R2E-TestgenAgent / model_card.md
StringChaos's picture
Upload R2E-TestgenAgent - Testing Agent for R2E-Gym
a635839 verified
metadata
license: apache-2.0
library_name: transformers
language:
  - en
tags:
  - code
  - software-engineering
  - testing
  - unit-tests
  - r2e-gym
  - swe-bench
base_model: Qwen/Qwen2.5-Coder-32B-Instruct
datasets:
  - R2E-Gym/R2EGym-TestingAgent-SFT-Trajectories
model_type: qwen2

R2E-TestgenAgent

A specialized execution-based testing agent for generating targeted unit tests in software engineering tasks.

Model Details

  • Model Type: Qwen2.5-Coder-32B fine-tuned for test generation
  • Training Data: R2E-Gym SFT trajectories for testing tasks
  • Use Case: Automated unit test generation for software engineering
  • Framework: R2E-Gym ecosystem

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "r2e-gym/R2E-TestgenAgent"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Use with R2E-Gym framework for best results
from r2egym.agenthub.agent.agent import Agent, AgentArgs
agent_args = AgentArgs.from_yaml("testing_agent_config.yaml")
agent = Agent(name="TestingAgent", args=agent_args)

Training

  • Base Model: Qwen/Qwen2.5-Coder-32B-Instruct
  • Training Method: Full fine-tuning with DeepSpeed
  • Learning Rate: 1e-5
  • Epochs: 2
  • Context Length: 20,480 tokens

Citation

@article{jain2025r2e,
  title={R2e-gym: Procedural environments and hybrid verifiers for scaling open-weights swe agents},
  author={Jain, Naman and Singh, Jaskirat and Shetty, Manish and Zheng, Liang and Sen, Koushik and Stoica, Ion},
  journal={arXiv preprint arXiv:2504.07164},
  year={2025}
}