Qwen-72B-Math-NF4
NF4 quantized Qwen2.5-Math-72B-Instruct for mathematical reasoning.
Quantization
- Method: bitsandbytes NF4 with double quantization
- Compute dtype: bfloat16
- Original model: Qwen/Qwen2.5-Math-72B-Instruct
Memory Requirements
| Setup | VRAM |
|---|---|
| Single GPU | ~40GB |
| 2x GPU | ~20GB each |
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
"aphoticshaman/qwen-72b-math-nf4",
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("aphoticshaman/qwen-72b-math-nf4")
prompt = "Prove that the sum of first n integers is n(n+1)/2."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Intended Use
- AIMO/ARC Prize mathematical reasoning
- Olympiad problem solving
- Step-by-step proofs
- Numerical computation
Author
Ryan J Cardwell X @Benthic_Shadow Zenodo.org aphoticshaman huggingface aphoticshaman
- Downloads last month
- 19
Model tree for aphoticshaman/qwen-72b-math-nf4
Base model
Qwen/Qwen2.5-72B
Finetuned
Qwen/Qwen2.5-Math-72B
Finetuned
Qwen/Qwen2.5-Math-72B-Instruct