try1

This model is a fine-tuned version of Anwaarma/edos_taskB_llama3b_merged2_FINAL on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0008
  • Accuracy: 0.6330
  • F1 Macro: 0.5964
  • F1 Micro: 0.6330

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 20
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Micro
1.1785 1.8598 100 1.3641 0.5597 0.5106 0.5597
0.977 3.7103 200 1.2230 0.5905 0.5455 0.5905
0.833 5.5607 300 1.0872 0.6193 0.5723 0.6193
0.7542 7.4112 400 1.0395 0.6152 0.5523 0.6152
0.727 9.2617 500 0.9886 0.6502 0.5612 0.6502
0.7084 11.1121 600 0.9770 0.6523 0.5784 0.6523
0.7088 12.9720 700 0.9677 0.6502 0.5786 0.6502
0.7005 14.8224 800 0.9622 0.6523 0.5831 0.6523
0.6984 16.6729 900 0.9635 0.6543 0.5847 0.6543
0.6982 18.5234 1000 0.9632 0.6481 0.5721 0.6481

Framework versions

  • PEFT 0.17.1
  • Transformers 4.56.2
  • Pytorch 2.8.0+cu126
  • Datasets 4.1.1
  • Tokenizers 0.22.0
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Anwaarma/try1

Adapter
(2)
this model