File size: 22,907 Bytes
aa5ca32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
from typing import Optional, Union

import torch
import torch.nn as nn
from transformers import (
    M2M100Config,)

from transformers.models.m2m_100.modeling_m2m_100 import (
    M2M100Encoder,
    M2M100ScaledWordEmbedding,
    M2M100ForConditionalGeneration,
    M2M100Model,
    shift_tokens_right,
    logger)

from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput

from transformers.utils import auto_docstring

from torch.nn import CrossEntropyLoss

class Pooling(nn.Module):
    """
    Pooling layer for sequence representations.
    
    Supports multiple pooling strategies: mean, cls, last, max, and none.
    """
    
    def __init__(self, pooling_type: str = "mean"):
        super().__init__()
        valid_types = {"mean", "cls", "last", "max", "none"}
        if pooling_type not in valid_types:
            raise ValueError(f"pooling_type must be one of {valid_types}, got {pooling_type}")
        self.pooling_type = pooling_type
    
    def forward(
        self, 
        hidden_states: torch.Tensor, 
        attention_mask: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        """
        Apply pooling to hidden states.
        
        Args:
            hidden_states: Tensor of shape (batch_size, seq_len, hidden_size)
            attention_mask: Tensor of shape (batch_size, seq_len), values in {0, 1}
        
        Returns:
            Pooled tensor of shape (batch_size, 1, hidden_size) or (batch_size, seq_len, hidden_size) for none
        """
        if self.pooling_type == "none":
            return hidden_states
        
        if self.pooling_type == "cls":
            return hidden_states[:, 0, :].unsqueeze(1)
        
        elif self.pooling_type == "last":
            return hidden_states[:, -1, :].unsqueeze(1)
        
        elif self.pooling_type in ["mean", "max"]:
            if attention_mask is None:
                raise ValueError(f"attention_mask is required for {self.pooling_type} pooling")
            
            # Expand attention mask to match hidden_states dimensions
            mask = attention_mask.unsqueeze(-1)
            
            if self.pooling_type == "mean":
                # Apply mask and compute mean over valid tokens
                masked_hidden = hidden_states * mask
                sum_hidden = masked_hidden.sum(dim=1, keepdim=True)
                sum_mask = mask.sum(dim=1, keepdim=True)
                
                return sum_hidden / sum_mask
            
            elif self.pooling_type == "max":
                # Apply mask (set masked positions to large negative value)
                masked_hidden = hidden_states.masked_fill(mask == 0, float('-inf'))
                return masked_hidden.max(dim=1, keepdim=True)[0]

class SONARTextEncoder(M2M100Encoder):
    """
    Transformer encoder with pooling capabilities.
    
    Inherits from M2M100Encoder and adds configurable pooling functionality.
    
    Args:
        config: M2M100Config with optional pooling_type attribute
        embed_tokens: Optional embedding layer
    """

    def __init__(self, config: M2M100Config, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config, embed_tokens)
        
        # Initialize pooling layer
        pooling_type = getattr(config, 'pooling_type', 'mean')
        self.pooling = Pooling(pooling_type)
        
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        """
        Forward pass with optional pooling.
        
        Args:
            input_ids: Input token ids
            attention_mask: Attention mask for padding tokens
            head_mask: Mask for attention heads
            inputs_embeds: Pre-computed embeddings
            output_attentions: Whether to return attention weights
            output_hidden_states: Whether to return all hidden states
            return_dict: Whether to return ModelOutput object
            pool: Pooling strategy override (if None, uses config default)
        
        Returns:
            Model output with pooled representations
        """
        # Get encoder output
        encoder_output = super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        
        # Extract hidden states
        if return_dict:
            hidden_states = encoder_output.last_hidden_state

        else:
            hidden_states = encoder_output[0]
        
        pooled_output = self.pooling(hidden_states, attention_mask)

        if return_dict:
            encoder_output.last_hidden_state = pooled_output
        else:
            encoder_output = (pooled_output,) + encoder_output[1:]

        return encoder_output

class SONARModel(M2M100Model):
    """SONAR model based on M2M100."""

    def __init__(self, config: M2M100Config):
        super().__init__(config)

        self.encoder = SONARTextEncoder(config, self.shared)

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[tuple[tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.Tensor] = None,
        return_logits: Optional[bool] = False,
    ) -> Union[tuple[torch.Tensor], Seq2SeqModelOutput]:
        r"""
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Indices of decoder input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are decoder input IDs?](../glossary#decoder-input-ids)

            M2M100 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
            `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).
        decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):    
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
            1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        """     
        
        outputs = super().forward(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            encoder_outputs=encoder_outputs,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )
        
        if return_logits:
            lm_logits = self.decoder.lm_head(outputs[0])
            if not return_dict:
                outputs = (lm_logits,) + outputs[1:]
            else:
                outputs.last_hidden_state = lm_logits
                
        return outputs
        
        


    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[tuple[tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.Tensor] = None,
    ) -> Union[tuple[torch.Tensor], Seq2SeqModelOutput]:
        r"""
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Indices of decoder input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are decoder input IDs?](../glossary#decoder-input-ids)

            M2M100 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
            `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).
        decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
            1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
            

        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )
        if attention_mask is not None:
            if (encoder_outputs[0].size(1) != 1 and encoder_outputs[0].dim() == 3):
                logger.warning_once(
                    f"Encoder is not pooled"
                )
                encoder_attention_mask = attention_mask
            else:
                encoder_attention_mask = attention_mask[:, :1]
        
        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=encoder_attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

class SONARForText2Text(M2M100ForConditionalGeneration):
    """SONAR model for conditional generation tasks."""
    
    # _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]

    def __init__(self, config: M2M100Config):
        super().__init__(config)
        
        self.model = SONARModel(config)

        self.cross_entropy_loss = CrossEntropyLoss(
            label_smoothing=0.1,
            ignore_index=-100
        )
        
        self.mse_loss = nn.MSELoss()
        

        self.mse_ratio = getattr(config, 'mse_ratio', 0.2)
        
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        target_ids: Optional[torch.LongTensor] = None,
        target_attention_mask: Optional[torch.Tensor] = None,
        mse_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[tuple[tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.Tensor] = None,
    ) -> Union[tuple[torch.Tensor], Seq2SeqLMOutput]:
        r"""
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Indices of decoder input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are decoder input IDs?](../glossary#decoder-input-ids)

            M2M100 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
            `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).
        decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
            1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example Translation:

        ```python
        >>> from transformers import AutoTokenizer, M2M100ForConditionalGeneration

        >>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M")

        >>> text_to_translate = "Life is like a box of chocolates"
        >>> model_inputs = tokenizer(text_to_translate, return_tensors="pt")

        >>> # translate to French
        >>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("fr"))
        >>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))
        ```
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None:
            if decoder_input_ids is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )
        lm_logits = self.lm_head(outputs[0])
        
        masked_lm_loss = None
        if labels is not None:

            labels = labels.to(lm_logits.device)

            masked_lm_loss = self.cross_entropy_loss(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
            
            # print(f"Cross Entropy Loss: {masked_lm_loss if masked_lm_loss is not None else 'N/A'}")

            masked_lm_loss = masked_lm_loss.mean()

        if mse_mask is not None and target_ids is None:
            mse_mask = mse_mask.view(-1, 1, 1).to(outputs.encoder_last_hidden_state.device)
            encoder_outputs = outputs.encoder_last_hidden_state.squeeze()
            batch_size = encoder_outputs.size(0)
    
            # Reshape to pair structure: [batch//2, 2, seq_len, hidden]
            paired = encoder_outputs[:batch_size//2*2].view(batch_size//2, 2, *encoder_outputs.shape[1:]) * mse_mask

            mse_loss = self.mse_loss(paired[:, 0], paired[:, 1])
            masked_lm_loss += self.mse_ratio * mse_loss

        if target_ids is not None and labels is not None:

            target_ids = target_ids.to(lm_logits.device)
            target_encoder_outputs = self.model.encoder(
                input_ids=target_ids,
                attention_mask=target_attention_mask,
                return_dict=return_dict,
            )

            mse_loss = self.mse_loss(outputs.encoder_last_hidden_state, target_encoder_outputs.last_hidden_state)

            masked_lm_loss += self.mse_ratio * mse_loss
            
        # print(f"Masked LM Loss: {masked_lm_loss.item() if masked_lm_loss is not None else 'N/A'}")
        # print(f"MSE Loss: {mse_loss.item() if mse_loss is not None else 'N/A'}")

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return Seq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )
        
    @classmethod
    def from_m2m100_pretrained(cls, pretrained_model_name_or_path: str, *model_args, **kwargs):
        model = M2M100ForConditionalGeneration.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        
        generation_config = model.generation_config
        
        generation_config.early_stopping = True
        generation_config.num_beams = 5
        generation_config.max_length = 500
        
        config = model.config
        config.pooling_type = getattr(config, 'pooling_type', 'mean')
        
        sonar_model = cls(model.config)
        sonar_model.load_state_dict(model.state_dict(), strict=False)
        sonar_model.generation_config = generation_config
        return sonar_model