deberta-v3-base-uner-down-synth400

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1315
  • F1: 0.7476
  • Precision: 0.7075
  • Recall: 0.7924
  • Accuracy: 0.9782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.4058 0.8 20 0.1934 0.055 0.12 0.0357 0.9433
0.1639 1.6 40 0.1266 0.3309 0.2967 0.3741 0.9582
0.0579 2.4 60 0.1016 0.4844 0.4477 0.5276 0.9669
0.062 3.2 80 0.0864 0.6686 0.6147 0.7330 0.9747
0.0521 4.0 100 0.0919 0.7018 0.6788 0.7265 0.9766
0.015 4.8 120 0.0922 0.7314 0.6931 0.7741 0.9767
0.0732 5.6 140 0.0931 0.7448 0.7068 0.7870 0.9779
0.0123 6.4 160 0.0965 0.7244 0.6710 0.7870 0.9764
0.019 7.2 180 0.0975 0.7285 0.6821 0.7816 0.9771
0.0314 8.0 200 0.0982 0.7396 0.6984 0.7859 0.9774
0.0125 8.8 220 0.1071 0.7488 0.7214 0.7784 0.9786
0.003 9.6 240 0.1129 0.7467 0.7368 0.7568 0.9784
0.0114 10.4 260 0.1137 0.7479 0.7361 0.76 0.9790
0.0029 11.2 280 0.1153 0.7417 0.7039 0.7838 0.9783
0.0159 12.0 300 0.1171 0.7422 0.6922 0.8 0.9775
0.0077 12.8 320 0.1167 0.7585 0.7466 0.7708 0.9792
0.002 13.6 340 0.1138 0.7400 0.6907 0.7968 0.9772
0.001 14.4 360 0.1171 0.7505 0.7172 0.7870 0.9785
0.0035 15.2 380 0.1202 0.7467 0.7102 0.7870 0.9781
0.0016 16.0 400 0.1212 0.7507 0.7296 0.7730 0.9786
0.0342 16.8 420 0.1221 0.7481 0.7042 0.7978 0.9779
0.0015 17.6 440 0.1216 0.7438 0.6983 0.7957 0.9782
0.0008 18.4 460 0.1230 0.7439 0.6993 0.7946 0.9780
0.001 19.2 480 0.1261 0.7463 0.7096 0.7870 0.9783
0.0008 20.0 500 0.1262 0.7427 0.6988 0.7924 0.9779
0.0008 20.8 520 0.1269 0.7386 0.6891 0.7957 0.9773
0.0009 21.6 540 0.1276 0.7418 0.6964 0.7935 0.9776
0.0009 22.4 560 0.1279 0.7420 0.7010 0.7881 0.9778
0.0006 23.2 580 0.1304 0.7397 0.6911 0.7957 0.9773
0.001 24.0 600 0.1307 0.7402 0.6904 0.7978 0.9772
0.0007 24.8 620 0.1308 0.7417 0.6930 0.7978 0.9774
0.0015 25.6 640 0.1305 0.7452 0.7024 0.7935 0.9780
0.0006 26.4 660 0.1305 0.7454 0.7071 0.7881 0.9782
0.0007 27.2 680 0.1308 0.7458 0.7078 0.7881 0.9782
0.0016 28.0 700 0.1311 0.7469 0.7072 0.7914 0.9782
0.0011 28.8 720 0.1314 0.7476 0.7075 0.7924 0.9782
0.0011 29.6 740 0.1315 0.7476 0.7075 0.7924 0.9782

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
34
Safetensors
Model size
0.2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for BramVanroy/deberta-v3-base-uner-down-synth400

Finetuned
(488)
this model