66e309a800b59fb9eadb037e3314225a

This model is a fine-tuned version of albert/albert-xlarge-v2 on the contemmcm/cls_mmlu dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4261
  • Data Size: 1.0
  • Epoch Runtime: 92.6445
  • Accuracy: 0.2533
  • F1 Macro: 0.1011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 1.4406 0 2.6534 0.2560 0.2073
No log 1 438 1.4147 0.0078 3.4961 0.2453 0.0985
No log 2 876 1.3967 0.0156 4.0684 0.2553 0.1700
No log 3 1314 1.4272 0.0312 5.6066 0.2434 0.1542
No log 4 1752 1.3947 0.0625 8.6727 0.2527 0.1008
0.0788 5 2190 1.4027 0.125 14.0348 0.2527 0.1008
0.1858 6 2628 1.4047 0.25 25.3556 0.2487 0.0996
1.3988 7 3066 1.3920 0.5 48.2040 0.2487 0.0996
1.3937 8.0 3504 1.3949 1.0 93.4120 0.2527 0.1008
1.3931 9.0 3942 1.4019 1.0 93.0487 0.2533 0.1011
1.4114 10.0 4380 1.4016 1.0 92.3479 0.2527 0.1008
1.4259 11.0 4818 1.4261 1.0 92.6445 0.2533 0.1011

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
7
Safetensors
Model size
58.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/66e309a800b59fb9eadb037e3314225a

Finetuned
(23)
this model