66e309a800b59fb9eadb037e3314225a
This model is a fine-tuned version of albert/albert-xlarge-v2 on the contemmcm/cls_mmlu dataset. It achieves the following results on the evaluation set:
- Loss: 1.4261
- Data Size: 1.0
- Epoch Runtime: 92.6445
- Accuracy: 0.2533
- F1 Macro: 0.1011
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.4406 | 0 | 2.6534 | 0.2560 | 0.2073 |
| No log | 1 | 438 | 1.4147 | 0.0078 | 3.4961 | 0.2453 | 0.0985 |
| No log | 2 | 876 | 1.3967 | 0.0156 | 4.0684 | 0.2553 | 0.1700 |
| No log | 3 | 1314 | 1.4272 | 0.0312 | 5.6066 | 0.2434 | 0.1542 |
| No log | 4 | 1752 | 1.3947 | 0.0625 | 8.6727 | 0.2527 | 0.1008 |
| 0.0788 | 5 | 2190 | 1.4027 | 0.125 | 14.0348 | 0.2527 | 0.1008 |
| 0.1858 | 6 | 2628 | 1.4047 | 0.25 | 25.3556 | 0.2487 | 0.0996 |
| 1.3988 | 7 | 3066 | 1.3920 | 0.5 | 48.2040 | 0.2487 | 0.0996 |
| 1.3937 | 8.0 | 3504 | 1.3949 | 1.0 | 93.4120 | 0.2527 | 0.1008 |
| 1.3931 | 9.0 | 3942 | 1.4019 | 1.0 | 93.0487 | 0.2533 | 0.1011 |
| 1.4114 | 10.0 | 4380 | 1.4016 | 1.0 | 92.3479 | 0.2527 | 0.1008 |
| 1.4259 | 11.0 | 4818 | 1.4261 | 1.0 | 92.6445 | 0.2533 | 0.1011 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 7
Model tree for contemmcm/66e309a800b59fb9eadb037e3314225a
Base model
albert/albert-xlarge-v2