88baaa0fc0d014bbfbf8077c9420beea

This model is a fine-tuned version of albert/albert-xlarge-v2 on the ccdv/patent-classification [abstract] dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9926
  • Data Size: 1.0
  • Epoch Runtime: 145.0872
  • Accuracy: 0.2218
  • F1 Macro: 0.0403

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 2.4026 0 9.6523 0.1004 0.0203
No log 1 781 2.0320 0.0078 11.3637 0.1538 0.0372
No log 2 1562 2.0092 0.0156 11.9116 0.1510 0.0292
No log 3 2343 2.0049 0.0312 14.1118 0.2071 0.0381
0.0454 4 3124 2.0001 0.0625 18.2314 0.2218 0.0403
2.0154 5 3905 1.9943 0.125 26.8018 0.2218 0.0403
2.0269 6 4686 1.9923 0.25 43.9274 0.2071 0.0381
1.9998 7 5467 1.9855 0.5 77.6442 0.2071 0.0381
1.9763 8.0 6248 1.9884 1.0 145.9947 0.2161 0.0648
1.972 9.0 7029 1.9885 1.0 145.3029 0.2071 0.0381
1.985 10.0 7810 1.9864 1.0 145.0537 0.2218 0.0403
1.9704 11.0 8591 1.9926 1.0 145.0872 0.2218 0.0403

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
6
Safetensors
Model size
58.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/88baaa0fc0d014bbfbf8077c9420beea

Finetuned
(23)
this model