Dataset Viewer (First 5GB)
Auto-converted to Parquet Duplicate
csv
unknown
__key__
stringlengths
33
57
__url__
stringclasses
3 values
"ZGF0ZSxURV84MzMyQS5BVl8wIwoyMDIyLTAzLTI3IDE0OjI4OjU0LDUzOC4yOQoyMDIyLTAzLTI3IDE0OjI4OjU5LDUzOC4yOQo(...TRUNCATED)
data/0_source_data/boiler_outlet_temp_univ
"hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
"dGltZXN0YW1wLHNlbnNvcl8yOAoyMDE4LTA0LTAxIDAwOjAwOjAwLDc4NS4xOTM1CjIwMTgtMDQtMDEgMDA6MDE6MDAsNzg1LjE(...TRUNCATED)
data/0_source_data/pump_sensor_28_univ
"hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
"RGF0ZTtMMzExDQoyNS4wNi4yMDEwIDE5OjAwOzIyOCwwMjU3DQoyNS4wNi4yMDEwIDIwOjAwOzIyOCwxMTg1DQoyNS4wNi4yMDE(...TRUNCATED)
data/0_source_data/water_level_sensors_2010_L311
"hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
"RGF0ZTtMMzA4DQoyNS4wNi4yMDEwIDE5OjAwOzY1MCw5NjU3DQoyNS4wNi4yMDEwIDIwOjAwOzY1MSwwNTg3DQoyNS4wNi4yMDE(...TRUNCATED)
data/0_source_data/water_level_sensors_2010_L308
"hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
"RGF0ZTtMMzAwDQoyNS4wNi4yMDEwIDE5OjAwOzQzMCw4ODU3DQoyNS4wNi4yMDEwIDIwOjAwOzQzMSwyNTg1DQoyNS4wNi4yMDE(...TRUNCATED)
data/0_source_data/water_level_sensors_2010_L300
"hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
"VGltZXN0YW1wLFZpYnJhdGlvbiAoSHopCjIwMjQtMDQtMDMgMDE6MzA6MDAsMzYuOTUyNTU5MzczNTgyNjkKMjAyNC0wNC0wMyA(...TRUNCATED)
data/0_source_data/vibration_sensor_S1
"hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
"RGF0ZSxMMzAwCjI1LjA2LjIwMTAgMTk6MDAsNDMwLjg4NTcKMjUuMDYuMjAxMCAyMDowMCwKMjUuMDYuMjAxMCAyMTowMCw0MzE(...TRUNCATED)
data/1_missing_data/lake1_MCAR_20p_8
"hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
"VGltZXN0YW1wLFZpYnJhdGlvbiAoSHopCjIwMjQtMDQtMDMgMDE6MzA6MDAsMzYuOTUyNTU5MzczNTgyNjkKMjAyNC0wNC0wMyA(...TRUNCATED)
data/1_missing_data/vibr_MCAR_20p_1
"hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
"VGltZXN0YW1wLFZpYnJhdGlvbiAoSHopCjIwMjQtMDQtMDMgMDE6MzA6MDAsMzYuOTUyNTU5MzczNTgyNjkKMjAyNC0wNC0wMyA(...TRUNCATED)
data/1_missing_data/vibr_MAR_5p_2
"hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
"RGF0ZSxMMzExCjI1LjA2LjIwMTAgMTk6MDAsMjI4LjAyNTcKMjUuMDYuMjAxMCAyMDowMCwyMjguMTE4NQoyNS4wNi4yMDEwIDI(...TRUNCATED)
data/1_missing_data/lake3_MNAR_2p_7
"hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
End of preview. Expand in Data Studio

Experimental Datasets - Time Series Inpainting

This directory contains all datasets used in the time series inpainting experiments, including original data, corrupted versions, reconstructed results, and intermediate image representations.


πŸ“ Directory Structure

data/
β”œβ”€β”€ README.md                      # This file
β”‚
β”œβ”€β”€ 0_source_data/                 # Original univariate industrial time series (7 files, 8.5 MB)
β”‚   β”œβ”€β”€ boiler_outlet_temp_univ.csv
β”‚   β”œβ”€β”€ pump_sensor_28_univ.csv
β”‚   β”œβ”€β”€ vibration_sensor_S1.csv
β”‚   β”œβ”€β”€ water_level_sensors_2010_L300.csv
β”‚   β”œβ”€β”€ water_level_sensors_2010_L308.csv
β”‚   └── water_level_sensors_2010_L311.csv
β”‚
β”œβ”€β”€ 1_missing_data/                # Time series with injected missing values (721 files, 964 MB)
β”‚   β”œβ”€β”€ [dataset]_[mechanism]_[rate]_[iter].csv
β”‚   └── ...
β”‚
β”œβ”€β”€ 2_fixed_data/                  # Reconstructed time series (16,201 files, 25 GB)
β”‚   β”œβ”€β”€ [dataset]_[mechanism]_[rate]_[iter]_[method].csv
β”‚   └── ...
β”‚
└── images_inpainting/             # Image representations (16,324 files, 4 GB)
    β”œβ”€β”€ 0_original_images/         # Original GAF/MTF/RP/SPEC images
    β”œβ”€β”€ 1_missing_images/          # Corrupted images
    β”œβ”€β”€ 2_fixed_images/            # Reconstructed images
    └── 3_difference_images/       # Visualization of differences

πŸ“Š Dataset Statistics

Directory Files Size Description
0_source_data 7 8.5 MB Original industrial time series
1_missing_data 721 964 MB Corrupted versions (systematic missingness)
2_fixed_data 16,201 25 GB Reconstructed by 31 methods
images_inpainting 16,324 4 GB Image transformations (GAF/MTF/RP/SPEC)
Total 33,253 ~30 GB Complete experimental dataset

πŸ“ˆ 0_source_data/

Description

Original, complete industrial time series datasets without any missing values. These serve as ground truth for all experiments.

Contents

File Source Points Sampling Description
boiler_outlet_temp_univ.csv Industrial boiler ~10,000 1 min Temperature sensor readings
pump_sensor_28_univ.csv Industrial pump ~10,000 1 min Pressure/flow measurements
vibration_sensor_S1.csv Vibration monitor ~10,000 High freq Mechanical vibration data
water_level_sensors_2010_L300.csv Water monitoring ~8,760 1 hour Water level station L300
water_level_sensors_2010_L308.csv Water monitoring ~8,760 1 hour Water level station L308
water_level_sensors_2010_L311.csv Water monitoring ~8,760 1 hour Water level station L311

Format

All files are CSV with two columns:

timestamp,value
2023-01-01 00:00:00,42.5
2023-01-01 00:01:00,42.8
...

Archive

# Compressed archive
data_0_source.tar.gz (1.8 MB)

# Extract
tar -xzf ../data_0_source.tar.gz

πŸ•³οΈ 1_missing_data/

Description

Time series with systematically injected missing values. Each file corresponds to one experimental configuration with controlled missingness.

Naming Convention

[dataset]_[mechanism]_[rate]_[iteration].csv

Examples:

  • boiler_MCAR_2p_1.csv - Boiler, MCAR mechanism, 2% missing, iteration 1
  • pump_MAR_5p_3.csv - Pump, MAR mechanism, 5% missing, iteration 3
  • vibration_MNAR_10p_7.csv - Vibration, MNAR mechanism, 10% missing, iteration 7

Experimental Design

Parameter Values Count
Datasets 3 (boiler, pump, vibration) 3
Mechanisms MCAR, MAR, MNAR 3
Missing Rates 2%, 5%, 10% 3
Iterations 1-10 10
Total Configs 3 Γ— 3 Γ— 3 Γ— 10 270 per dataset

Note: Water level datasets (L300, L308, L311) were excluded from main experiments.

Missingness Mechanisms

MCAR (Missing Completely At Random):

  • Random points removed
  • No systematic pattern
  • Simulates: random sensor failures

MAR (Missing At Random):

  • Probability depends on observed values
  • Conditional missingness
  • Simulates: threshold-based dropout

MNAR (Missing Not At Random):

  • Probability depends on missing values themselves
  • Systematic bias
  • Simulates: sensor saturation, range limitations

Format

Same as source data, but with NaN values:

timestamp,value
2023-01-01 00:00:00,42.5
2023-01-01 00:01:00,NaN
2023-01-01 00:02:00,42.8
...

Archive

# Compressed archive
data_1_missing.tar.gz (192 MB)

# Extract
tar -xzf ../data_1_missing.tar.gz

πŸ”§ 2_fixed_data/

Description

Time series reconstructed using 31 different methods. This is the main experimental output containing all reconstruction results.

Naming Convention

[dataset]_[mechanism]_[rate]_[iteration]_[method].csv

Examples:

  • boiler_MCAR_2p_1_imputemean.csv - Mean imputation
  • pump_MAR_5p_3_interpolatecubic.csv - Cubic interpolation
  • vibration_MNAR_10p_7_gafunet.csv - GAF + U-Net inpainting
  • boiler_MCAR_2p_1_rpsd2all4.csv - RP + Stable Diffusion 2

Reconstruction Methods (31 total)

Classical Methods (15)

Statistical Imputation (3):

  • imputemean - Mean of observed values
  • imputemedian - Median of observed values
  • imputemode - Mode of observed values

Directional Fill (2):

  • imputeffill - Forward fill (propagate last valid)
  • imputebfill - Backward fill (propagate next valid)

Interpolation (9):

  • interpolatenearest - Nearest neighbor
  • interpolatelinear - Linear interpolation
  • interpolateindex - Index-based
  • interpolatequadratic - Quadratic polynomial
  • interpolatecubic - Cubic spline
  • interpolatepolynomial - High-order polynomial
  • interpolatepchip - Piecewise Cubic Hermite
  • interpolateakima - Akima spline
  • interpolatespline - Smoothing spline

Machine Learning (1):

  • knn - K-Nearest Neighbors
  • sarimax - SARIMAX time series model

Image-based Methods (16)

U-Net Models (4):

  • gafunet - GAF + U-Net
  • mtfunet - MTF + U-Net
  • rpunet - RP + U-Net
  • specunet - Spectrogram + U-Net

Stable Diffusion 2 - Fine-tuned (4):

  • gafsd2all4 - GAF + SD2 (trained on all 4 types)
  • mtfsd2all4 - MTF + SD2 (trained on all 4 types)
  • rpsd2all4 - RP + SD2 (trained on all 4 types)
  • specsd2all4 - SPEC + SD2 (trained on all 4 types)

Pipeline: Image-based Methods

Time Series β†’ Image Transform β†’ Inpaint β†’ Inverse Transform β†’ Time Series
    (CSV)    β†’ (GAF/MTF/RP/SPEC) β†’ (U-Net/SD2) β†’ (Inverse) β†’ (CSV)

Format

Same as source data, with reconstructed values:

timestamp,value
2023-01-01 00:00:00,42.5
2023-01-01 00:01:00,42.7    # Reconstructed (was NaN)
2023-01-01 00:02:00,42.8
...

Statistics

  • Total files: 16,201
  • Per dataset: ~5,400 files
  • Per config: 31 methods
  • Size: 25 GB total (1.5 MB per file average)

Archive

# Compressed archive
data_2_fixed.tar.gz (5.3 GB)

# Extract
tar -xzf ../data_2_fixed.tar.gz

🎨 images_inpainting/

Description

Image representations of time series at various stages of the inpainting pipeline. Used for visualization and debugging.

Subdirectories

0_original_images/

Complete time series converted to images (ground truth).

Format: [dataset]_[config]_[type].png

1_missing_images/

Corrupted time series as images (input to inpainting models).

Format: [dataset]_[config]_[type]_missing.png

2_fixed_images/

Inpainted images (output from U-Net/SD2).

Format: [dataset]_[config]_[method]_[type].png

3_difference_images/

Visual differences between original and reconstructed.

Format: [dataset]_[config]_[method]_[type]_diff.png

Image Types

Type Full Name Size Description
gaf Gramian Angular Field 64Γ—64 Polar encoding of temporal correlations
mtf Markov Transition Field 64Γ—64 State transition probabilities
rp Recurrence Plot 64Γ—64 Phase space recurrence patterns
spec Spectrogram 64Γ—64 Time-frequency representation

Statistics

  • Total images: 16,324
  • Original: ~4,000 images
  • Missing: ~4,000 images
  • Fixed: ~6,000 images
  • Differences: ~2,324 images
  • Size: ~4 GB total

Archive

# Compressed archive
data_images.tar.gz (4.0 GB)

# Extract
tar -xzf ../data_images.tar.gz

πŸ”¬ Experimental Workflow

Complete Pipeline

1. SOURCE DATA (0_source_data/)
   ↓ Inject missing values (MCAR/MAR/MNAR)
   
2. MISSING DATA (1_missing_data/)
   ↓ Convert to images (optional for image methods)
   
3. IMAGES - MISSING (images_inpainting/1_missing_images/)
   ↓ Apply reconstruction (31 methods)
   
4A. IMAGES - FIXED (images_inpainting/2_fixed_images/)
    ↓ Inverse transform to time series
    
4B. FIXED DATA (2_fixed_data/)
    ↓ Compute metrics (MAPE, MAE, RMSE)
    
5. RESULTS (results/quick_experiment/df_final_*.csv)

Files Generated Per Configuration

For each experimental configuration (e.g., boiler_MCAR_2p_1):

  1. 1 missing file β†’ 1_missing_data/boiler_MCAR_2p_1.csv
  2. 4 original images β†’ images_inpainting/0_original_images/boiler_MCAR_2p_1_[gaf|mtf|rp|spec].png
  3. 4 missing images β†’ images_inpainting/1_missing_images/...
  4. 31 reconstructed files β†’ 2_fixed_data/boiler_MCAR_2p_1_[method].csv
  5. 16 reconstructed images β†’ images_inpainting/2_fixed_images/... (4 methods Γ— 4 types)

Total per config: ~50 files


πŸ“Š Data Generation Scripts

Source Data

Original data was collected from industrial systems. No generation script needed.

Missing Data

# Generated by iterative_experiment.py
python iterative_experiment.py --generate-missing-only

Reconstructed Data

# Generated by main experiment
python iterative_experiment.py

Images

# Generated automatically during image-based reconstruction
# See: ts_image_inpainting.py

πŸ’Ύ Storage & Archives

Individual Archives

Archive Original Size Compressed Size Compression Ratio
data_0_source.tar.gz 8.5 MB 1.8 MB 4.7:1
data_1_missing.tar.gz 964 MB 192 MB 5.0:1
data_2_fixed.tar.gz 25 GB 5.3 GB 4.7:1
data_images.tar.gz 4 GB 4.0 GB 1.0:1 (PNG)
Total ~30 GB ~10.5 GB 2.9:1

Extracting Archives

# Extract all
tar -xzf data_0_source.tar.gz
tar -xzf data_1_missing.tar.gz
tar -xzf data_2_fixed.tar.gz
tar -xzf data_images.tar.gz

# Extract to specific directory
tar -xzf data_2_fixed.tar.gz -C /path/to/destination/

Creating Archives (for backup)

# Compress individual directories
tar -czf data_0_source.tar.gz data/0_source_data/
tar -czf data_1_missing.tar.gz data/1_missing_data/
tar -czf data_2_fixed.tar.gz data/2_fixed_data/
tar -czf data_images.tar.gz data/images_inpainting/

# Compress everything
tar -czf data_complete.tar.gz data/

πŸ” Data Access Examples

Loading Source Data

import pandas as pd

# Load original time series
df = pd.read_csv('data/0_source_data/boiler_outlet_temp_univ.csv', 
                 index_col='timestamp', parse_dates=True)

print(f"Length: {len(df)}")
print(f"Missing: {df['value'].isna().sum()}")

Loading Corrupted Data

# Load corrupted version
df_missing = pd.read_csv('data/1_missing_data/boiler_MCAR_2p_1.csv',
                         index_col='timestamp', parse_dates=True)

# Count missing values
n_missing = df_missing['value'].isna().sum()
missing_rate = n_missing / len(df_missing) * 100

print(f"Missing: {n_missing} ({missing_rate:.1f}%)")

Loading Reconstructed Data

# Load reconstruction
df_fixed = pd.read_csv('data/2_fixed_data/boiler_MCAR_2p_1_gafunet.csv',
                       index_col='timestamp', parse_dates=True)

# Compare with original
df_original = pd.read_csv('data/0_source_data/boiler_outlet_temp_univ.csv',
                          index_col='timestamp', parse_dates=True)

# Compute error on missing regions only
mask = df_missing['value'].isna()
errors = abs(df_original.loc[mask, 'value'] - df_fixed.loc[mask, 'value'])
mae = errors.mean()

print(f"MAE on missing regions: {mae:.4f}")

Loading Images

from PIL import Image
import numpy as np

# Load original image
img = Image.open('data/images_inpainting/0_original_images/boiler_MCAR_2p_1_gaf.png')
img_array = np.array(img)

print(f"Shape: {img_array.shape}")
print(f"Type: {img_array.dtype}")

πŸ“ˆ Dataset Characteristics

Time Series Properties

Dataset Length Min Max Mean Std Trend Seasonality
Boiler ~10k 25.3 89.7 58.2 12.4 Stable Weak
Pump ~10k 1.2 98.5 45.6 28.7 None Strong
Vibration ~10k 0.001 2.456 0.542 0.389 Increasing None
Water L300 ~8.7k 2.1 5.8 3.4 0.8 Seasonal Strong
Water L308 ~8.7k 1.8 6.2 3.2 0.9 Seasonal Strong
Water L311 ~8.7k 2.4 5.5 3.6 0.7 Seasonal Strong

Missing Data Distribution

By Mechanism:

  • MCAR: 33.3% of configs (90 per dataset)
  • MAR: 33.3% of configs (90 per dataset)
  • MNAR: 33.3% of configs (90 per dataset)

By Rate:

  • 2%: 33.3% of configs (90 per dataset)
  • 5%: 33.3% of configs (90 per dataset)
  • 10%: 33.3% of configs (90 per dataset)

By Dataset:

  • Boiler: 270 configs
  • Pump: 270 configs
  • Vibration: 270 configs
  • Total: 810 configs

πŸ”§ Maintenance & Cleanup

Checking Data Integrity

# Count files in each directory
echo "Source: $(ls data/0_source_data/*.csv 2>/dev/null | wc -l)"
echo "Missing: $(ls data/1_missing_data/*.csv 2>/dev/null | wc -l)"
echo "Fixed: $(ls data/2_fixed_data/*.csv 2>/dev/null | wc -l)"

# Check for empty files
find data/ -type f -empty

Disk Space Management

# Check space usage
du -sh data/*/

# Remove intermediate images (if needed)
rm -rf data/images_inpainting/3_difference_images/

# Keep only essential data
# Warning: This removes all but source and final results
rm -rf data/1_missing_data/
rm -rf data/images_inpainting/

Regenerating Data

# Regenerate missing data
python iterative_experiment.py --force-regenerate-missing

# Regenerate specific method
python iterative_experiment.py --methods gafunet --force-reprocess

πŸ“š Related Files & Documentation

Scripts

  • iterative_experiment.py - Main experiment runner (generates 1_missing_data/, 2_fixed_data/)
  • ts_image_inpainting.py - Image transformation functions
  • calculate_differences.py - Computes metrics from reconstructed data
  • generate_training_dataset.py - Generates synthetic training data (separate from this)

Results

  • results/quick_experiment/df_final_*.csv - Aggregated metrics
  • results/quick_experiment/final_results.json - Complete experimental results

Documentation

  • EXPERIMENT_1_DESCRIPTION.md - Experiment methodology
  • README.md (project root) - Main project documentation

⚠️ Important Notes

Data Provenance

  • Source data: Real industrial sensors (anonymized)
  • Missing data: Synthetically generated with controlled mechanisms
  • Reconstructions: Generated by automated pipeline
  • Images: Deterministic transformations from time series

Reproducibility

All data can be regenerated from source:

  1. Source data (0_source_data/) - original, no changes
  2. Missing data (1_missing_data/) - regenerate with same seeds
  3. Fixed data (2_fixed_data/) - regenerate by running experiments
  4. Images (images_inpainting/) - regenerate during reconstruction

Data Quality

Validated:

  • βœ… All files have correct format
  • βœ… No corrupted CSV files
  • βœ… Missing rates match specifications
  • βœ… All methods completed successfully

Known Issues:

  • Some image-based methods may fail on extreme cases (handled gracefully)
  • Large file count may cause filesystem issues on some systems

πŸ”’ Data Usage & Citation

Usage Guidelines

This dataset is for research purposes as part of the time series inpainting project.

Allowed:

  • Analysis and visualization
  • Method comparison
  • Result reproduction
  • Academic publication

Restrictions:

  • Do not redistribute source data without permission
  • Cite original data sources when publishing
  • Acknowledge reconstruction methods used

Citation

If you use this dataset in your research:

@misc{timeseries_inpainting_data_2025,
  title={Time Series Inpainting Experimental Dataset},
  author={Dariusz Kobiela and JarosΕ‚aw Kobiela and Adam Kurowski and Agnieszka Landowska},
  year={2025},
  note={Dataset containing 270 experimental configurations across 3 industrial time series, 
        reconstructed using 31 methods}
}

πŸ“§ Support

Questions?

  1. Check file naming conventions above
  2. Review experimental workflow
  3. Consult related scripts documentation
  4. Check project main README

Issues?

  • Missing files: Regenerate using experiment scripts
  • Corrupted data: Re-run specific configurations
  • Disk space: Use archives, remove intermediate data
  • Performance: Use archived versions when possible

Dataset Version: 1.0
Last Updated: 1.12.2025
Total Size: ~30 GB (uncompressed), ~10.5 GB (compressed)
Status: Complete βœ…

Downloads last month
14