora")
model.eval()
# Inference
question = "μνκΆμ 보νΈκΈ°κ°μ μΌλ§λ λλμ?"
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
λΉμ μ μ§μμ¬μ°κΆλ² μ λ¬Έκ°μ
λλ€. νΉν λ° μν κ΄λ ¨ λ²λ₯ μ§λ¬Έμ λν΄ μ ννκ³ μμΈν λ΅λ³μ μ 곡ν΄μ£ΌμΈμ.<|eot_id|><|start_header_id|>user<|end_header_id|>
{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(answer)
```
### Example Questions
```python
questions = [
"μνκΆμ 보νΈκΈ°κ°μ μΌλ§λ λλμ?", # How long is trademark protection?
"νΉν μΆμ μ νμν μλ₯λ 무μμΈκ°μ?", # What documents are needed for patent filing?
"λμμΈκΆκ³Ό μ μκΆμ μ°¨μ΄λ 무μμΈκ°μ?", # What's the difference between design rights and copyright?
]
```
## Intended Use
### Primary Use Cases
β
**Question Answering** about Korean intellectual property law
β
**Legal Research** assistance for patent and trademark matters
β
**Educational Tool** for learning Korean IP law
β
**Information Retrieval** from patent decision documents
### Out-of-Scope Use
β **Legal Advice**: This model should NOT be used as a substitute for professional legal counsel
β **Official Decisions**: Outputs are not legally binding
β **Non-Korean Languages**: Optimized for Korean only
β **General Purpose QA**: Specializes in IP law, may not perform well on general topics
## Limitations
### Known Limitations
1. **Temporal Limitation**: Training data is from before 2024; recent legal changes may not be reflected
2. **Domain Specificity**: Performs best on patent/trademark law; limited on other legal areas
3. **Language**: Optimized for Korean; English or other languages not supported
4. **Hallucination Risk**: May generate plausible but incorrect legal interpretations
5. **Context Length**: Limited to 2048 tokens due to training configuration
### Bias and Fairness
- **Training Data Bias**: Reflects biases present in Korean Intellectual Property Tribunal decisions
- **Geographic Focus**: Specific to Korean law; not applicable to other jurisdictions
- **Language Bias**: Korean legal terminology heavily featured
## Ethical Considerations
β οΈ **Important Notice**: This model is intended for research and educational purposes only. Users should:
- **Verify Information**: Always cross-reference with official legal sources
- **Seek Professional Advice**: Consult qualified legal professionals for actual cases
- **Understand Limitations**: Recognize the model's domain and temporal constraints
- **Use Responsibly**: Do not use for misleading or fraudulent purposes
## Technical Specifications
### Hardware Requirements
**Minimum**:
- GPU: 16GB VRAM (e.g., NVIDIA RTX 4080, A4000)
- RAM: 32GB
- Storage: 20GB (base model + adapter)
**Recommended**:
- GPU: 24GB+ VRAM (e.g., NVIDIA RTX 4090, A5000, A6000)
- RAM: 64GB
- Storage: 30GB
### Software Requirements
- Python 3.8+
- PyTorch 2.0+
- Transformers 4.38.0+
- PEFT 0.8.0+
- BitsAndBytes 0.42.0+
- CUDA 11.8+ or 12.0+
## Training Hyperparameters
```yaml
# QLoRA Configuration
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
quantization: 4-bit (NF4)
# Training Configuration
epochs: 3
batch_size: 2 (per device)
gradient_accumulation_steps: 8
effective_batch_size: 16
learning_rate: 2e-4
lr_scheduler: cosine
warmup_ratio: 0.03
weight_decay: 0.01
optimizer: paged_adamw_32bit
max_seq_length: 2048
```
## Evaluation
### Metrics Explanation
- **Token Accuracy (81%)**: Measures how many individual tokens (words/subwords) match the ground truth
- **Validation Loss (0.651)**: Lower is better; indicates model's prediction confidence
- **Entropy (0.665)**: Low entropy means the model makes confident predictions rather than being uncertain
### Comparison to Base Model
The fine-tuned adapter shows significant improvements in the legal domain:
- Better understanding of Korean legal terminology
- More accurate citations of relevant laws and regulations
- Reduced hallucination on IP law topics
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{patent-qa-llama3-qlora,
author = {tree193nn},
title = {Korean Patent QA with LLaMA-3 QLoRA},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/tree193nn/patent-qa-llama3-qlora}},
note = {QLoRA adapter for Korean patent and trademark law question answering}
}
```
## License
- **Base Model**: LLaMA-3 License (Meta)
- **Adapter**: MIT License
- **Training Data**: Public Korean Intellectual Property Tribunal documents
## Acknowledgments
- **Base Model**: [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B)
- **Training Method**: QLoRA by Dettmers et al. ([Paper](https://arxiv.org/abs/2305.14314))
- **Data Source**: Korean Intellectual Property Tribunal
## Contact
- **GitHub**: [CocoaSoymilk/patent-qa-llama3-qlora](https://github.com/CocoaSoymilk/patent-qa-llama3-qlora)
- **Hugging Face**: [tree193nn](https://huggingface.co/tree193nn)
## Version History
### v1.0.0 (2024-12-07)
- Initial release
- Fine-tuned on 8,502 Korean patent decision documents
- Achieved 81% token accuracy
- QLoRA adapter with 4-bit quantization
---
|