fd93f4990f1fa74f057615fdb7a5c4ff
This model is a fine-tuned version of albert/albert-xlarge-v2 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.7336
- Data Size: 0.125
- Epoch Runtime: 3.0510
- Accuracy: 0.6651
- F1 Macro: 0.3994
- Rouge1: 0.6657
- Rouge2: 0.0
- Rougel: 0.6645
- Rougelsum: 0.6651
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.8789 | 0 | 1.8005 | 0.3349 | 0.2509 | 0.3343 | 0.0 | 0.3355 | 0.3349 |
| No log | 1 | 114 | 0.6503 | 0.0078 | 2.6914 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 2 | 228 | 0.7136 | 0.0156 | 1.9829 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 3 | 342 | 0.7620 | 0.0312 | 2.2842 | 0.5006 | 0.4300 | 0.5006 | 0.0 | 0.5006 | 0.5006 |
| 0.0225 | 4 | 456 | 0.9375 | 0.0625 | 2.4244 | 0.3349 | 0.2509 | 0.3343 | 0.0 | 0.3355 | 0.3349 |
| 0.0225 | 5 | 570 | 0.7336 | 0.125 | 3.0510 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for contemmcm/fd93f4990f1fa74f057615fdb7a5c4ff
Base model
albert/albert-xlarge-v2