Datasets:

Dataset Viewer (First 5GB)
Auto-converted to Parquet Duplicate
UID
stringlengths
64
64
Fold
int64
0
0
Split
stringclasses
1 value
PatientID
stringlengths
64
64
PhysicianID
stringclasses
119 values
StudyDate
stringdate
2009-09-25 00:00:00
2024-04-04 00:00:00
Age
int64
0
36.4k
Sex
stringclasses
2 values
HeartSize
int64
0
3
PulmonaryCongestion
int64
0
4
PleuralEffusion_Right
int64
0
4
PleuralEffusion_Left
int64
0
4
PulmonaryOpacities_Right
int64
0
4
PulmonaryOpacities_Left
int64
0
4
Atelectasis_Right
int64
0
4
Atelectasis_Left
int64
0
4
Image
imagewidth (px)
382
512
ebc3c8d0e455dee5118c7aedf93e2a4313639a688b4cb7b93068e54bcc705d4c
0
train
93c41c6de9e4dc33435c3afe3c582012702f56a6c7dc54545557952244d2f44b
eeca45a9ba31dfbbc169519f8b7e7364278597f946cdd44dc920a1c1a2271ccd
2013-05-25
26,647
M
2
0
2
2
0
0
2
0
ef5c3b69bfef449e98b93c1fe3d61bcf6016f9d71e24c1919701a33690a6b28e
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
b8ee86e904a7f33c547b83083df9a134054ba83c60a98037f5d3e6b8b9d1eb39
2013-05-03
19,020
M
0
3
1
2
2
3
2
2
b4a4bb187dce664066bede36314292b660a33dfc84d49bd9c3229f2e28ee8aac
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
0b41032ecda65b96def90b46e7ff67a497640a10238acf2d568ff5fe2fc24bf1
2013-09-09
19,021
M
0
3
1
2
2
3
2
2
b29686906097a75d49204cbbc51af9d0bb14bf4141b627a71d84ad57c0ee9553
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
0b41032ecda65b96def90b46e7ff67a497640a10238acf2d568ff5fe2fc24bf1
2013-03-01
19,023
M
0
3
1
2
2
3
2
2
d8546c6108aad271211da996eb7e9eeabaf44d39cf0226a4301c3cbe12d84151
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
a60035c59b16566aadc9d2f5886510102bffe8b2c255908e236bfdeed7e3155d
2013-03-21
19,018
M
0
0
0
0
0
1
0
1
6104e4f75bb536909534168ced71ed49c4b3e02bd6757cf8932baec12c86a387
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
f19698997e6bb7db0ddc484b1bf92a98d0211f63f1f7b5df39cfc591d290944a
2013-04-09
19,030
M
0
0
1
2
0
0
2
2
7afb28b8971b5ccc9892975bfb6346974919950b41de3bfcae9156e94e776f4d
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
fafe0ce01571bb5bce455ed2c9835fd15c0fdbccc704e9d06218143ed0a963cc
2013-04-08
19,028
M
0
1
2
2
0
1
2
2
c2287c6058dbbfb2cee64d7d07c24015365416ddb7e8c037caa251327e6fc8fe
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
93e368110798a3a9c60ce99a1a1288df1972e9ed9542f7aff7e77e4b99e73ec3
2013-09-17
19,033
M
0
0
0
2
0
0
0
2
5850b38a9075f41de5156059fc2c4d9ab5c95475f59b837267ea90f6febd69db
0
train
841b9950f906b3eed8328a98657eec14a62cc25931fd1c2b7e31882308da1c06
b98ab40baa6aea3e2843620f76384933ef01afca629489f4923fadb2d6c16253
2014-12-02
20,906
M
2
2
1
2
2
2
1
2
ddc1b6e6c2a629532b5e865030a22ebeb6e8685f248e5e3f60aed90b8dfec24d
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
5e50a95905c1934ec650af8647eddd60e133f092faebbe55b1b2a2cabd63e6d4
2019-10-01
24,983
M
1
2
2
1
3
3
2
0
a5af829d084e056979b85e6c41368745309d3a0bba687d8479ea41a4a351cd62
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
dbae50efb69a12c5248e3a88dd4966319b1aea57a58d813519ac363e00cfccdd
2019-08-02
24,990
M
2
2
0
0
3
3
3
3
914d0a59359716245bf1109aca1c3b992c95912ba2fae2ff942976fba316b5e3
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
a08d6b9b11fac63e005a5cf14e25acdfcab4302e711403b9dcc737b75a71d767
2019-10-20
24,992
M
2
2
0
2
3
3
3
3
593e0761ec694788507aa47c59d5e548c65f9db2c415fded001a177858349a44
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
f4c040dd111e341e3bf9fc1a3301d0c87156b7d538cc2cd314ad563d4f2aeb28
2019-08-03
24,993
M
2
2
3
2
3
3
3
3
e5010493f6a57ad8a4bc96694d607a2317dc578b9af847d747cf8aff54950f65
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
83eb46ba7a725c6f172376b753132dc568781d921a28db00527913adde94cb5b
2019-09-26
24,997
M
2
3
0
2
3
3
3
3
cb2c42cd4df3afe642ff0e25e9f3b8631ab3e6364780921079b6926d43246e5d
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
b8ee86e904a7f33c547b83083df9a134054ba83c60a98037f5d3e6b8b9d1eb39
2013-06-12
19,024
M
0
3
2
3
2
2
2
2
a0d0e13a075c1649d2d21515a96177239e6809a9661fe330efea440ae1a20428
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
b8ee86e904a7f33c547b83083df9a134054ba83c60a98037f5d3e6b8b9d1eb39
2013-09-10
19,031
M
0
0
0
2
0
0
0
2
b59283cf04de4c0cd76cfd51068a557a75965cdab515a085fba535fcd7c9dcd5
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
c3b3c4fafc4505397240024820de107e0f465e23a1a42c6b0c6ab050254bdabd
2013-07-10
19,030
M
0
0
1
2
0
0
1
2
fb14159f998fb73efc24be518ff7549c0d9efcbf46f8120a9ef61ac894024a93
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
7fa2d2669c360b3ecf40c5b8660e48ab7600a9feeb648a72b9b0aff0fc4bd27f
2013-08-28
19,036
M
0
0
0
2
0
0
0
2
ce45d3ffd52bcbf6ae6c4810ee6d526a201158feb436582f72e1df30c5910b61
0
train
7f53faf68a0349f049c09838b2ef43d6b647a598f20f2cfad87099302d487122
7fa2d2669c360b3ecf40c5b8660e48ab7600a9feeb648a72b9b0aff0fc4bd27f
2013-08-18
19,034
M
0
0
0
2
0
0
0
2
33adde3a5aa5c0c6765587804ea03b125db989cb66c5da098a79e0fddd3ef2c0
0
train
841b9950f906b3eed8328a98657eec14a62cc25931fd1c2b7e31882308da1c06
0b41032ecda65b96def90b46e7ff67a497640a10238acf2d568ff5fe2fc24bf1
2014-12-30
20,903
M
0
1
0
1
0
0
1
1
55aa7f06139a308840c6e4b316de86132986c8b614c4207f3128a10828b73ba8
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
82867c2f338b05e2e8dcbf676cbdc2b14f946cadaffce4ecbce8091f04cc7483
2019-06-22
24,982
M
1
2
2
2
3
3
2
0
3a9b373c614ccbb3dd3ce106a122af9ec7300282d9499ea9a7c4b54299afe950
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
1d5eebc33c4532e7128ed52cd2999bb3a66f11c93bd2ed93a8bf8cec4326f191
2019-07-15
24,985
M
1
2
0
0
3
2
0
0
782f77894a727507143de62940bba5155a8ed6af5606dd82816f8fde47ea8ed6
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
a08d6b9b11fac63e005a5cf14e25acdfcab4302e711403b9dcc737b75a71d767
2019-06-25
24,984
M
1
2
0
0
3
3
2
0
071f36c62036cf9cddcedfeb3acee2ecf824dfebc0e567b246f16b71240245e5
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
a08d6b9b11fac63e005a5cf14e25acdfcab4302e711403b9dcc737b75a71d767
2019-07-21
24,989
M
1
2
0
0
3
3
3
3
796413b725a6ee8c2218d8c14961dd51fe3cfb4648856bc9294db2f852199e8b
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
25b543192e3398640b59d9dee9f4b7b9d8036669097bf507e61b3a75f2a79485
2019-10-15
24,988
M
1
2
1
1
3
3
3
3
6a948d77f93ac1b274cf171ecc4992d8907ea1dd9029cbb4c9a9bb29cb04c208
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
25b543192e3398640b59d9dee9f4b7b9d8036669097bf507e61b3a75f2a79485
2019-07-08
24,992
M
2
2
0
2
3
3
3
3
233485143693fa3a56dbbe9aa9b32e521f42a8a0368037dc4f718e8f42248abc
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
25b543192e3398640b59d9dee9f4b7b9d8036669097bf507e61b3a75f2a79485
2019-08-19
24,992
M
2
2
0
2
3
3
3
3
d2daab19fa0f937aae2af7c247ca205254ba9aee5e9d4cce8f0c9339177fd895
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
7a21dcec7b3244fc883d8a96c1433ac4d14bb5edf990a1a3517bcc0d103437a1
2019-12-08
24,993
M
2
2
3
2
3
3
3
3
ce93fd4cb15bf61200a9664ca69328fa8bc56d80b32bb0cd5082af2eaeaa92e3
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
6d69259e92e8015f3ad4d8214e65c90fb24a5db3e86dfa06ccf513765d8d36c8
2019-10-14
24,996
M
2
2
0
0
3
3
3
3
134e6f2daa2f85838f82e15490dc5f116ec505dc2c7a094055242ac3d5b98ded
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
82867c2f338b05e2e8dcbf676cbdc2b14f946cadaffce4ecbce8091f04cc7483
2019-11-18
24,992
M
2
2
3
2
3
3
3
3
67d87d0cb0974ec361062a006445ad39f1e16f9e7fc6cbb997307e1ce8d9b5c4
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
e172ba58e5a41d3ee2659de606baaa9ffcdc2afb20fec1d9ed087766324d0e26
2020-01-05
24,998
M
2
1
2
2
3
3
3
3
20b76bafe34265bddc3f536ed313b76a0cd2088ea2bb750482c56703870b0f18
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
7a21dcec7b3244fc883d8a96c1433ac4d14bb5edf990a1a3517bcc0d103437a1
2019-12-20
24,995
M
2
2
3
2
3
3
3
3
ac0199fc3b97b99fd6e6072d9d564e1329e6eae6a7a4962d11b504bb5e50aa79
0
train
38caf3fc48bb240b3776c4a59cc3b56c5399317f650e7ff05b669bb0b6ad72bf
d6f52c33375f1f8a98823a4140f97b8d4b8ece5bf2dde036c717216b6d1f556c
2022-01-24
11,778
M
2
2
0
0
2
2
0
0
cb8b0e9a094eb0504ce0e128707f7ef3759832c9f0a9750afa0e16dc6683aaa9
0
train
ac8dc187df4238551ed5f23bc6f084d68cc26f24be2d0feee3c7205e588d379d
1d5eebc33c4532e7128ed52cd2999bb3a66f11c93bd2ed93a8bf8cec4326f191
2019-07-15
24,998
M
2
3
1
1
3
3
3
3
ec1f32f77dc0f3bcd50f7e1ec9cd497466f5dbb6453d87e1490be7516d675f97
0
train
71f8f8c13d09144ba5ad281c14e3ae6b83fc19a8c2eca907729e7ada2155c3ea
8e146ffd5396908de81d38fd9d0c597f2d7064dc31fa25f75d05d6a17faf8eaa
2020-04-24
21,211
M
2
0
0
0
0
0
1
1
fdeb95709a50ec3e3df52ec36767527c5c481b551cbde5d638dd8dee9bf0d747
0
train
38caf3fc48bb240b3776c4a59cc3b56c5399317f650e7ff05b669bb0b6ad72bf
f4c040dd111e341e3bf9fc1a3301d0c87156b7d538cc2cd314ad563d4f2aeb28
2019-07-13
10,678
M
2
2
0
0
2
2
0
0
645597f46dd303cc245808225ec879f00fb2178364b30eb2dfdd55177c233ca0
0
train
71f8f8c13d09144ba5ad281c14e3ae6b83fc19a8c2eca907729e7ada2155c3ea
38edea1f0c0eafb830749ccc6ecbeeb0914b4385787ae5c46267da02e1aa1630
2019-12-04
21,206
M
2
2
0
0
0
0
2
2
86cb61108a94ce254eea1a24eb51cbc8237ddb3ddc97ca7cae38d3d71a363a77
0
train
42d0df67c172339d5d921d3ab454b6f97de7509b0d34ad79020e909fccdf09b3
82867c2f338b05e2e8dcbf676cbdc2b14f946cadaffce4ecbce8091f04cc7483
2017-12-11
19,829
M
2
2
2
0
2
2
2
0
584cf55ba71a681d42f1da382de67c8ad7bf112eae5829be2de4b7458c6a473a
0
train
42d0df67c172339d5d921d3ab454b6f97de7509b0d34ad79020e909fccdf09b3
4c7bf7bf6e8c158983f63ca40fe604687756ab90e5aa3f0a2593e0ccbf1d5c97
2017-12-09
19,828
M
0
2
2
0
2
2
2
0
da75212f5def6d2dd220bbb1a44d041ec4ac5ed7f9d06c0da3658a410b6ea3fd
0
train
42d0df67c172339d5d921d3ab454b6f97de7509b0d34ad79020e909fccdf09b3
4c7bf7bf6e8c158983f63ca40fe604687756ab90e5aa3f0a2593e0ccbf1d5c97
2018-04-30
19,828
M
2
2
2
0
2
2
0
0
2d29d37d9f7a771d9ad94bcf55871ae6c0431922134c14cf6c0817d508f715e9
0
train
42d0df67c172339d5d921d3ab454b6f97de7509b0d34ad79020e909fccdf09b3
dbae50efb69a12c5248e3a88dd4966319b1aea57a58d813519ac363e00cfccdd
2017-12-22
19,837
M
2
2
2
1
2
0
2
1
ec15cbfa14dac4edea604cdcad364e8f61e9ecb9102bdd2836100ce18ad7c0dc
0
train
42d0df67c172339d5d921d3ab454b6f97de7509b0d34ad79020e909fccdf09b3
b8ee86e904a7f33c547b83083df9a134054ba83c60a98037f5d3e6b8b9d1eb39
2018-01-26
19,831
M
2
2
2
0
0
0
2
0
200020f19fde613b9115929bd0b5fdd06637f2390d5597e73e8de41eb1bc4ab2
0
train
42d0df67c172339d5d921d3ab454b6f97de7509b0d34ad79020e909fccdf09b3
8e146ffd5396908de81d38fd9d0c597f2d7064dc31fa25f75d05d6a17faf8eaa
2017-11-22
19,835
M
2
2
0
1
0
0
2
0
032aa9f1bb5cba5fec549124b24aae0a93bdff94ab47f1d74354816a96109190
0
train
42d0df67c172339d5d921d3ab454b6f97de7509b0d34ad79020e909fccdf09b3
8e146ffd5396908de81d38fd9d0c597f2d7064dc31fa25f75d05d6a17faf8eaa
2018-02-22
19,840
M
2
2
1
2
0
0
2
2
084cccf45759aca29e19f0e7dad352dcf988c7f2799f9ee280da62a04a1dd488
0
train
42d0df67c172339d5d921d3ab454b6f97de7509b0d34ad79020e909fccdf09b3
580cdcaa6a3260e50315b9fff088cae4b2ee36073b05a141f3886a132439da0a
2018-05-01
19,838
M
2
2
2
1
0
2
0
1
d7366bbc37d1a675940372eedf1e2453426294dc11a0f682583357ce99221e1c
0
train
42d0df67c172339d5d921d3ab454b6f97de7509b0d34ad79020e909fccdf09b3
ea30e29f319bc5b92639293fb5dee4c09134434d3f4f8cba15bf5fbdd1de0846
2018-02-22
19,839
M
2
2
2
0
0
2
0
2
e69dce3f848da77d03517811a9a23931d02f0212435aac9b839d415838593410
0
train
42d0df67c172339d5d921d3ab454b6f97de7509b0d34ad79020e909fccdf09b3
4301a048d3fdf4d4ab96d1785c5acd7ac5782bc233bcacf6135824a861f450ec
2018-04-16
19,841
M
2
2
0
2
3
3
0
0
c7458e3de9e3a7689a80dd14ab91eba769455d2a9a864ddf679d5f0af0b7ca70
0
train
42d0df67c172339d5d921d3ab454b6f97de7509b0d34ad79020e909fccdf09b3
4c7bf7bf6e8c158983f63ca40fe604687756ab90e5aa3f0a2593e0ccbf1d5c97
2018-05-08
19,845
M
2
2
0
2
0
0
2
2
63dc236af24d199902b708b319291985416461d9e62c508870ebeac853665933
0
train
bd422085c349be508e2c540152edccc0773fdfbfc699d6b740a3fb41a5b9a41f
25b543192e3398640b59d9dee9f4b7b9d8036669097bf507e61b3a75f2a79485
2022-06-23
12,126
M
0
0
0
0
2
2
2
2
1152321f064c6682b873b95a0e51deadd2abe5b8c6c6100f4a5929218d760967
0
train
5ec15f02dc35a0cdb77424a69c7754b754b021ed7fdb4f9a7aa25b375e15211e
16fa395981a9a20868b82755ef45d543cbb6629b6d514643b4fd440b946c7e85
2015-07-01
25,030
F
3
2
0
0
1
0
0
0
240b2a679e58787199a20c13436ae3dc6d0e60b2c32c6614712cc347d2db98f7
0
train
bd422085c349be508e2c540152edccc0773fdfbfc699d6b740a3fb41a5b9a41f
331891d376e00b89801f9330be286d791679edc924396f68850f114e27e3415f
2023-08-23
12,587
M
0
0
0
1
0
0
0
2
a4a27be22c89382a2414f5c854d22408788ae724355e413556718a914168f49c
0
train
5ec15f02dc35a0cdb77424a69c7754b754b021ed7fdb4f9a7aa25b375e15211e
fafe0ce01571bb5bce455ed2c9835fd15c0fdbccc704e9d06218143ed0a963cc
2015-05-27
25,039
F
3
3
2
2
2
2
2
2
f62d53a416d055baaa7f49bc57e83628207c0201a644d7e5a6203be807339c79
0
train
5ec15f02dc35a0cdb77424a69c7754b754b021ed7fdb4f9a7aa25b375e15211e
7fa2d2669c360b3ecf40c5b8660e48ab7600a9feeb648a72b9b0aff0fc4bd27f
2014-04-30
24,683
F
3
2
2
0
2
1
3
1
d9a48dbb591d053283784d0ab4877f23222dcbb865b5d0d709e9a99812c6df39
0
train
5ec15f02dc35a0cdb77424a69c7754b754b021ed7fdb4f9a7aa25b375e15211e
08a26196a2f80dbf7ca81e14374d1310511ceb2b781d6f376b878a29b629ec99
2014-05-02
24,686
F
3
2
2
2
2
1
3
1
eb6d92c261746154cc3b2b95eedcb15b1b9a77ce929c972d986fc2426e19fd45
0
train
f47eb972567d76326f70f79b4c2ccc4634fd5234b787671f5f9eac7f30b8cb5e
a7796766cc658c5374ec390b57428944a0dc43b883beceea23addbeca3167fed
2011-04-08
12,258
F
0
0
0
0
0
0
1
1
a0ff171f3238c28b6e0c97c79093f04bca695ff8eaedc07ec88ec33a3dbe9b40
0
train
5ec15f02dc35a0cdb77424a69c7754b754b021ed7fdb4f9a7aa25b375e15211e
4c7bf7bf6e8c158983f63ca40fe604687756ab90e5aa3f0a2593e0ccbf1d5c97
2015-09-09
25,033
F
3
2
2
0
2
0
2
0
a73cc780cde64ed55393f95271ab5322ad6587d9ad4421a4f6eb750bb592694b
0
train
5ec15f02dc35a0cdb77424a69c7754b754b021ed7fdb4f9a7aa25b375e15211e
16fa395981a9a20868b82755ef45d543cbb6629b6d514643b4fd440b946c7e85
2015-06-18
25,035
F
3
2
2
0
0
0
2
0
643bf940632617583aa372d08f2235824471e7f68e09eb2c6c917b9f0dea1955
0
train
858efffdaae8855b51ad7f4610eef50e6af99faa284f6ed5a3b88f5d974b3826
d3d16d9b841ae2cffe65f0a1aa149ba8a2b0b9d197ce2c0963970d55e48c6336
2009-11-01
12,550
M
1
1
1
1
0
0
2
2
f53acd57bc6458f9b44fb282ed2ef4d1ee9db918dc3280be6280d210e9ed441a
0
train
5ec15f02dc35a0cdb77424a69c7754b754b021ed7fdb4f9a7aa25b375e15211e
fafe0ce01571bb5bce455ed2c9835fd15c0fdbccc704e9d06218143ed0a963cc
2015-03-12
25,044
F
3
3
2
3
2
2
2
3
e9a11c1b6d99d1d7ddbabb09e2d00a54946114840ccf35ae65193d7e0e98c045
0
train
01643a91f274695e19336c412be9e5819ba6ac3d0e3d571445735feac6c56f13
ea30e29f319bc5b92639293fb5dee4c09134434d3f4f8cba15bf5fbdd1de0846
2016-12-10
15,012
M
0
0
2
2
0
0
3
0
49d49bb5db619b4f5cb81864c99bc536332cc68d5594f55715d31eb3cc6c9be9
0
train
858efffdaae8855b51ad7f4610eef50e6af99faa284f6ed5a3b88f5d974b3826
6d5c2d5cc054f038f216f8fd979a0cddfe25ec1238e04d4de0c4c45343027757
2009-11-17
12,553
M
2
2
0
0
0
0
2
3
8a262980befbe615679baade8140c3dad1ae5c2d0cbf64208eda1c37e16b54cd
0
train
858efffdaae8855b51ad7f4610eef50e6af99faa284f6ed5a3b88f5d974b3826
6d5c2d5cc054f038f216f8fd979a0cddfe25ec1238e04d4de0c4c45343027757
2010-01-25
12,549
M
3
2
1
1
0
1
2
2
c12487e4d32e46f94c2612de7f1f2c32148ce87233923db6967c20ddb3d93e24
0
train
858efffdaae8855b51ad7f4610eef50e6af99faa284f6ed5a3b88f5d974b3826
0c42a6012877703271c90f48e63f303a09740b5c99e8ebebc5a12637c0ddbabd
2010-01-27
12,549
M
2
2
1
1
0
1
2
2
5ed9ee4771f9470345e602a916d2b61079ea6d911400b724143b9a25cf6d5d40
0
train
c485003548f0281f2a193b4721882b52239408c1e0cebc8564a218e751246425
13ba409943767be9ba15fdef66ba19b369d830b87cb4fe1a3cdc1184628bfc74
2023-02-27
24,956
M
2
1
1
2
1
1
2
2
874a127f29f7144548d9bcd73a92cc66af4f84aefca8b0b163140a7f60038773
0
train
c77f2e63645b5e9ffdfa890d85bb941277f3536a6e97d5f7518c517768cc9097
fafe0ce01571bb5bce455ed2c9835fd15c0fdbccc704e9d06218143ed0a963cc
2013-02-25
13,451
M
0
0
0
0
0
0
0
3
b2c5f2d1eeb32f1bd1145be7e1d10a13332816d49c2c1a812b2522176db3e6c1
0
train
8bf6a83daa272e20fea9a173cf4596bab4822cbe8aa1c836b018af62f42a39fb
580cdcaa6a3260e50315b9fff088cae4b2ee36073b05a141f3886a132439da0a
2017-09-03
16,811
M
2
2
0
1
2
1
2
2
1c4652dbb2ebc5813f4219cb45296f0c5df4c745ee3bdebaf251c03b799cb13c
0
train
8bf6a83daa272e20fea9a173cf4596bab4822cbe8aa1c836b018af62f42a39fb
016af5ee9e1a27f0a2fe8529aab4c62723a494297671fe6430fea2ea6ac351eb
2017-05-28
16,809
M
2
2
0
0
2
0
2
0
a8e18d2d198db544b559473bedd8ed11aebcacdd6a1f5bb0fef73df2878fcd31
0
train
8bf6a83daa272e20fea9a173cf4596bab4822cbe8aa1c836b018af62f42a39fb
83eb46ba7a725c6f172376b753132dc568781d921a28db00527913adde94cb5b
2017-07-12
16,810
M
2
2
0
1
2
0
2
2
e96dc9f01eee5b4dead94c611abef2738ce45b9e32b2cd7b35d29dce0be339a4
0
train
8bf6a83daa272e20fea9a173cf4596bab4822cbe8aa1c836b018af62f42a39fb
ea30e29f319bc5b92639293fb5dee4c09134434d3f4f8cba15bf5fbdd1de0846
2017-06-24
16,814
M
2
3
0
1
3
2
2
2
5470cbdbf3ca98f4ff4a78d6a5043edb919822692d3d2de40752ea1679b66712
0
train
8bf6a83daa272e20fea9a173cf4596bab4822cbe8aa1c836b018af62f42a39fb
44def4eeff53014b92c4371bd68c3f40cdcc009441276fcb5d3b437cf055e36b
2017-04-04
16,812
M
2
2
0
2
2
2
2
2
d049b4cef11afb222efa6c4053c1c4d0485f147dcb47cee27bea759191872984
0
train
8bf6a83daa272e20fea9a173cf4596bab4822cbe8aa1c836b018af62f42a39fb
f5eb93d79412be239626a6fc0a5bd133df1047cc26af8b2aa007c2c5a818c68f
2017-03-11
16,812
M
2
2
0
2
0
0
2
2
4cb26317d60d69846110e0faa3026a081d7624ba62289246c9e00ae4cfebfbef
0
train
8bf6a83daa272e20fea9a173cf4596bab4822cbe8aa1c836b018af62f42a39fb
44def4eeff53014b92c4371bd68c3f40cdcc009441276fcb5d3b437cf055e36b
2017-09-22
16,817
M
2
2
0
2
2
2
0
2
2b901213bfde0b8a81ed5b0074b42b3cdd7b32d45c1367752dc481ebc48ce5b4
0
train
8bf6a83daa272e20fea9a173cf4596bab4822cbe8aa1c836b018af62f42a39fb
16fa395981a9a20868b82755ef45d543cbb6629b6d514643b4fd440b946c7e85
2017-03-11
16,814
M
2
2
0
1
0
0
2
2
18d84d27a9e2db1900c09095f2b1b72a083b6589d5c9ab2ce5ba8c2eeeca952e
0
train
8bf6a83daa272e20fea9a173cf4596bab4822cbe8aa1c836b018af62f42a39fb
92cc2dfe229c55bb9b9d3272545e711377a6ed437ddb9ff2bc2c9b80716e4ba7
2017-03-30
16,816
M
2
3
0
2
3
2
0
2
d0a73bbfe737ddb52fe52c7fba39eb9260e9d1b7f5999302cf2b3943497fa7d9
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
5e50a95905c1934ec650af8647eddd60e133f092faebbe55b1b2a2cabd63e6d4
2019-03-05
21,108
F
2
3
1
0
3
2
0
0
5b32bdab0dd3402520bb32f1cfae838962ac2d54e468307d728644c5135e2bb3
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
57240707872f1aae5dcc6b342de3a55d4c57616fa7139f71b414f9835950069d
2018-11-27
21,105
F
2
1
0
0
3
2
0
0
172ecde44ac0266cef05741730d2e9f1bc75aefb974069dbc4ed029f97d54ab1
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
a08d6b9b11fac63e005a5cf14e25acdfcab4302e711403b9dcc737b75a71d767
2018-12-18
21,105
F
2
1
0
0
3
2
0
0
84748be98b63cf74280cf7e821c17b4a26361584e9661d22d5d2a8b1264d17e8
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
5e50a95905c1934ec650af8647eddd60e133f092faebbe55b1b2a2cabd63e6d4
2019-03-29
21,124
F
2
3
2
2
3
2
2
0
7bb9021a9f8fde9f3aaea611f3da7d99d966e71682cffc31451e43a7f4effc10
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
352de2748cce5fc2ec964d346e54a79700e72ce4123064a01482b5310823c070
2018-10-05
21,114
F
2
3
1
0
3
2
0
0
7aeafa2f32a8d92b8e2f6d03a576a59c99decde08e6ce1282caeb1546ac43f8b
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
ea30e29f319bc5b92639293fb5dee4c09134434d3f4f8cba15bf5fbdd1de0846
2019-03-14
21,144
F
2
3
2
0
3
3
2
2
9cc1739827ea5c5e351052a5c3ec3eb2c926980faefc30ace672de1b615c6323
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
a08d6b9b11fac63e005a5cf14e25acdfcab4302e711403b9dcc737b75a71d767
2018-10-14
21,121
F
2
3
2
0
3
2
0
0
7266f4dcee908ed979e5b10464bad802c9338b59d73aaa9cb6f9fae18a1f769d
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
f4c040dd111e341e3bf9fc1a3301d0c87156b7d538cc2cd314ad563d4f2aeb28
2019-04-07
21,144
F
2
2
2
0
3
3
2
2
19d2de7a33973c68674a71c1bd79f993677ec43a6d7db883607ee7fa5d61eefd
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
a08d6b9b11fac63e005a5cf14e25acdfcab4302e711403b9dcc737b75a71d767
2019-05-01
21,170
F
2
2
2
2
3
3
2
2
748b10f9ad745de880429dd13d68f37c6d80df468ef9dcf606767727c5e38779
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
a08d6b9b11fac63e005a5cf14e25acdfcab4302e711403b9dcc737b75a71d767
2019-03-21
21,159
F
2
2
2
0
2
2
2
2
ceff38a1bf8c04f95cf7051b7753091b9e720e561057901582471fc9fac0f13b
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
a08d6b9b11fac63e005a5cf14e25acdfcab4302e711403b9dcc737b75a71d767
2019-05-01
21,162
F
2
2
2
0
3
3
3
3
1758735dd1325f88572c490c23ca0c2862096c87dc9bc798d3556cb9ad72621d
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
38edea1f0c0eafb830749ccc6ecbeeb0914b4385787ae5c46267da02e1aa1630
2019-04-06
21,166
F
2
2
0
0
3
3
2
2
1d14b5267f532d6aaf71db922a7206c0bca55af49470e53b59d547455f776234
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
6d69259e92e8015f3ad4d8214e65c90fb24a5db3e86dfa06ccf513765d8d36c8
2019-04-24
21,172
F
2
2
2
1
2
3
2
2
4bb2d0d139a5db3e6dd7f1b04eb4f3fdb7f31af5bb6ef50933342e3ee24eea57
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
83eb46ba7a725c6f172376b753132dc568781d921a28db00527913adde94cb5b
2019-02-04
21,201
F
2
2
3
2
3
2
3
3
0d07abde36b7406506d4740b4850e1aef17b24eefa0ab7341c6398673eb532e8
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
83eb46ba7a725c6f172376b753132dc568781d921a28db00527913adde94cb5b
2019-01-02
21,201
F
2
2
3
1
3
2
3
3
a09c73698d6524b9f4754e8fd14d1a6da32c5a8c835df44268e32d4c43bb619e
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
92cc2dfe229c55bb9b9d3272545e711377a6ed437ddb9ff2bc2c9b80716e4ba7
2019-04-09
21,204
F
2
2
2
2
3
2
3
3
c9d09290d2d2699d943485ef15d757398deabdf729aa1ca97e1b893bc065d533
0
train
5294c112f2ec5e631dc4390b1dc4b93f4c1dd14d9464a722be4ce2fb3fdb0bfd
2a152369822e53557ef64c01b39077a01773a1497da791d5062ea8b5266f8894
2021-05-27
8,363
M
0
0
0
0
2
0
2
0
82365a644764c181780bc2116e91ca0cdadab9bc6d1850a1b585328a2a2ed993
0
train
9121267daae013ac844acac74127f451ab3a3dd249529556da97a1aabdd4323d
352de2748cce5fc2ec964d346e54a79700e72ce4123064a01482b5310823c070
2019-06-26
21,209
F
2
2
1
1
3
3
3
3
194aa8b4f757a144850b1e3a05ab64d6dec2208ee9b02d7c23f826446eb88b14
0
train
5294c112f2ec5e631dc4390b1dc4b93f4c1dd14d9464a722be4ce2fb3fdb0bfd
2a152369822e53557ef64c01b39077a01773a1497da791d5062ea8b5266f8894
2021-10-26
8,367
M
1
0
2
2
3
2
3
3
b6430fb8a3aadfbd6a3474275ea2b925c15ed51d6ee22562dea492cfdb09e929
0
train
5294c112f2ec5e631dc4390b1dc4b93f4c1dd14d9464a722be4ce2fb3fdb0bfd
2a152369822e53557ef64c01b39077a01773a1497da791d5062ea8b5266f8894
2021-10-27
8,369
M
1
0
2
2
3
2
3
3
ba07127351b019866f518dc36813f95d8d76dad8d57359a5c372add6a57d780a
0
train
5294c112f2ec5e631dc4390b1dc4b93f4c1dd14d9464a722be4ce2fb3fdb0bfd
5597611271c4e22201a239bcbab10f0f484d990c15baf36900afde2919fa4b51
2021-10-21
8,365
M
0
0
2
0
3
0
2
0
de89cff053aada5b7732cc37d1921d101ed51a2bfb2ab4f68ddd624320cadf0d
0
train
9f384fc1f8a49e1585ded9fe14f2640819eaea39780729b3662e1cde321e9300
b8ee86e904a7f33c547b83083df9a134054ba83c60a98037f5d3e6b8b9d1eb39
2015-11-12
13,773
M
1
2
0
3
0
0
3
2
54764bec88b9d3386caf75dd2fa6f422d53ba66a4d8dae8f59a6e84b95eafa79
0
train
9f384fc1f8a49e1585ded9fe14f2640819eaea39780729b3662e1cde321e9300
16fa395981a9a20868b82755ef45d543cbb6629b6d514643b4fd440b946c7e85
2015-11-25
13,778
M
2
2
0
2
0
0
0
2
947666b67762f6e524401393f2585db1dc2fadf72de57dcbe2debefb75189ebd
0
train
9f384fc1f8a49e1585ded9fe14f2640819eaea39780729b3662e1cde321e9300
b8ee86e904a7f33c547b83083df9a134054ba83c60a98037f5d3e6b8b9d1eb39
2015-10-27
13,773
M
1
2
0
2
0
2
3
2
9f0b52a11e1ef4b71611488e5d0d072367a21524431b6751c4f2fd68e17fca2a
0
train
9f384fc1f8a49e1585ded9fe14f2640819eaea39780729b3662e1cde321e9300
4301a048d3fdf4d4ab96d1785c5acd7ac5782bc233bcacf6135824a861f450ec
2015-09-19
13,782
M
2
3
0
2
3
2
2
2
a32797a83c0ac84e0be4b2c4a87bcd9d3e2dbe24712e2f138657e6e5b3ec1a48
0
train
9f384fc1f8a49e1585ded9fe14f2640819eaea39780729b3662e1cde321e9300
83eb46ba7a725c6f172376b753132dc568781d921a28db00527913adde94cb5b
2015-07-02
13,777
M
2
1
0
2
0
0
0
3
End of preview. Expand in Data Studio

TAIX-Ray Dataset

TAIX-Ray is a comprehensive dataset of about 200k bedside chest radiographs from about 50k intensive care patients at the University Hospital in Aachen, Germany, collected between 2010 and 2024. Trained radiologists provided structured reports at the time of acquisition, assessing key findings such as cardiomegaly, pulmonary congestion, pleural effusion, pulmonary opacities, and atelectasis on an ordinal scale.


Code:

The TAIX-Ray code repository (preprocessing + minimal model training scripts) is available at mueller-franzes/TAIX-Ray

How to Use

Prerequisites

Ensure you have the following dependencies installed:

pip install datasets matplotlib huggingface_hub pandas tqdm

Configurations

This dataset is available in two configurations.

Name Size Image Size
default 62GB 512px
original 1.2TB variable

Option A: Use within the Hugging Face Framework

If you want to use the dataset directly within the Hugging Face datasets library, you can load and visualize it as follows:

from datasets import load_dataset
from matplotlib import pyplot as plt

# Load the TAIX-Ray dataset
dataset = load_dataset("TLAIM/TAIX-Ray", name="default")

# Access the training split (Fold 0)
ds_train = dataset['train']

# Retrieve a single sample from the training set
item = ds_train[0]

# Extract and display the image
image = item['Image']
plt.imshow(image, cmap='gray')
plt.savefig('image.png')  # Save the image to a file
plt.show()  # Display the image

# Print metadata (excluding the image itself)
for key in item.keys():
    if key != 'Image':
        print(f"{key}: {item[key]}")

Option B: Downloading the Dataset

If you prefer to download the dataset to a specific folder, use the following script. This will create the following folder structure:

.
├── data/
│   ├── 549a816ae020fb7da68a31d7d62d73c418a069c77294fc084dd9f7bd717becb9.png
│   ├── d8546c6108aad271211da996eb7e9eeabaf44d39cf0226a4301c3cbe12d84151.png
│   └── ...
└── metadata/
    ├── annoation.csv
    └── split.csv 
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from pathlib import Path
import pandas as pd
from tqdm import tqdm

# Define output paths
output_root = Path("./TAIX-Ray")

# Create folders 
data_dir = output_root / "data"
metadata_dir = output_root / "metadata"
data_dir.mkdir(parents=True, exist_ok=True)
metadata_dir.mkdir(parents=True, exist_ok=True)

# Load dataset in streaming mode
dataset = load_dataset("TLAIM/TAIX-Ray", name="default",  streaming=True)

# Process dataset
metadata = []
for split, split_dataset in dataset.items():
    print("-------- Start Download: ", split, " --------")
    for item in tqdm(split_dataset, desc="Downloading"):  # Stream data one-by-one
        uid = item["UID"]
        img = item.pop("Image")  # PIL Image object

        # Save image
        img.save(data_dir / f"{uid}.png", format="PNG")

        # Store metadata
        metadata.append(item)  

# Convert metadata to DataFrame
metadata_df = pd.DataFrame(metadata)

# Save split to CSV files
df_split = metadata_df[["UID", "Split"]]
df_split.to_csv(metadata_dir / "split.csv", index=False) 

# Save annotations to CSV files
metadata_df.drop(columns=["Split", "Fold"]).to_csv(metadata_dir / "annotation.csv", index=False)

print("Dataset streamed and saved successfully!")
Downloads last month
146

Models trained or fine-tuned on TLAIM/TAIX-Ray