original_vido_id video_id frame_id path labels
stringlengths 27
36
|
|---|
B0001.1 1 1 B0001.1/1.jpg 0
|
B0001.1 1 2 B0001.1/2.jpg 0
|
B0001.1 1 3 B0001.1/3.jpg 0
|
B0001.1 1 4 B0001.1/4.jpg 0
|
B0001.1 1 5 B0001.1/5.jpg 0
|
B0001.1 1 6 B0001.1/6.jpg 0
|
B0001.1 1 7 B0001.1/7.jpg 0
|
B0001.1 1 8 B0001.1/8.jpg 0
|
B0001.1 1 9 B0001.1/9.jpg 0
|
B0001.1 1 10 B0001.1/10.jpg 0
|
B0001.1 1 11 B0001.1/11.jpg 0
|
B0001.1 1 12 B0001.1/12.jpg 0
|
B0001.1 1 13 B0001.1/13.jpg 0
|
B0001.1 1 14 B0001.1/14.jpg 0
|
B0001.1 1 15 B0001.1/15.jpg 0
|
B0001.1 1 16 B0001.1/16.jpg 0
|
B0001.1 1 17 B0001.1/17.jpg 0
|
B0001.1 1 18 B0001.1/18.jpg 0
|
B0001.1 1 19 B0001.1/19.jpg 0
|
B0001.1 1 20 B0001.1/20.jpg 0
|
B0001.1 1 21 B0001.1/21.jpg 0
|
B0001.1 1 22 B0001.1/22.jpg 0
|
B0001.1 1 23 B0001.1/23.jpg 0
|
B0001.1 1 24 B0001.1/24.jpg 0
|
B0001.1 1 25 B0001.1/25.jpg 0
|
B0001.1 1 26 B0001.1/26.jpg 0
|
B0001.1 1 27 B0001.1/27.jpg 0
|
B0001.1 1 28 B0001.1/28.jpg 0
|
B0001.1 1 29 B0001.1/29.jpg 0
|
B0001.1 1 30 B0001.1/30.jpg 0
|
B0001.1 1 31 B0001.1/31.jpg 0
|
B0001.1 1 32 B0001.1/32.jpg 0
|
B0001.1 1 33 B0001.1/33.jpg 0
|
B0001.1 1 34 B0001.1/34.jpg 0
|
B0001.1 1 35 B0001.1/35.jpg 0
|
B0001.1 1 36 B0001.1/36.jpg 0
|
B0001.1 1 37 B0001.1/37.jpg 0
|
B0001.1 1 38 B0001.1/38.jpg 0
|
B0001.1 1 39 B0001.1/39.jpg 0
|
B0001.1 1 40 B0001.1/40.jpg 0
|
B0001.1 1 41 B0001.1/41.jpg 0
|
B0001.1 1 42 B0001.1/42.jpg 0
|
B0001.1 1 43 B0001.1/43.jpg 0
|
B0001.1 1 44 B0001.1/44.jpg 0
|
B0001.1 1 45 B0001.1/45.jpg 0
|
B0001.1 1 46 B0001.1/46.jpg 0
|
B0001.1 1 47 B0001.1/47.jpg 0
|
B0001.1 1 48 B0001.1/48.jpg 0
|
B0001.1 1 49 B0001.1/49.jpg 0
|
B0001.1 1 50 B0001.1/50.jpg 0
|
B0001.1 1 51 B0001.1/51.jpg 0
|
B0001.1 1 52 B0001.1/52.jpg 0
|
B0001.1 1 53 B0001.1/53.jpg 0
|
B0001.1 1 54 B0001.1/54.jpg 0
|
B0001.1 1 55 B0001.1/55.jpg 0
|
B0001.1 1 56 B0001.1/56.jpg 0
|
B0001.1 1 57 B0001.1/57.jpg 0
|
B0001.1 1 58 B0001.1/58.jpg 0
|
B0001.1 1 59 B0001.1/59.jpg 0
|
B0001.1 1 60 B0001.1/60.jpg 0
|
B0001.1 1 61 B0001.1/61.jpg 0
|
B0001.1 1 62 B0001.1/62.jpg 0
|
B0001.1 1 63 B0001.1/63.jpg 0
|
B0001.1 1 64 B0001.1/64.jpg 0
|
B0001.1 1 65 B0001.1/65.jpg 0
|
B0001.1 1 66 B0001.1/66.jpg 0
|
B0001.1 1 67 B0001.1/67.jpg 0
|
B0001.1 1 68 B0001.1/68.jpg 0
|
B0001.1 1 69 B0001.1/69.jpg 0
|
B0001.1 1 70 B0001.1/70.jpg 0
|
B0001.1 1 71 B0001.1/71.jpg 0
|
B0001.1 1 72 B0001.1/72.jpg 0
|
B0001.1 1 73 B0001.1/73.jpg 0
|
B0001.1 1 74 B0001.1/74.jpg 0
|
B0001.1 1 75 B0001.1/75.jpg 0
|
B0001.1 1 76 B0001.1/76.jpg 0
|
B0001.1 1 77 B0001.1/77.jpg 0
|
B0001.1 1 78 B0001.1/78.jpg 0
|
B0001.1 1 79 B0001.1/79.jpg 0
|
B0001.1 1 80 B0001.1/80.jpg 0
|
B0001.1 1 81 B0001.1/81.jpg 0
|
B0001.1 1 82 B0001.1/82.jpg 0
|
B0001.1 1 83 B0001.1/83.jpg 0
|
B0001.1 1 84 B0001.1/84.jpg 0
|
B0001.1 1 85 B0001.1/85.jpg 0
|
B0001.1 1 86 B0001.1/86.jpg 0
|
B0001.1 1 87 B0001.1/87.jpg 0
|
B0001.1 1 88 B0001.1/88.jpg 0
|
B0001.1 1 89 B0001.1/89.jpg 0
|
B0001.1 1 90 B0001.1/90.jpg 0
|
B0001.2 2 1 B0001.2/1.jpg 0
|
B0001.2 2 2 B0001.2/2.jpg 0
|
B0001.2 2 3 B0001.2/3.jpg 0
|
B0001.2 2 4 B0001.2/4.jpg 0
|
B0001.2 2 5 B0001.2/5.jpg 0
|
B0001.2 2 6 B0001.2/6.jpg 0
|
B0001.2 2 7 B0001.2/7.jpg 0
|
B0001.2 2 8 B0001.2/8.jpg 0
|
B0001.2 2 9 B0001.2/9.jpg 0
|
B0001.2 2 10 B0001.2/10.jpg 0
|
Dataset Card for BaboonLand Dataset: Tracking Primates in the Wild and Automating Behaviour Recognition from Drone Videos
Dataset Summary
BaboonLand is an aerial drone video dataset of wild olive baboons (Papio anubis) collected over 21 consecutive days in Laikipia (Mpala Research Centre), Kenya, following three troops during morning and evening movements to and from sleeping sites. The dataset contains UAV footage across diverse environments (e.g., sleeping tree, river, rock, open savannah, cliff), with up to ~70 individuals per frame, yielding dense multi-object scenes from an overhead viewpoint.
The dataset supports three core subtasks: detection, multi-object tracking, and behavior recognition. It includes (1) a detection dataset derived from ~5.3K-resolution frames via multi-scale tiling (≈30K images), (2) ~0.5 hours of dense tracking annotations, and (3) ~20 hours of behavior “mini-scenes” annotated into 12 behavior classes and additional category for occlusions.
Download & Reconstruct
BaboonLand is stored as split ZIP archives (*.zip.part.*) tracked with Git LFS. You can either download everything at once, or pull only a specific subset (Charades / Dataset / Tracking), then concatenate parts.
Integrity check: Compare the printed md5sum values with the reference hashes in BaboonLand/manifest.json.
Option A — Download everything (all parts)
git clone https://huggingface.co/datasets/imageomics/BaboonLand
cd BaboonLand
cat BaboonLand/charades.zip.part* > BaboonLand/charades.zip
cat BaboonLand/dataset.zip.part* > BaboonLand/dataset.zip
cat BaboonLand/tracking.zip.part* > BaboonLand/tracking.zip
md5sum BaboonLand/charades.zip
md5sum BaboonLand/dataset.zip
md5sum BaboonLand/tracking.zip
rm -rf BaboonLand/charades.zip.part*
rm -rf BaboonLand/dataset.zip.part*
rm -rf BaboonLand/tracking.zip.part*
Option B — Download only Charades part
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/imageomics/BaboonLand
cd BaboonLand
git lfs pull --include="BaboonLand/charades.zip.part*"
cat BaboonLand/charades.zip.part* > BaboonLand/charades.zip
md5sum BaboonLand/charades.zip
rm -rf BaboonLand/charades.zip.part*
Option C — Download only Dataset part
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/imageomics/BaboonLand
cd BaboonLand
git lfs pull --include="BaboonLand/dataset.zip.part*"
cat BaboonLand/dataset.zip.part* > BaboonLand/dataset.zip
md5sum BaboonLand/dataset.zip
rm -rf BaboonLand/dataset.zip.part*
Option D — Download only Tracking part
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/imageomics/BaboonLand
cd BaboonLand
git lfs pull --include="BaboonLand/tracking.zip.part*"
cat BaboonLand/tracking.zip.part* > BaboonLand/tracking.zip
md5sum BaboonLand/tracking.zip
rm -rf BaboonLand/tracking.zip.part*
Option E — Download only CVAT templates
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/imageomics/BaboonLand
cd BaboonLand
git lfs pull --include="BaboonLand/cvat_templates"
Directory Layout
BaboonLand
/charades -> The dataset converted to Charades format to train and evaluate behavior
recognition models. You can download the generated dataset from our webpage
or you can generate it yourself.
...
/cvat_templates -> Templates to backup projects in CVAT and explore/adjust annotations.
/behavior.zip
/tracking.zip
/dataset
/video_1
/actions
/0.xml
/1.xml -> Behavior annotations for individual with ID=1
...
/n.xml
/mini-scenes -> Mini-scenes generated from video.mp4 and tracks.xml
/0.mp4
/1.mp4
...
/n.mp4
/timeline.jpg
/tracks.xml -> Tracks + bounding boxes (CVAT for video 1.1). Each track has a unique ID.
/video.mp4 -> Original drone video
/video_2
...
/video_n
...
/scripts
/requirements.txt
/tracks2mini-scenes.py
/dataset2charades.py
/charades2video.py
/charades2visual.py
/dataset2tracking.py
/tracking2ultralytics.py
/ultralytics2pyramid.py
/tracking -> Tracking split + (optionally) Ultralytics-format detection data.
...
/README.md
Supported Tasks and Leaderboards
Detection
We evaluate YOLOv8-X model with input resolution of 768x768 on our dataset and report mAP@50, Precision, and Recall:
| Model | mAP@50 | Precision | Recall |
|---|---|---|---|
| YOLOv8-X | 92.62 | 93.70 | 87.60 |
Tracking
We evaluate SORT, DeepSORT, StrongSORT, ByteTrack, and BotSort tracking algorithms on our dataset and report MOTA, MOTP, IDF1, Precision, and Recall:
| Tracker | MOTA | MOTP | IDF1 | Precision | Recall |
|---|---|---|---|---|---|
| SORT | 84.76 | 50.15 | 77.43 | 90.83 | 91.19 |
| DeepSORT | 84.40 | 87.22 | 81.38 | 90.26 | 91.57 |
| StrongSORT | 82.48 | 85.37 | 84.98 | 88.00 | 90.10 |
| ByteTrack | 63.55 | 34.10 | 77.01 | 96.32 | 64.90 |
| BotSort | 63.81 | 34.31 | 78.24 | 97.21 | 66.16 |
Behavior Classes:
- Walking/Running
- Sitting/Standing
- Fighting/Playing
- Self-Grooming
- Being Groomed
- Grooming Somebody
- Mutual Grooming
- Infant-Carrying
- Foraging
- Drinking
- Mounting
- Sleeping
- Occluded
Behavior Recognition
We evaluate I3D, SlowFast, and X3D models on our dataset and report Micro-Average (Per Instance) and Macro-Average (Per Class) accuracy.
| Method | WI | Micro Top-1 | Micro Top-3 | Micro Top-5 | Macro Top-1 | Macro Top-3 | Macro Top-5 |
|---|---|---|---|---|---|---|---|
| I3D | Random | 61.29 | 89.38 | 92.34 | 26.53 | 54.51 | 65.47 |
| SlowFast | Random | 61.71 | 90.35 | 93.11 | 27.08 | 56.73 | 67.61 |
| X3D | Random | 63.97 | 91.34 | 95.17 | 30.04 | 60.58 | 72.13 |
| X3D | K-400 | 64.89 | 92.54 | 96.66 | 31.41 | 62.04 | 74.01 |
Languages
English
Dataset Structure
BaboonLand provides original videos, CVAT-formatted annotations, derived mini-scenes, and scripts to generate task-specific training formats (e.g., Ultralytics/YOLO and Charades for SlowFast).
Data Instances
Each dataset/video_k/ directory contains:
video.mp4: original UAV videotracks.xml: per-frame tracks (IDs + bounding boxes)actions/*.xml: per-track behavior labels (filename matches track ID)mini-scenes/*.mp4: cropped clips centered on each tracked individual (filename matches track ID)
Data Fields
BaboonLand supports three derived tasks:
- Detection: bounding boxes for baboons (also convertible to Ultralytics/YOLO format via provided scripts).
- Tracking: per-frame tracks with persistent IDs and bounding boxes (stored in simplified CVAT for video 1.1).
- Behavior recognition: per-individual mini-scenes (cropped clips centered on each tracked individual) labeled into 12 behavior classes + Occluded.
Data Splits
BaboonLand includes task-specific evaluation sets:
- Tracking: 75% of each video for training, 25% for testing.
- Detection (YOLO-formatted): 80% training, 7% validation, 13% testing.
- Behavior recognition (Charades format): 75% training, 25% testing.
Data Collection and Procedures
- Species: Olive baboons (Papio anubis)
- Location: Mpala Research Centre, Laikipia County, Kenya
- Capture: DJI Air 2S, videos recorded in 5.3K
- Procedure: all flights were conducted above 20 meters from a closes animal.
Personal and Sensitive Information
- No humans can be distinguished in the videos.
- Data collection followed research licensing and animal care protocols (see Acknowledgments).
Authors
- Isla Duporge
- Maksim Kholiavchenko
- Roi Harel
- Scott Wolf
- Daniel Rubenstein
- Meg Crofoot
- Tanya Berger-Wolf
- Stephen Lee
- Julie Barreau
- Jenna Kline
- Michelle Ramirez
- Charles Stewart
Citation Information
Dataset
@misc{hdr_imageomics_institute_2026,
author = { Isla Duporge and Maksim Kholiavchenko and Roi Harel and Scott Wolf and Daniel Rubenstein and Tanya Berger-Wolf and Margaret Crofoot and Stephen Lee and Julie Barreau and Jenna Kline and Michelle Ramirez and Charles Stewart },
title = { BaboonLand Dataset: Tracking Primates in the Wild and Automating Behaviour Recognition from Drone Videos },
year = 2026,
url = { https://huggingface.co/datasets/imageomics/BaboonLand },
doi = { 10.57967/hf/7470 },
publisher = { Hugging Face }
}
Paper
@article{duporge2025baboonland,
title={BaboonLand Dataset: Tracking Primates in the Wild and Automating Behaviour Recognition from Drone Videos},
author={Duporge, Isla and Kholiavchenko, Maksim and Harel, Roi and Wolf, Scott and Rubenstein, Daniel I and Crofoot, Margaret C and Berger-Wolf, Tanya and Lee, Stephen J and Barreau, Julie and Kline, Jenna and others},
journal={International Journal of Computer Vision},
pages={1--12},
year={2025},
publisher={Springer}
}
Contributions / Acknowledgments
This material is based upon work supported by the National Science Foundation under Award No. 2118240 and Award No. 2112606. ID was supported by the National Academy of Sciences Research Associate Program and the United States Army Research Laboratory while conducting this study. ID collected all the UAV data on a Civil Aviation Authority Drone License CAA NQE Approval Number: 0216/1365 in conjunction with authorization from a KCAA operator under a Remote Pilot License. The data was gathered at the Mpala Research Centre in Kenya, in accordance with Research License No. NACOSTI/P/22/18214. The data collection protocol adhered strictly to the guidelines set forth by the Institutional Animal Care and Use Committee under permission No. IACUC 1835F.
- Downloads last month
- 29