3d2804b2ecbaf90df95e1b8ae09af2bf
This model is a fine-tuned version of albert/albert-large-v1 on the dim/tldr_news dataset. It achieves the following results on the evaluation set:
- Loss: 0.9428
- Data Size: 1.0
- Epoch Runtime: 11.7767
- Accuracy: 0.7812
- F1 Macro: 0.8168
- Rouge1: 0.7812
- Rouge2: 0.0
- Rougel: 0.7812
- Rougelsum: 0.7812
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.6745 | 0 | 1.3944 | 0.2259 | 0.1392 | 0.2251 | 0.0 | 0.2259 | 0.2251 |
| No log | 1 | 178 | 1.3931 | 0.0078 | 1.6528 | 0.4276 | 0.2479 | 0.4283 | 0.0 | 0.4268 | 0.4276 |
| No log | 2 | 356 | 1.1945 | 0.0156 | 1.5635 | 0.4844 | 0.3175 | 0.4858 | 0.0 | 0.4844 | 0.4844 |
| No log | 3 | 534 | 1.0478 | 0.0312 | 1.7424 | 0.5973 | 0.4862 | 0.5980 | 0.0 | 0.5987 | 0.5987 |
| No log | 4 | 712 | 0.8938 | 0.0625 | 2.1720 | 0.6349 | 0.4960 | 0.6349 | 0.0 | 0.6357 | 0.6342 |
| No log | 5 | 890 | 0.8092 | 0.125 | 2.8107 | 0.6946 | 0.5266 | 0.6953 | 0.0 | 0.6946 | 0.6953 |
| 0.0603 | 6 | 1068 | 0.7268 | 0.25 | 4.0413 | 0.7138 | 0.5772 | 0.7138 | 0.0 | 0.7138 | 0.7138 |
| 0.6491 | 7 | 1246 | 0.6573 | 0.5 | 6.5657 | 0.7408 | 0.7500 | 0.7415 | 0.0 | 0.7415 | 0.7408 |
| 0.5413 | 8.0 | 1424 | 0.6875 | 1.0 | 11.7105 | 0.7337 | 0.7345 | 0.7351 | 0.0 | 0.7344 | 0.7337 |
| 0.4407 | 9.0 | 1602 | 0.6450 | 1.0 | 11.5885 | 0.7656 | 0.7938 | 0.7656 | 0.0 | 0.7656 | 0.7663 |
| 0.3626 | 10.0 | 1780 | 0.6046 | 1.0 | 11.3687 | 0.7727 | 0.8022 | 0.7734 | 0.0 | 0.7727 | 0.7734 |
| 0.2794 | 11.0 | 1958 | 0.7649 | 1.0 | 11.7194 | 0.7472 | 0.7900 | 0.7479 | 0.0 | 0.7472 | 0.7472 |
| 0.2268 | 12.0 | 2136 | 0.9018 | 1.0 | 11.7140 | 0.7670 | 0.8029 | 0.7678 | 0.0 | 0.7667 | 0.7678 |
| 0.1738 | 13.0 | 2314 | 0.9551 | 1.0 | 11.6256 | 0.75 | 0.7936 | 0.75 | 0.0 | 0.75 | 0.7507 |
| 0.1162 | 14.0 | 2492 | 0.9428 | 1.0 | 11.7767 | 0.7812 | 0.8168 | 0.7812 | 0.0 | 0.7812 | 0.7812 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 6
Model tree for contemmcm/3d2804b2ecbaf90df95e1b8ae09af2bf
Base model
albert/albert-large-v1