File size: 22,907 Bytes
aa5ca32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
from typing import Optional, Union
import torch
import torch.nn as nn
from transformers import (
M2M100Config,)
from transformers.models.m2m_100.modeling_m2m_100 import (
M2M100Encoder,
M2M100ScaledWordEmbedding,
M2M100ForConditionalGeneration,
M2M100Model,
shift_tokens_right,
logger)
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput
from transformers.utils import auto_docstring
from torch.nn import CrossEntropyLoss
class Pooling(nn.Module):
"""
Pooling layer for sequence representations.
Supports multiple pooling strategies: mean, cls, last, max, and none.
"""
def __init__(self, pooling_type: str = "mean"):
super().__init__()
valid_types = {"mean", "cls", "last", "max", "none"}
if pooling_type not in valid_types:
raise ValueError(f"pooling_type must be one of {valid_types}, got {pooling_type}")
self.pooling_type = pooling_type
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""
Apply pooling to hidden states.
Args:
hidden_states: Tensor of shape (batch_size, seq_len, hidden_size)
attention_mask: Tensor of shape (batch_size, seq_len), values in {0, 1}
Returns:
Pooled tensor of shape (batch_size, 1, hidden_size) or (batch_size, seq_len, hidden_size) for none
"""
if self.pooling_type == "none":
return hidden_states
if self.pooling_type == "cls":
return hidden_states[:, 0, :].unsqueeze(1)
elif self.pooling_type == "last":
return hidden_states[:, -1, :].unsqueeze(1)
elif self.pooling_type in ["mean", "max"]:
if attention_mask is None:
raise ValueError(f"attention_mask is required for {self.pooling_type} pooling")
# Expand attention mask to match hidden_states dimensions
mask = attention_mask.unsqueeze(-1)
if self.pooling_type == "mean":
# Apply mask and compute mean over valid tokens
masked_hidden = hidden_states * mask
sum_hidden = masked_hidden.sum(dim=1, keepdim=True)
sum_mask = mask.sum(dim=1, keepdim=True)
return sum_hidden / sum_mask
elif self.pooling_type == "max":
# Apply mask (set masked positions to large negative value)
masked_hidden = hidden_states.masked_fill(mask == 0, float('-inf'))
return masked_hidden.max(dim=1, keepdim=True)[0]
class SONARTextEncoder(M2M100Encoder):
"""
Transformer encoder with pooling capabilities.
Inherits from M2M100Encoder and adds configurable pooling functionality.
Args:
config: M2M100Config with optional pooling_type attribute
embed_tokens: Optional embedding layer
"""
def __init__(self, config: M2M100Config, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config, embed_tokens)
# Initialize pooling layer
pooling_type = getattr(config, 'pooling_type', 'mean')
self.pooling = Pooling(pooling_type)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
"""
Forward pass with optional pooling.
Args:
input_ids: Input token ids
attention_mask: Attention mask for padding tokens
head_mask: Mask for attention heads
inputs_embeds: Pre-computed embeddings
output_attentions: Whether to return attention weights
output_hidden_states: Whether to return all hidden states
return_dict: Whether to return ModelOutput object
pool: Pooling strategy override (if None, uses config default)
Returns:
Model output with pooled representations
"""
# Get encoder output
encoder_output = super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Extract hidden states
if return_dict:
hidden_states = encoder_output.last_hidden_state
else:
hidden_states = encoder_output[0]
pooled_output = self.pooling(hidden_states, attention_mask)
if return_dict:
encoder_output.last_hidden_state = pooled_output
else:
encoder_output = (pooled_output,) + encoder_output[1:]
return encoder_output
class SONARModel(M2M100Model):
"""SONAR model based on M2M100."""
def __init__(self, config: M2M100Config):
super().__init__(config)
self.encoder = SONARTextEncoder(config, self.shared)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[tuple[tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
return_logits: Optional[bool] = False,
) -> Union[tuple[torch.Tensor], Seq2SeqModelOutput]:
r"""
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
M2M100 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
"""
outputs = super().forward(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
if return_logits:
lm_logits = self.decoder.lm_head(outputs[0])
if not return_dict:
outputs = (lm_logits,) + outputs[1:]
else:
outputs.last_hidden_state = lm_logits
return outputs
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[tuple[tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
) -> Union[tuple[torch.Tensor], Seq2SeqModelOutput]:
r"""
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
M2M100 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
if attention_mask is not None:
if (encoder_outputs[0].size(1) != 1 and encoder_outputs[0].dim() == 3):
logger.warning_once(
f"Encoder is not pooled"
)
encoder_attention_mask = attention_mask
else:
encoder_attention_mask = attention_mask[:, :1]
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class SONARForText2Text(M2M100ForConditionalGeneration):
"""SONAR model for conditional generation tasks."""
# _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: M2M100Config):
super().__init__(config)
self.model = SONARModel(config)
self.cross_entropy_loss = CrossEntropyLoss(
label_smoothing=0.1,
ignore_index=-100
)
self.mse_loss = nn.MSELoss()
self.mse_ratio = getattr(config, 'mse_ratio', 0.2)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
target_ids: Optional[torch.LongTensor] = None,
target_attention_mask: Optional[torch.Tensor] = None,
mse_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[tuple[tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
) -> Union[tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
M2M100 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example Translation:
```python
>>> from transformers import AutoTokenizer, M2M100ForConditionalGeneration
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M")
>>> text_to_translate = "Life is like a box of chocolates"
>>> model_inputs = tokenizer(text_to_translate, return_tensors="pt")
>>> # translate to French
>>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("fr"))
>>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
lm_logits = self.lm_head(outputs[0])
masked_lm_loss = None
if labels is not None:
labels = labels.to(lm_logits.device)
masked_lm_loss = self.cross_entropy_loss(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
# print(f"Cross Entropy Loss: {masked_lm_loss if masked_lm_loss is not None else 'N/A'}")
masked_lm_loss = masked_lm_loss.mean()
if mse_mask is not None and target_ids is None:
mse_mask = mse_mask.view(-1, 1, 1).to(outputs.encoder_last_hidden_state.device)
encoder_outputs = outputs.encoder_last_hidden_state.squeeze()
batch_size = encoder_outputs.size(0)
# Reshape to pair structure: [batch//2, 2, seq_len, hidden]
paired = encoder_outputs[:batch_size//2*2].view(batch_size//2, 2, *encoder_outputs.shape[1:]) * mse_mask
mse_loss = self.mse_loss(paired[:, 0], paired[:, 1])
masked_lm_loss += self.mse_ratio * mse_loss
if target_ids is not None and labels is not None:
target_ids = target_ids.to(lm_logits.device)
target_encoder_outputs = self.model.encoder(
input_ids=target_ids,
attention_mask=target_attention_mask,
return_dict=return_dict,
)
mse_loss = self.mse_loss(outputs.encoder_last_hidden_state, target_encoder_outputs.last_hidden_state)
masked_lm_loss += self.mse_ratio * mse_loss
# print(f"Masked LM Loss: {masked_lm_loss.item() if masked_lm_loss is not None else 'N/A'}")
# print(f"MSE Loss: {mse_loss.item() if mse_loss is not None else 'N/A'}")
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@classmethod
def from_m2m100_pretrained(cls, pretrained_model_name_or_path: str, *model_args, **kwargs):
model = M2M100ForConditionalGeneration.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
generation_config = model.generation_config
generation_config.early_stopping = True
generation_config.num_beams = 5
generation_config.max_length = 500
config = model.config
config.pooling_type = getattr(config, 'pooling_type', 'mean')
sonar_model = cls(model.config)
sonar_model.load_state_dict(model.state_dict(), strict=False)
sonar_model.generation_config = generation_config
return sonar_model
|