csv
unknown | __key__
stringlengths 33
57
| __url__
stringclasses 3
values |
|---|---|---|
"ZGF0ZSxURV84MzMyQS5BVl8wIwoyMDIyLTAzLTI3IDE0OjI4OjU0LDUzOC4yOQoyMDIyLTAzLTI3IDE0OjI4OjU5LDUzOC4yOQo(...TRUNCATED)
|
data/0_source_data/boiler_outlet_temp_univ
| "hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
|
"dGltZXN0YW1wLHNlbnNvcl8yOAoyMDE4LTA0LTAxIDAwOjAwOjAwLDc4NS4xOTM1CjIwMTgtMDQtMDEgMDA6MDE6MDAsNzg1LjE(...TRUNCATED)
|
data/0_source_data/pump_sensor_28_univ
| "hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
|
"RGF0ZTtMMzExDQoyNS4wNi4yMDEwIDE5OjAwOzIyOCwwMjU3DQoyNS4wNi4yMDEwIDIwOjAwOzIyOCwxMTg1DQoyNS4wNi4yMDE(...TRUNCATED)
|
data/0_source_data/water_level_sensors_2010_L311
| "hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
|
"RGF0ZTtMMzA4DQoyNS4wNi4yMDEwIDE5OjAwOzY1MCw5NjU3DQoyNS4wNi4yMDEwIDIwOjAwOzY1MSwwNTg3DQoyNS4wNi4yMDE(...TRUNCATED)
|
data/0_source_data/water_level_sensors_2010_L308
| "hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
|
"RGF0ZTtMMzAwDQoyNS4wNi4yMDEwIDE5OjAwOzQzMCw4ODU3DQoyNS4wNi4yMDEwIDIwOjAwOzQzMSwyNTg1DQoyNS4wNi4yMDE(...TRUNCATED)
|
data/0_source_data/water_level_sensors_2010_L300
| "hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
|
"VGltZXN0YW1wLFZpYnJhdGlvbiAoSHopCjIwMjQtMDQtMDMgMDE6MzA6MDAsMzYuOTUyNTU5MzczNTgyNjkKMjAyNC0wNC0wMyA(...TRUNCATED)
|
data/0_source_data/vibration_sensor_S1
| "hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
|
"RGF0ZSxMMzAwCjI1LjA2LjIwMTAgMTk6MDAsNDMwLjg4NTcKMjUuMDYuMjAxMCAyMDowMCwKMjUuMDYuMjAxMCAyMTowMCw0MzE(...TRUNCATED)
|
data/1_missing_data/lake1_MCAR_20p_8
| "hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
|
"VGltZXN0YW1wLFZpYnJhdGlvbiAoSHopCjIwMjQtMDQtMDMgMDE6MzA6MDAsMzYuOTUyNTU5MzczNTgyNjkKMjAyNC0wNC0wMyA(...TRUNCATED)
|
data/1_missing_data/vibr_MCAR_20p_1
| "hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
|
"VGltZXN0YW1wLFZpYnJhdGlvbiAoSHopCjIwMjQtMDQtMDMgMDE6MzA6MDAsMzYuOTUyNTU5MzczNTgyNjkKMjAyNC0wNC0wMyA(...TRUNCATED)
|
data/1_missing_data/vibr_MAR_5p_2
| "hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
|
"RGF0ZSxMMzExCjI1LjA2LjIwMTAgMTk6MDAsMjI4LjAyNTcKMjUuMDYuMjAxMCAyMDowMCwyMjguMTE4NQoyNS4wNi4yMDEwIDI(...TRUNCATED)
|
data/1_missing_data/lake3_MNAR_2p_7
| "hf://datasets/Daro77/univariate-time-series-with-missingness-and-reconstructed@fcd9c62400db83a6aa82(...TRUNCATED)
|
Experimental Datasets - Time Series Inpainting
This directory contains all datasets used in the time series inpainting experiments, including original data, corrupted versions, reconstructed results, and intermediate image representations.
π Directory Structure
data/
βββ README.md # This file
β
βββ 0_source_data/ # Original univariate industrial time series (7 files, 8.5 MB)
β βββ boiler_outlet_temp_univ.csv
β βββ pump_sensor_28_univ.csv
β βββ vibration_sensor_S1.csv
β βββ water_level_sensors_2010_L300.csv
β βββ water_level_sensors_2010_L308.csv
β βββ water_level_sensors_2010_L311.csv
β
βββ 1_missing_data/ # Time series with injected missing values (721 files, 964 MB)
β βββ [dataset]_[mechanism]_[rate]_[iter].csv
β βββ ...
β
βββ 2_fixed_data/ # Reconstructed time series (16,201 files, 25 GB)
β βββ [dataset]_[mechanism]_[rate]_[iter]_[method].csv
β βββ ...
β
βββ images_inpainting/ # Image representations (16,324 files, 4 GB)
βββ 0_original_images/ # Original GAF/MTF/RP/SPEC images
βββ 1_missing_images/ # Corrupted images
βββ 2_fixed_images/ # Reconstructed images
βββ 3_difference_images/ # Visualization of differences
π Dataset Statistics
| Directory | Files | Size | Description |
|---|---|---|---|
| 0_source_data | 7 | 8.5 MB | Original industrial time series |
| 1_missing_data | 721 | 964 MB | Corrupted versions (systematic missingness) |
| 2_fixed_data | 16,201 | 25 GB | Reconstructed by 31 methods |
| images_inpainting | 16,324 | 4 GB | Image transformations (GAF/MTF/RP/SPEC) |
| Total | 33,253 | ~30 GB | Complete experimental dataset |
π 0_source_data/
Description
Original, complete industrial time series datasets without any missing values. These serve as ground truth for all experiments.
Contents
| File | Source | Points | Sampling | Description |
|---|---|---|---|---|
boiler_outlet_temp_univ.csv |
Industrial boiler | ~10,000 | 1 min | Temperature sensor readings |
pump_sensor_28_univ.csv |
Industrial pump | ~10,000 | 1 min | Pressure/flow measurements |
vibration_sensor_S1.csv |
Vibration monitor | ~10,000 | High freq | Mechanical vibration data |
water_level_sensors_2010_L300.csv |
Water monitoring | ~8,760 | 1 hour | Water level station L300 |
water_level_sensors_2010_L308.csv |
Water monitoring | ~8,760 | 1 hour | Water level station L308 |
water_level_sensors_2010_L311.csv |
Water monitoring | ~8,760 | 1 hour | Water level station L311 |
Format
All files are CSV with two columns:
timestamp,value
2023-01-01 00:00:00,42.5
2023-01-01 00:01:00,42.8
...
Archive
# Compressed archive
data_0_source.tar.gz (1.8 MB)
# Extract
tar -xzf ../data_0_source.tar.gz
π³οΈ 1_missing_data/
Description
Time series with systematically injected missing values. Each file corresponds to one experimental configuration with controlled missingness.
Naming Convention
[dataset]_[mechanism]_[rate]_[iteration].csv
Examples:
boiler_MCAR_2p_1.csv- Boiler, MCAR mechanism, 2% missing, iteration 1pump_MAR_5p_3.csv- Pump, MAR mechanism, 5% missing, iteration 3vibration_MNAR_10p_7.csv- Vibration, MNAR mechanism, 10% missing, iteration 7
Experimental Design
| Parameter | Values | Count |
|---|---|---|
| Datasets | 3 (boiler, pump, vibration) | 3 |
| Mechanisms | MCAR, MAR, MNAR | 3 |
| Missing Rates | 2%, 5%, 10% | 3 |
| Iterations | 1-10 | 10 |
| Total Configs | 3 Γ 3 Γ 3 Γ 10 | 270 per dataset |
Note: Water level datasets (L300, L308, L311) were excluded from main experiments.
Missingness Mechanisms
MCAR (Missing Completely At Random):
- Random points removed
- No systematic pattern
- Simulates: random sensor failures
MAR (Missing At Random):
- Probability depends on observed values
- Conditional missingness
- Simulates: threshold-based dropout
MNAR (Missing Not At Random):
- Probability depends on missing values themselves
- Systematic bias
- Simulates: sensor saturation, range limitations
Format
Same as source data, but with NaN values:
timestamp,value
2023-01-01 00:00:00,42.5
2023-01-01 00:01:00,NaN
2023-01-01 00:02:00,42.8
...
Archive
# Compressed archive
data_1_missing.tar.gz (192 MB)
# Extract
tar -xzf ../data_1_missing.tar.gz
π§ 2_fixed_data/
Description
Time series reconstructed using 31 different methods. This is the main experimental output containing all reconstruction results.
Naming Convention
[dataset]_[mechanism]_[rate]_[iteration]_[method].csv
Examples:
boiler_MCAR_2p_1_imputemean.csv- Mean imputationpump_MAR_5p_3_interpolatecubic.csv- Cubic interpolationvibration_MNAR_10p_7_gafunet.csv- GAF + U-Net inpaintingboiler_MCAR_2p_1_rpsd2all4.csv- RP + Stable Diffusion 2
Reconstruction Methods (31 total)
Classical Methods (15)
Statistical Imputation (3):
imputemean- Mean of observed valuesimputemedian- Median of observed valuesimputemode- Mode of observed values
Directional Fill (2):
imputeffill- Forward fill (propagate last valid)imputebfill- Backward fill (propagate next valid)
Interpolation (9):
interpolatenearest- Nearest neighborinterpolatelinear- Linear interpolationinterpolateindex- Index-basedinterpolatequadratic- Quadratic polynomialinterpolatecubic- Cubic splineinterpolatepolynomial- High-order polynomialinterpolatepchip- Piecewise Cubic Hermiteinterpolateakima- Akima splineinterpolatespline- Smoothing spline
Machine Learning (1):
knn- K-Nearest Neighborssarimax- SARIMAX time series model
Image-based Methods (16)
U-Net Models (4):
gafunet- GAF + U-Netmtfunet- MTF + U-Netrpunet- RP + U-Netspecunet- Spectrogram + U-Net
Stable Diffusion 2 - Fine-tuned (4):
gafsd2all4- GAF + SD2 (trained on all 4 types)mtfsd2all4- MTF + SD2 (trained on all 4 types)rpsd2all4- RP + SD2 (trained on all 4 types)specsd2all4- SPEC + SD2 (trained on all 4 types)
Pipeline: Image-based Methods
Time Series β Image Transform β Inpaint β Inverse Transform β Time Series
(CSV) β (GAF/MTF/RP/SPEC) β (U-Net/SD2) β (Inverse) β (CSV)
Format
Same as source data, with reconstructed values:
timestamp,value
2023-01-01 00:00:00,42.5
2023-01-01 00:01:00,42.7 # Reconstructed (was NaN)
2023-01-01 00:02:00,42.8
...
Statistics
- Total files: 16,201
- Per dataset: ~5,400 files
- Per config: 31 methods
- Size:
25 GB total (1.5 MB per file average)
Archive
# Compressed archive
data_2_fixed.tar.gz (5.3 GB)
# Extract
tar -xzf ../data_2_fixed.tar.gz
π¨ images_inpainting/
Description
Image representations of time series at various stages of the inpainting pipeline. Used for visualization and debugging.
Subdirectories
0_original_images/
Complete time series converted to images (ground truth).
Format: [dataset]_[config]_[type].png
1_missing_images/
Corrupted time series as images (input to inpainting models).
Format: [dataset]_[config]_[type]_missing.png
2_fixed_images/
Inpainted images (output from U-Net/SD2).
Format: [dataset]_[config]_[method]_[type].png
3_difference_images/
Visual differences between original and reconstructed.
Format: [dataset]_[config]_[method]_[type]_diff.png
Image Types
| Type | Full Name | Size | Description |
|---|---|---|---|
| gaf | Gramian Angular Field | 64Γ64 | Polar encoding of temporal correlations |
| mtf | Markov Transition Field | 64Γ64 | State transition probabilities |
| rp | Recurrence Plot | 64Γ64 | Phase space recurrence patterns |
| spec | Spectrogram | 64Γ64 | Time-frequency representation |
Statistics
- Total images: 16,324
- Original: ~4,000 images
- Missing: ~4,000 images
- Fixed: ~6,000 images
- Differences: ~2,324 images
- Size: ~4 GB total
Archive
# Compressed archive
data_images.tar.gz (4.0 GB)
# Extract
tar -xzf ../data_images.tar.gz
π¬ Experimental Workflow
Complete Pipeline
1. SOURCE DATA (0_source_data/)
β Inject missing values (MCAR/MAR/MNAR)
2. MISSING DATA (1_missing_data/)
β Convert to images (optional for image methods)
3. IMAGES - MISSING (images_inpainting/1_missing_images/)
β Apply reconstruction (31 methods)
4A. IMAGES - FIXED (images_inpainting/2_fixed_images/)
β Inverse transform to time series
4B. FIXED DATA (2_fixed_data/)
β Compute metrics (MAPE, MAE, RMSE)
5. RESULTS (results/quick_experiment/df_final_*.csv)
Files Generated Per Configuration
For each experimental configuration (e.g., boiler_MCAR_2p_1):
- 1 missing file β
1_missing_data/boiler_MCAR_2p_1.csv - 4 original images β
images_inpainting/0_original_images/boiler_MCAR_2p_1_[gaf|mtf|rp|spec].png - 4 missing images β
images_inpainting/1_missing_images/... - 31 reconstructed files β
2_fixed_data/boiler_MCAR_2p_1_[method].csv - 16 reconstructed images β
images_inpainting/2_fixed_images/...(4 methods Γ 4 types)
Total per config: ~50 files
π Data Generation Scripts
Source Data
Original data was collected from industrial systems. No generation script needed.
Missing Data
# Generated by iterative_experiment.py
python iterative_experiment.py --generate-missing-only
Reconstructed Data
# Generated by main experiment
python iterative_experiment.py
Images
# Generated automatically during image-based reconstruction
# See: ts_image_inpainting.py
πΎ Storage & Archives
Individual Archives
| Archive | Original Size | Compressed Size | Compression Ratio |
|---|---|---|---|
data_0_source.tar.gz |
8.5 MB | 1.8 MB | 4.7:1 |
data_1_missing.tar.gz |
964 MB | 192 MB | 5.0:1 |
data_2_fixed.tar.gz |
25 GB | 5.3 GB | 4.7:1 |
data_images.tar.gz |
4 GB | 4.0 GB | 1.0:1 (PNG) |
| Total | ~30 GB | ~10.5 GB | 2.9:1 |
Extracting Archives
# Extract all
tar -xzf data_0_source.tar.gz
tar -xzf data_1_missing.tar.gz
tar -xzf data_2_fixed.tar.gz
tar -xzf data_images.tar.gz
# Extract to specific directory
tar -xzf data_2_fixed.tar.gz -C /path/to/destination/
Creating Archives (for backup)
# Compress individual directories
tar -czf data_0_source.tar.gz data/0_source_data/
tar -czf data_1_missing.tar.gz data/1_missing_data/
tar -czf data_2_fixed.tar.gz data/2_fixed_data/
tar -czf data_images.tar.gz data/images_inpainting/
# Compress everything
tar -czf data_complete.tar.gz data/
π Data Access Examples
Loading Source Data
import pandas as pd
# Load original time series
df = pd.read_csv('data/0_source_data/boiler_outlet_temp_univ.csv',
index_col='timestamp', parse_dates=True)
print(f"Length: {len(df)}")
print(f"Missing: {df['value'].isna().sum()}")
Loading Corrupted Data
# Load corrupted version
df_missing = pd.read_csv('data/1_missing_data/boiler_MCAR_2p_1.csv',
index_col='timestamp', parse_dates=True)
# Count missing values
n_missing = df_missing['value'].isna().sum()
missing_rate = n_missing / len(df_missing) * 100
print(f"Missing: {n_missing} ({missing_rate:.1f}%)")
Loading Reconstructed Data
# Load reconstruction
df_fixed = pd.read_csv('data/2_fixed_data/boiler_MCAR_2p_1_gafunet.csv',
index_col='timestamp', parse_dates=True)
# Compare with original
df_original = pd.read_csv('data/0_source_data/boiler_outlet_temp_univ.csv',
index_col='timestamp', parse_dates=True)
# Compute error on missing regions only
mask = df_missing['value'].isna()
errors = abs(df_original.loc[mask, 'value'] - df_fixed.loc[mask, 'value'])
mae = errors.mean()
print(f"MAE on missing regions: {mae:.4f}")
Loading Images
from PIL import Image
import numpy as np
# Load original image
img = Image.open('data/images_inpainting/0_original_images/boiler_MCAR_2p_1_gaf.png')
img_array = np.array(img)
print(f"Shape: {img_array.shape}")
print(f"Type: {img_array.dtype}")
π Dataset Characteristics
Time Series Properties
| Dataset | Length | Min | Max | Mean | Std | Trend | Seasonality |
|---|---|---|---|---|---|---|---|
| Boiler | ~10k | 25.3 | 89.7 | 58.2 | 12.4 | Stable | Weak |
| Pump | ~10k | 1.2 | 98.5 | 45.6 | 28.7 | None | Strong |
| Vibration | ~10k | 0.001 | 2.456 | 0.542 | 0.389 | Increasing | None |
| Water L300 | ~8.7k | 2.1 | 5.8 | 3.4 | 0.8 | Seasonal | Strong |
| Water L308 | ~8.7k | 1.8 | 6.2 | 3.2 | 0.9 | Seasonal | Strong |
| Water L311 | ~8.7k | 2.4 | 5.5 | 3.6 | 0.7 | Seasonal | Strong |
Missing Data Distribution
By Mechanism:
- MCAR: 33.3% of configs (90 per dataset)
- MAR: 33.3% of configs (90 per dataset)
- MNAR: 33.3% of configs (90 per dataset)
By Rate:
- 2%: 33.3% of configs (90 per dataset)
- 5%: 33.3% of configs (90 per dataset)
- 10%: 33.3% of configs (90 per dataset)
By Dataset:
- Boiler: 270 configs
- Pump: 270 configs
- Vibration: 270 configs
- Total: 810 configs
π§ Maintenance & Cleanup
Checking Data Integrity
# Count files in each directory
echo "Source: $(ls data/0_source_data/*.csv 2>/dev/null | wc -l)"
echo "Missing: $(ls data/1_missing_data/*.csv 2>/dev/null | wc -l)"
echo "Fixed: $(ls data/2_fixed_data/*.csv 2>/dev/null | wc -l)"
# Check for empty files
find data/ -type f -empty
Disk Space Management
# Check space usage
du -sh data/*/
# Remove intermediate images (if needed)
rm -rf data/images_inpainting/3_difference_images/
# Keep only essential data
# Warning: This removes all but source and final results
rm -rf data/1_missing_data/
rm -rf data/images_inpainting/
Regenerating Data
# Regenerate missing data
python iterative_experiment.py --force-regenerate-missing
# Regenerate specific method
python iterative_experiment.py --methods gafunet --force-reprocess
π Related Files & Documentation
Scripts
iterative_experiment.py- Main experiment runner (generates 1_missing_data/, 2_fixed_data/)ts_image_inpainting.py- Image transformation functionscalculate_differences.py- Computes metrics from reconstructed datagenerate_training_dataset.py- Generates synthetic training data (separate from this)
Results
results/quick_experiment/df_final_*.csv- Aggregated metricsresults/quick_experiment/final_results.json- Complete experimental results
Documentation
EXPERIMENT_1_DESCRIPTION.md- Experiment methodologyREADME.md(project root) - Main project documentation
β οΈ Important Notes
Data Provenance
- Source data: Real industrial sensors (anonymized)
- Missing data: Synthetically generated with controlled mechanisms
- Reconstructions: Generated by automated pipeline
- Images: Deterministic transformations from time series
Reproducibility
All data can be regenerated from source:
- Source data (0_source_data/) - original, no changes
- Missing data (1_missing_data/) - regenerate with same seeds
- Fixed data (2_fixed_data/) - regenerate by running experiments
- Images (images_inpainting/) - regenerate during reconstruction
Data Quality
Validated:
- β All files have correct format
- β No corrupted CSV files
- β Missing rates match specifications
- β All methods completed successfully
Known Issues:
- Some image-based methods may fail on extreme cases (handled gracefully)
- Large file count may cause filesystem issues on some systems
π Data Usage & Citation
Usage Guidelines
This dataset is for research purposes as part of the time series inpainting project.
Allowed:
- Analysis and visualization
- Method comparison
- Result reproduction
- Academic publication
Restrictions:
- Do not redistribute source data without permission
- Cite original data sources when publishing
- Acknowledge reconstruction methods used
Citation
If you use this dataset in your research:
@misc{timeseries_inpainting_data_2025,
title={Time Series Inpainting Experimental Dataset},
author={Dariusz Kobiela and JarosΕaw Kobiela and Adam Kurowski and Agnieszka Landowska},
year={2025},
note={Dataset containing 270 experimental configurations across 3 industrial time series,
reconstructed using 31 methods}
}
π§ Support
Questions?
- Check file naming conventions above
- Review experimental workflow
- Consult related scripts documentation
- Check project main README
Issues?
- Missing files: Regenerate using experiment scripts
- Corrupted data: Re-run specific configurations
- Disk space: Use archives, remove intermediate data
- Performance: Use archived versions when possible
Dataset Version: 1.0
Last Updated: 1.12.2025
Total Size: ~30 GB (uncompressed), ~10.5 GB (compressed)
Status: Complete β
- Downloads last month
- 14