ea4f39a3aff252fdc48673c9fc969e6e
This model is a fine-tuned version of albert/albert-xlarge-v2 on the contemmcm/trec dataset. It achieves the following results on the evaluation set:
- Loss: 1.6620
- Data Size: 1.0
- Epoch Runtime: 12.0073
- Accuracy: 0.2771
- F1 Macro: 0.0723
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.8786 | 0 | 0.8803 | 0.1646 | 0.0471 |
| No log | 1 | 170 | 1.8196 | 0.0078 | 1.1461 | 0.1792 | 0.0506 |
| No log | 2 | 340 | 1.7277 | 0.0156 | 1.2108 | 0.2771 | 0.0723 |
| No log | 3 | 510 | 1.7766 | 0.0312 | 1.4517 | 0.1792 | 0.0506 |
| No log | 4 | 680 | 1.6518 | 0.0625 | 1.7072 | 0.2771 | 0.0723 |
| 0.1031 | 5 | 850 | 1.7210 | 0.125 | 2.4162 | 0.1792 | 0.0506 |
| 0.1031 | 6 | 1020 | 1.7100 | 0.25 | 3.7895 | 0.1792 | 0.0506 |
| 1.6747 | 7 | 1190 | 1.7451 | 0.5 | 6.5929 | 0.1333 | 0.0392 |
| 1.6733 | 8.0 | 1360 | 1.6620 | 1.0 | 12.0073 | 0.2771 | 0.0723 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 2
Model tree for contemmcm/ea4f39a3aff252fdc48673c9fc969e6e
Base model
albert/albert-xlarge-v2