python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of a behavior cloning (BC) agent.""" from acme.agents.tf.bc.learning import BCLearner
acme-master
acme/agents/tf/bc/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BC Learner implementation.""" from typing import Dict, List, Optional import acme from acme import types from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import numpy as np import sonnet as snt import tensorflow as tf class BCLearner(acme.Learner, tf2_savers.TFSaveable): """BC learner. This is the learning component of a BC agent. IE it takes a dataset as input and implements update functionality to learn from this dataset. """ def __init__(self, network: snt.Module, learning_rate: float, dataset: tf.data.Dataset, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = True): """Initializes the learner. Args: network: the BC network (the one being optimized) learning_rate: learning rate for the cross-entropy update. dataset: dataset to learn from. counter: Counter object for (potentially distributed) counting. logger: Logger object for writing logs to. checkpoint: boolean indicating whether to checkpoint the learner. """ self._counter = counter or counting.Counter() self._logger = logger or loggers.TerminalLogger('learner', time_delta=1.) # Get an iterator over the dataset. self._iterator = iter(dataset) # pytype: disable=wrong-arg-types # TODO(b/155086959): Fix type stubs and remove. self._network = network self._optimizer = snt.optimizers.Adam(learning_rate) self._variables: List[List[tf.Tensor]] = [network.trainable_variables] self._num_steps = tf.Variable(0, dtype=tf.int32) # Create a snapshotter object. if checkpoint: self._snapshotter = tf2_savers.Snapshotter( objects_to_save={'network': network}, time_delta_minutes=60.) else: self._snapshotter = None @tf.function def _step(self) -> Dict[str, tf.Tensor]: """Do a step of SGD and update the priorities.""" # Pull out the data needed for updates/priorities. inputs = next(self._iterator) transitions: types.Transition = inputs.data with tf.GradientTape() as tape: # Evaluate our networks. logits = self._network(transitions.observation) cce = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss = cce(transitions.action, logits) gradients = tape.gradient(loss, self._network.trainable_variables) self._optimizer.apply(gradients, self._network.trainable_variables) self._num_steps.assign_add(1) # Compute the global norm of the gradients for logging. global_gradient_norm = tf.linalg.global_norm(gradients) fetches = {'loss': loss, 'gradient_norm': global_gradient_norm} return fetches def step(self): # Do a batch of SGD. result = self._step() # Update our counts and record it. counts = self._counter.increment(steps=1) result.update(counts) # Snapshot and attempt to write logs. if self._snapshotter is not None: self._snapshotter.save() self._logger.write(result) def get_variables(self, names: List[str]) -> List[np.ndarray]: return tf2_utils.to_numpy(self._variables) @property def state(self): """Returns the stateful parts of the learner for checkpointing.""" return { 'network': self._network, 'optimizer': self._optimizer, 'num_steps': self._num_steps }
acme-master
acme/agents/tf/bc/learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration test for the distributed agent.""" from typing import Sequence import acme from acme import specs from acme.agents.tf import mpo from acme.testing import fakes from acme.tf import networks from acme.tf import utils as tf2_utils import launchpad as lp import numpy as np import sonnet as snt from absl.testing import absltest def make_networks( action_spec: specs.BoundedArray, policy_layer_sizes: Sequence[int] = (50, 50), critic_layer_sizes: Sequence[int] = (50, 50), ): """Creates networks used by the agent.""" num_dimensions = np.prod(action_spec.shape, dtype=int) observation_network = tf2_utils.batch_concat policy_network = snt.Sequential([ networks.LayerNormMLP(policy_layer_sizes, activate_final=True), networks.MultivariateNormalDiagHead( num_dimensions, tanh_mean=True, init_scale=0.3, fixed_scale=True, use_tfd_independent=False) ]) evaluator_network = snt.Sequential([ observation_network, policy_network, networks.StochasticMeanHead(), ]) # The multiplexer concatenates the (maybe transformed) observations/actions. multiplexer = networks.CriticMultiplexer( action_network=networks.ClipToSpec(action_spec)) critic_network = snt.Sequential([ multiplexer, networks.LayerNormMLP(critic_layer_sizes, activate_final=True), networks.NearZeroInitializedLinear(1), ]) return { 'policy': policy_network, 'critic': critic_network, 'observation': observation_network, 'evaluator': evaluator_network, } class DistributedAgentTest(absltest.TestCase): """Simple integration/smoke test for the distributed agent.""" def test_agent(self): agent = mpo.DistributedMPO( environment_factory=lambda x: fakes.ContinuousEnvironment(bounded=True), network_factory=make_networks, num_actors=2, batch_size=32, min_replay_size=32, max_replay_size=1000, ) program = agent.build() (learner_node,) = program.groups['learner'] learner_node.disable_run() lp.launch(program, launch_type='test_mt') learner: acme.Learner = learner_node.create_handle().dereference() for _ in range(5): learner.step() if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/mpo/agent_distributed_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the MPO distributed agent class.""" from typing import Callable, Dict, Optional import acme from acme import datasets from acme import specs from acme.adders import reverb as adders from acme.agents.tf import actors from acme.agents.tf.mpo import learning from acme.tf import networks from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.tf import variable_utils as tf2_variable_utils from acme.utils import counting from acme.utils import loggers from acme.utils import lp_utils import dm_env import launchpad as lp import reverb import sonnet as snt import tensorflow as tf class DistributedMPO: """Program definition for MPO.""" def __init__( self, environment_factory: Callable[[bool], dm_env.Environment], network_factory: Callable[[specs.BoundedArray], Dict[str, snt.Module]], num_actors: int = 1, num_caches: int = 0, environment_spec: Optional[specs.EnvironmentSpec] = None, batch_size: int = 256, prefetch_size: int = 4, min_replay_size: int = 1000, max_replay_size: int = 1000000, samples_per_insert: Optional[float] = 32.0, n_step: int = 5, num_samples: int = 20, additional_discount: float = 0.99, target_policy_update_period: int = 100, target_critic_update_period: int = 100, variable_update_period: int = 1000, policy_loss_factory: Optional[Callable[[], snt.Module]] = None, max_actor_steps: Optional[int] = None, log_every: float = 10.0, ): if environment_spec is None: environment_spec = specs.make_environment_spec(environment_factory(False)) self._environment_factory = environment_factory self._network_factory = network_factory self._policy_loss_factory = policy_loss_factory self._environment_spec = environment_spec self._num_actors = num_actors self._num_caches = num_caches self._batch_size = batch_size self._prefetch_size = prefetch_size self._min_replay_size = min_replay_size self._max_replay_size = max_replay_size self._samples_per_insert = samples_per_insert self._n_step = n_step self._additional_discount = additional_discount self._num_samples = num_samples self._target_policy_update_period = target_policy_update_period self._target_critic_update_period = target_critic_update_period self._variable_update_period = variable_update_period self._max_actor_steps = max_actor_steps self._log_every = log_every def replay(self): """The replay storage.""" if self._samples_per_insert is not None: # Create enough of an error buffer to give a 10% tolerance in rate. samples_per_insert_tolerance = 0.1 * self._samples_per_insert error_buffer = self._min_replay_size * samples_per_insert_tolerance limiter = reverb.rate_limiters.SampleToInsertRatio( min_size_to_sample=self._min_replay_size, samples_per_insert=self._samples_per_insert, error_buffer=error_buffer) else: limiter = reverb.rate_limiters.MinSize( min_size_to_sample=self._min_replay_size) replay_table = reverb.Table( name=adders.DEFAULT_PRIORITY_TABLE, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=self._max_replay_size, rate_limiter=limiter, signature=adders.NStepTransitionAdder.signature( self._environment_spec)) return [replay_table] def counter(self): return tf2_savers.CheckpointingRunner(counting.Counter(), time_delta_minutes=1, subdirectory='counter') def coordinator(self, counter: counting.Counter, max_actor_steps: int): return lp_utils.StepsLimiter(counter, max_actor_steps) def learner( self, replay: reverb.Client, counter: counting.Counter, ): """The Learning part of the agent.""" act_spec = self._environment_spec.actions obs_spec = self._environment_spec.observations # Create online and target networks. online_networks = self._network_factory(act_spec) target_networks = self._network_factory(act_spec) # Make sure observation networks are Sonnet Modules. observation_network = online_networks.get('observation', tf.identity) observation_network = tf2_utils.to_sonnet_module(observation_network) online_networks['observation'] = observation_network target_observation_network = target_networks.get('observation', tf.identity) target_observation_network = tf2_utils.to_sonnet_module( target_observation_network) target_networks['observation'] = target_observation_network # Get embedding spec and create observation network variables. emb_spec = tf2_utils.create_variables(observation_network, [obs_spec]) tf2_utils.create_variables(online_networks['policy'], [emb_spec]) tf2_utils.create_variables(online_networks['critic'], [emb_spec, act_spec]) tf2_utils.create_variables(target_networks['observation'], [obs_spec]) tf2_utils.create_variables(target_networks['policy'], [emb_spec]) tf2_utils.create_variables(target_networks['critic'], [emb_spec, act_spec]) # The dataset object to learn from. dataset = datasets.make_reverb_dataset( server_address=replay.server_address) dataset = dataset.batch(self._batch_size, drop_remainder=True) dataset = dataset.prefetch(self._prefetch_size) # Create a counter and logger for bookkeeping steps and performance. counter = counting.Counter(counter, 'learner') logger = loggers.make_default_logger( 'learner', time_delta=self._log_every, steps_key='learner_steps') # Create policy loss module if a factory is passed. if self._policy_loss_factory: policy_loss_module = self._policy_loss_factory() else: policy_loss_module = None # Return the learning agent. return learning.MPOLearner( policy_network=online_networks['policy'], critic_network=online_networks['critic'], observation_network=observation_network, target_policy_network=target_networks['policy'], target_critic_network=target_networks['critic'], target_observation_network=target_observation_network, discount=self._additional_discount, num_samples=self._num_samples, target_policy_update_period=self._target_policy_update_period, target_critic_update_period=self._target_critic_update_period, policy_loss_module=policy_loss_module, dataset=dataset, counter=counter, logger=logger) def actor( self, replay: reverb.Client, variable_source: acme.VariableSource, counter: counting.Counter, ) -> acme.EnvironmentLoop: """The actor process.""" action_spec = self._environment_spec.actions observation_spec = self._environment_spec.observations # Create environment and target networks to act with. environment = self._environment_factory(False) agent_networks = self._network_factory(action_spec) # Create a stochastic behavior policy. behavior_modules = [ agent_networks.get('observation', tf.identity), agent_networks.get('policy'), networks.StochasticSamplingHead() ] behavior_network = snt.Sequential(behavior_modules) # Ensure network variables are created. tf2_utils.create_variables(behavior_network, [observation_spec]) policy_variables = {'policy': behavior_network.variables} # Create the variable client responsible for keeping the actor up-to-date. variable_client = tf2_variable_utils.VariableClient( variable_source, policy_variables, update_period=self._variable_update_period) # Make sure not to use a random policy after checkpoint restoration by # assigning variables before running the environment loop. variable_client.update_and_wait() # Component to add things into replay. adder = adders.NStepTransitionAdder( client=replay, n_step=self._n_step, discount=self._additional_discount) # Create the agent. actor = actors.FeedForwardActor( policy_network=behavior_network, adder=adder, variable_client=variable_client) # Create logger and counter; actors will not spam bigtable. counter = counting.Counter(counter, 'actor') logger = loggers.make_default_logger( 'actor', save_data=False, time_delta=self._log_every, steps_key='actor_steps') # Create the run loop and return it. return acme.EnvironmentLoop(environment, actor, counter, logger) def evaluator( self, variable_source: acme.VariableSource, counter: counting.Counter, ): """The evaluation process.""" action_spec = self._environment_spec.actions observation_spec = self._environment_spec.observations # Create environment and target networks to act with. environment = self._environment_factory(True) agent_networks = self._network_factory(action_spec) # Create a stochastic behavior policy. evaluator_modules = [ agent_networks.get('observation', tf.identity), agent_networks.get('policy'), networks.StochasticMeanHead(), ] if isinstance(action_spec, specs.BoundedArray): evaluator_modules += [networks.ClipToSpec(action_spec)] evaluator_network = snt.Sequential(evaluator_modules) # Ensure network variables are created. tf2_utils.create_variables(evaluator_network, [observation_spec]) policy_variables = {'policy': evaluator_network.variables} # Create the variable client responsible for keeping the actor up-to-date. variable_client = tf2_variable_utils.VariableClient( variable_source, policy_variables, update_period=self._variable_update_period) # Make sure not to evaluate a random actor by assigning variables before # running the environment loop. variable_client.update_and_wait() # Create the agent. evaluator = actors.FeedForwardActor( policy_network=evaluator_network, variable_client=variable_client) # Create logger and counter. counter = counting.Counter(counter, 'evaluator') logger = loggers.make_default_logger( 'evaluator', time_delta=self._log_every, steps_key='evaluator_steps') # Create the run loop and return it. return acme.EnvironmentLoop(environment, evaluator, counter, logger) def build(self, name='mpo'): """Build the distributed agent topology.""" program = lp.Program(name=name) with program.group('replay'): replay = program.add_node(lp.ReverbNode(self.replay)) with program.group('counter'): counter = program.add_node(lp.CourierNode(self.counter)) if self._max_actor_steps: _ = program.add_node( lp.CourierNode(self.coordinator, counter, self._max_actor_steps)) with program.group('learner'): learner = program.add_node( lp.CourierNode(self.learner, replay, counter)) with program.group('evaluator'): program.add_node( lp.CourierNode(self.evaluator, learner, counter)) if not self._num_caches: # Use our learner as a single variable source. sources = [learner] else: with program.group('cacher'): # Create a set of learner caches. sources = [] for _ in range(self._num_caches): cacher = program.add_node( lp.CacherNode( learner, refresh_interval_ms=2000, stale_after_ms=4000)) sources.append(cacher) with program.group('actor'): # Add actors which pull round-robin from our variable sources. for actor_id in range(self._num_actors): source = sources[actor_id % len(sources)] program.add_node(lp.CourierNode(self.actor, replay, source, counter)) return program
acme-master
acme/agents/tf/mpo/agent_distributed.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementations of a MPO agent.""" from acme.agents.tf.mpo.agent import MPO from acme.agents.tf.mpo.agent_distributed import DistributedMPO from acme.agents.tf.mpo.learning import MPOLearner
acme-master
acme/agents/tf/mpo/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the MPO agent.""" import acme from acme import specs from acme.agents.tf import mpo from acme.testing import fakes from acme.tf import networks import numpy as np import sonnet as snt from absl.testing import absltest def make_networks( action_spec, policy_layer_sizes=(10, 10), critic_layer_sizes=(10, 10), ): """Creates networks used by the agent.""" num_dimensions = np.prod(action_spec.shape, dtype=int) critic_layer_sizes = list(critic_layer_sizes) + [1] policy_network = snt.Sequential([ networks.LayerNormMLP(policy_layer_sizes), networks.MultivariateNormalDiagHead(num_dimensions) ]) critic_network = networks.CriticMultiplexer( critic_network=networks.LayerNormMLP(critic_layer_sizes)) return { 'policy': policy_network, 'critic': critic_network, } class MPOTest(absltest.TestCase): def test_mpo(self): # Create a fake environment to test with. environment = fakes.ContinuousEnvironment(episode_length=10, bounded=False) spec = specs.make_environment_spec(environment) # Create networks. agent_networks = make_networks(spec.actions) # Construct the agent. agent = mpo.MPO( spec, policy_network=agent_networks['policy'], critic_network=agent_networks['critic'], batch_size=10, samples_per_insert=2, min_replay_size=10) # Try running the environment loop. We have no assertions here because all # we care about is that the agent runs without raising any errors. loop = acme.EnvironmentLoop(environment, agent) loop.run(num_episodes=2) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/mpo/agent_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MPO agent implementation.""" import copy from typing import Optional from acme import datasets from acme import specs from acme import types from acme.adders import reverb as adders from acme.agents import agent from acme.agents.tf import actors from acme.agents.tf.mpo import learning from acme.tf import networks from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import reverb import sonnet as snt import tensorflow as tf class MPO(agent.Agent): """MPO Agent. This implements a single-process MPO agent. This is an actor-critic algorithm that generates data via a behavior policy, inserts N-step transitions into a replay buffer, and periodically updates the policy (and as a result the behavior) by sampling uniformly from this buffer. This agent distinguishes itself from the DPG agent by using MPO to learn a stochastic policy. """ def __init__( self, environment_spec: specs.EnvironmentSpec, policy_network: snt.Module, critic_network: snt.Module, observation_network: types.TensorTransformation = tf.identity, discount: float = 0.99, batch_size: int = 256, prefetch_size: int = 4, target_policy_update_period: int = 100, target_critic_update_period: int = 100, min_replay_size: int = 1000, max_replay_size: int = 1000000, samples_per_insert: float = 32.0, policy_loss_module: Optional[snt.Module] = None, policy_optimizer: Optional[snt.Optimizer] = None, critic_optimizer: Optional[snt.Optimizer] = None, n_step: int = 5, num_samples: int = 20, clipping: bool = True, logger: Optional[loggers.Logger] = None, counter: Optional[counting.Counter] = None, checkpoint: bool = True, save_directory: str = '~/acme', replay_table_name: str = adders.DEFAULT_PRIORITY_TABLE, ): """Initialize the agent. Args: environment_spec: description of the actions, observations, etc. policy_network: the online (optimized) policy. critic_network: the online critic. observation_network: optional network to transform the observations before they are fed into any network. discount: discount to use for TD updates. batch_size: batch size for updates. prefetch_size: size to prefetch from replay. target_policy_update_period: number of updates to perform before updating the target policy network. target_critic_update_period: number of updates to perform before updating the target critic network. min_replay_size: minimum replay size before updating. max_replay_size: maximum replay size. samples_per_insert: number of samples to take from replay for every insert that is made. policy_loss_module: configured MPO loss function for the policy optimization; defaults to sensible values on the control suite. See `acme/tf/losses/mpo.py` for more details. policy_optimizer: optimizer to be used on the policy. critic_optimizer: optimizer to be used on the critic. n_step: number of steps to squash into a single transition. num_samples: number of actions to sample when doing a Monte Carlo integration with respect to the policy. clipping: whether to clip gradients by global norm. logger: logging object used to write to logs. counter: counter object used to keep track of steps. checkpoint: boolean indicating whether to checkpoint the learner. save_directory: string indicating where the learner should save checkpoints and snapshots. replay_table_name: string indicating what name to give the replay table. """ # Create a replay server to add data to. replay_table = reverb.Table( name=adders.DEFAULT_PRIORITY_TABLE, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=max_replay_size, rate_limiter=reverb.rate_limiters.MinSize(min_size_to_sample=1), signature=adders.NStepTransitionAdder.signature(environment_spec)) self._server = reverb.Server([replay_table], port=None) # The adder is used to insert observations into replay. address = f'localhost:{self._server.port}' adder = adders.NStepTransitionAdder( client=reverb.Client(address), n_step=n_step, discount=discount) # The dataset object to learn from. dataset = datasets.make_reverb_dataset( table=replay_table_name, server_address=address, batch_size=batch_size, prefetch_size=prefetch_size) # Make sure observation network is a Sonnet Module. observation_network = tf2_utils.to_sonnet_module(observation_network) # Create target networks before creating online/target network variables. target_policy_network = copy.deepcopy(policy_network) target_critic_network = copy.deepcopy(critic_network) target_observation_network = copy.deepcopy(observation_network) # Get observation and action specs. act_spec = environment_spec.actions obs_spec = environment_spec.observations emb_spec = tf2_utils.create_variables(observation_network, [obs_spec]) # Create the behavior policy. behavior_network = snt.Sequential([ observation_network, policy_network, networks.StochasticSamplingHead(), ]) # Create variables. tf2_utils.create_variables(policy_network, [emb_spec]) tf2_utils.create_variables(critic_network, [emb_spec, act_spec]) tf2_utils.create_variables(target_policy_network, [emb_spec]) tf2_utils.create_variables(target_critic_network, [emb_spec, act_spec]) tf2_utils.create_variables(target_observation_network, [obs_spec]) # Create the actor which defines how we take actions. actor = actors.FeedForwardActor( policy_network=behavior_network, adder=adder) # Create optimizers. policy_optimizer = policy_optimizer or snt.optimizers.Adam(1e-4) critic_optimizer = critic_optimizer or snt.optimizers.Adam(1e-4) # The learner updates the parameters (and initializes them). learner = learning.MPOLearner( policy_network=policy_network, critic_network=critic_network, observation_network=observation_network, target_policy_network=target_policy_network, target_critic_network=target_critic_network, target_observation_network=target_observation_network, policy_loss_module=policy_loss_module, policy_optimizer=policy_optimizer, critic_optimizer=critic_optimizer, clipping=clipping, discount=discount, num_samples=num_samples, target_policy_update_period=target_policy_update_period, target_critic_update_period=target_critic_update_period, dataset=dataset, logger=logger, counter=counter, checkpoint=checkpoint, save_directory=save_directory) super().__init__( actor=actor, learner=learner, min_observations=max(batch_size, min_replay_size), observations_per_step=float(batch_size) / samples_per_insert)
acme-master
acme/agents/tf/mpo/agent.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MPO learner implementation.""" import time from typing import List, Optional import acme from acme import types from acme.tf import losses from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import numpy as np import sonnet as snt import tensorflow as tf import trfl class MPOLearner(acme.Learner): """MPO learner.""" def __init__( self, policy_network: snt.Module, critic_network: snt.Module, target_policy_network: snt.Module, target_critic_network: snt.Module, discount: float, num_samples: int, target_policy_update_period: int, target_critic_update_period: int, dataset: tf.data.Dataset, observation_network: types.TensorTransformation = tf.identity, target_observation_network: types.TensorTransformation = tf.identity, policy_loss_module: Optional[snt.Module] = None, policy_optimizer: Optional[snt.Optimizer] = None, critic_optimizer: Optional[snt.Optimizer] = None, dual_optimizer: Optional[snt.Optimizer] = None, clipping: bool = True, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = True, save_directory: str = '~/acme', ): self._counter = counter or counting.Counter() self._logger = logger or loggers.make_default_logger('learner') self._discount = discount self._num_samples = num_samples self._clipping = clipping # Necessary to track when to update target networks. self._num_steps = tf.Variable(0, dtype=tf.int32) self._target_policy_update_period = target_policy_update_period self._target_critic_update_period = target_critic_update_period # Batch dataset and create iterator. # TODO(b/155086959): Fix type stubs and remove. self._iterator = iter(dataset) # pytype: disable=wrong-arg-types # Store online and target networks. self._policy_network = policy_network self._critic_network = critic_network self._target_policy_network = target_policy_network self._target_critic_network = target_critic_network # Make sure observation networks are snt.Module's so they have variables. self._observation_network = tf2_utils.to_sonnet_module(observation_network) self._target_observation_network = tf2_utils.to_sonnet_module( target_observation_network) self._policy_loss_module = policy_loss_module or losses.MPO( epsilon=1e-1, epsilon_penalty=1e-3, epsilon_mean=2.5e-3, epsilon_stddev=1e-6, init_log_temperature=10., init_log_alpha_mean=10., init_log_alpha_stddev=1000.) # Create the optimizers. self._critic_optimizer = critic_optimizer or snt.optimizers.Adam(1e-4) self._policy_optimizer = policy_optimizer or snt.optimizers.Adam(1e-4) self._dual_optimizer = dual_optimizer or snt.optimizers.Adam(1e-2) # Expose the variables. policy_network_to_expose = snt.Sequential( [self._target_observation_network, self._target_policy_network]) self._variables = { 'critic': self._target_critic_network.variables, 'policy': policy_network_to_expose.variables, } # Create a checkpointer and snapshotter object. self._checkpointer = None self._snapshotter = None if checkpoint: self._checkpointer = tf2_savers.Checkpointer( directory=save_directory, subdirectory='mpo_learner', objects_to_save={ 'counter': self._counter, 'policy': self._policy_network, 'critic': self._critic_network, 'observation_network': self._observation_network, 'target_policy': self._target_policy_network, 'target_critic': self._target_critic_network, 'target_observation_network': self._target_observation_network, 'policy_optimizer': self._policy_optimizer, 'critic_optimizer': self._critic_optimizer, 'dual_optimizer': self._dual_optimizer, 'policy_loss_module': self._policy_loss_module, 'num_steps': self._num_steps, }) self._snapshotter = tf2_savers.Snapshotter( directory=save_directory, objects_to_save={ 'policy': snt.Sequential([ self._target_observation_network, self._target_policy_network ]), }) # Do not record timestamps until after the first learning step is done. # This is to avoid including the time it takes for actors to come online and # fill the replay buffer. self._timestamp = None @tf.function def _step(self) -> types.Nest: # Update target network. online_policy_variables = self._policy_network.variables target_policy_variables = self._target_policy_network.variables online_critic_variables = ( *self._observation_network.variables, *self._critic_network.variables, ) target_critic_variables = ( *self._target_observation_network.variables, *self._target_critic_network.variables, ) # Make online policy -> target policy network update ops. if tf.math.mod(self._num_steps, self._target_policy_update_period) == 0: for src, dest in zip(online_policy_variables, target_policy_variables): dest.assign(src) # Make online critic -> target critic network update ops. if tf.math.mod(self._num_steps, self._target_critic_update_period) == 0: for src, dest in zip(online_critic_variables, target_critic_variables): dest.assign(src) # Increment number of learner steps for periodic update bookkeeping. self._num_steps.assign_add(1) # Get next batch of data. inputs = next(self._iterator) # Get data from replay (dropping extras if any). Note there is no # extra data here because we do not insert any into Reverb. transitions: types.Transition = inputs.data # Cast the additional discount to match the environment discount dtype. discount = tf.cast(self._discount, dtype=transitions.discount.dtype) with tf.GradientTape(persistent=True) as tape: # Maybe transform the observation before feeding into policy and critic. # Transforming the observations this way at the start of the learning # step effectively means that the policy and critic share observation # network weights. o_tm1 = self._observation_network(transitions.observation) # This stop_gradient prevents gradients to propagate into the target # observation network. In addition, since the online policy network is # evaluated at o_t, this also means the policy loss does not influence # the observation network training. o_t = tf.stop_gradient( self._target_observation_network(transitions.next_observation)) # Get action distributions from policy networks. online_action_distribution = self._policy_network(o_t) target_action_distribution = self._target_policy_network(o_t) # Get sampled actions to evaluate policy; of size [N, B, ...]. sampled_actions = target_action_distribution.sample(self._num_samples) tiled_o_t = tf2_utils.tile_tensor(o_t, self._num_samples) # [N, B, ...] # Compute the target critic's Q-value of the sampled actions in state o_t. sampled_q_t = self._target_critic_network( # Merge batch dimensions; to shape [N*B, ...]. snt.merge_leading_dims(tiled_o_t, num_dims=2), snt.merge_leading_dims(sampled_actions, num_dims=2)) # Reshape Q-value samples back to original batch dimensions and average # them to compute the TD-learning bootstrap target. sampled_q_t = tf.reshape(sampled_q_t, (self._num_samples, -1)) # [N, B] q_t = tf.reduce_mean(sampled_q_t, axis=0) # [B] # Compute online critic value of a_tm1 in state o_tm1. q_tm1 = self._critic_network(o_tm1, transitions.action) # [B, 1] q_tm1 = tf.squeeze(q_tm1, axis=-1) # [B]; necessary for trfl.td_learning. # Critic loss. critic_loss = trfl.td_learning(q_tm1, transitions.reward, discount * transitions.discount, q_t).loss critic_loss = tf.reduce_mean(critic_loss) # Actor learning. policy_loss, policy_stats = self._policy_loss_module( online_action_distribution=online_action_distribution, target_action_distribution=target_action_distribution, actions=sampled_actions, q_values=sampled_q_t) # For clarity, explicitly define which variables are trained by which loss. critic_trainable_variables = ( # In this agent, the critic loss trains the observation network. self._observation_network.trainable_variables + self._critic_network.trainable_variables) policy_trainable_variables = self._policy_network.trainable_variables # The following are the MPO dual variables, stored in the loss module. dual_trainable_variables = self._policy_loss_module.trainable_variables # Compute gradients. critic_gradients = tape.gradient(critic_loss, critic_trainable_variables) policy_gradients, dual_gradients = tape.gradient( policy_loss, (policy_trainable_variables, dual_trainable_variables)) # Delete the tape manually because of the persistent=True flag. del tape # Maybe clip gradients. if self._clipping: policy_gradients = tuple(tf.clip_by_global_norm(policy_gradients, 40.)[0]) critic_gradients = tuple(tf.clip_by_global_norm(critic_gradients, 40.)[0]) # Apply gradients. self._critic_optimizer.apply(critic_gradients, critic_trainable_variables) self._policy_optimizer.apply(policy_gradients, policy_trainable_variables) self._dual_optimizer.apply(dual_gradients, dual_trainable_variables) # Losses to track. fetches = { 'critic_loss': critic_loss, 'policy_loss': policy_loss, } fetches.update(policy_stats) # Log MPO stats. return fetches def step(self): # Run the learning step. fetches = self._step() # Compute elapsed time. timestamp = time.time() elapsed_time = timestamp - self._timestamp if self._timestamp else 0 self._timestamp = timestamp # Update our counts and record it. counts = self._counter.increment(steps=1, walltime=elapsed_time) fetches.update(counts) # Checkpoint and attempt to write the logs. if self._checkpointer is not None: self._checkpointer.save() if self._snapshotter is not None: self._snapshotter.save() self._logger.write(fetches) def get_variables(self, names: List[str]) -> List[List[np.ndarray]]: return [tf2_utils.to_numpy(self._variables[name]) for name in names]
acme-master
acme/agents/tf/mpo/learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration test for the distributed agent.""" import acme from acme import specs from acme.agents.tf import d4pg from acme.testing import fakes from acme.tf import networks from acme.tf import utils as tf2_utils import launchpad as lp import numpy as np import sonnet as snt from absl.testing import absltest def make_networks(action_spec: specs.BoundedArray): """Simple networks for testing..""" num_dimensions = np.prod(action_spec.shape, dtype=int) policy_network = snt.Sequential([ networks.LayerNormMLP([50], activate_final=True), networks.NearZeroInitializedLinear(num_dimensions), networks.TanhToSpec(action_spec) ]) # The multiplexer concatenates the (maybe transformed) observations/actions. critic_network = snt.Sequential([ networks.CriticMultiplexer( critic_network=networks.LayerNormMLP( [50], activate_final=True)), networks.DiscreteValuedHead(-1., 1., 10) ]) return { 'policy': policy_network, 'critic': critic_network, 'observation': tf2_utils.batch_concat, } class DistributedAgentTest(absltest.TestCase): """Simple integration/smoke test for the distributed agent.""" def test_control_suite(self): """Tests that the agent can run on the control suite without crashing.""" agent = d4pg.DistributedD4PG( environment_factory=lambda x: fakes.ContinuousEnvironment(bounded=True), network_factory=make_networks, accelerator='CPU', num_actors=2, batch_size=32, min_replay_size=32, max_replay_size=1000, ) program = agent.build() (learner_node,) = program.groups['learner'] learner_node.disable_run() lp.launch(program, launch_type='test_mt') learner: acme.Learner = learner_node.create_handle().dereference() for _ in range(5): learner.step() if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/d4pg/agent_distributed_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the D4PG agent class.""" import copy from typing import Callable, Dict, Optional import acme from acme import specs from acme.agents.tf.d4pg import agent from acme.tf import savers as tf2_savers from acme.utils import counting from acme.utils import loggers from acme.utils import lp_utils import dm_env import launchpad as lp import reverb import sonnet as snt import tensorflow as tf # Valid values of the "accelerator" argument. _ACCELERATORS = ('CPU', 'GPU', 'TPU') class DistributedD4PG: """Program definition for D4PG.""" def __init__( self, environment_factory: Callable[[bool], dm_env.Environment], network_factory: Callable[[specs.BoundedArray], Dict[str, snt.Module]], accelerator: Optional[str] = None, num_actors: int = 1, num_caches: int = 0, environment_spec: Optional[specs.EnvironmentSpec] = None, batch_size: int = 256, prefetch_size: int = 4, min_replay_size: int = 1000, max_replay_size: int = 1000000, samples_per_insert: Optional[float] = 32.0, n_step: int = 5, sigma: float = 0.3, clipping: bool = True, discount: float = 0.99, policy_optimizer: Optional[snt.Optimizer] = None, critic_optimizer: Optional[snt.Optimizer] = None, target_update_period: int = 100, variable_update_period: int = 1000, max_actor_steps: Optional[int] = None, log_every: float = 10.0, ): if accelerator is not None and accelerator not in _ACCELERATORS: raise ValueError(f'Accelerator must be one of {_ACCELERATORS}, ' f'not "{accelerator}".') if not environment_spec: environment_spec = specs.make_environment_spec(environment_factory(False)) # TODO(mwhoffman): Make network_factory directly return the struct. # TODO(mwhoffman): Make the factory take the entire spec. def wrapped_network_factory(action_spec): networks_dict = network_factory(action_spec) networks = agent.D4PGNetworks( policy_network=networks_dict.get('policy'), critic_network=networks_dict.get('critic'), observation_network=networks_dict.get('observation', tf.identity)) return networks self._environment_factory = environment_factory self._network_factory = wrapped_network_factory self._environment_spec = environment_spec self._sigma = sigma self._num_actors = num_actors self._num_caches = num_caches self._max_actor_steps = max_actor_steps self._log_every = log_every self._accelerator = accelerator self._variable_update_period = variable_update_period self._builder = agent.D4PGBuilder( # TODO(mwhoffman): pass the config dataclass in directly. # TODO(mwhoffman): use the limiter rather than the workaround below. agent.D4PGConfig( accelerator=accelerator, discount=discount, batch_size=batch_size, prefetch_size=prefetch_size, target_update_period=target_update_period, variable_update_period=variable_update_period, policy_optimizer=policy_optimizer, critic_optimizer=critic_optimizer, min_replay_size=min_replay_size, max_replay_size=max_replay_size, samples_per_insert=samples_per_insert, n_step=n_step, sigma=sigma, clipping=clipping, )) def replay(self): """The replay storage.""" return self._builder.make_replay_tables(self._environment_spec) def counter(self): return tf2_savers.CheckpointingRunner(counting.Counter(), time_delta_minutes=1, subdirectory='counter') def coordinator(self, counter: counting.Counter): return lp_utils.StepsLimiter(counter, self._max_actor_steps) def learner( self, replay: reverb.Client, counter: counting.Counter, ): """The Learning part of the agent.""" # If we are running on multiple accelerator devices, this replicates # weights and updates across devices. replicator = agent.get_replicator(self._accelerator) with replicator.scope(): # Create the networks to optimize (online) and target networks. online_networks = self._network_factory(self._environment_spec.actions) target_networks = copy.deepcopy(online_networks) # Initialize the networks. online_networks.init(self._environment_spec) target_networks.init(self._environment_spec) dataset = self._builder.make_dataset_iterator(replay) counter = counting.Counter(counter, 'learner') logger = loggers.make_default_logger( 'learner', time_delta=self._log_every, steps_key='learner_steps') return self._builder.make_learner( networks=(online_networks, target_networks), dataset=dataset, counter=counter, logger=logger, checkpoint=True, ) def actor( self, replay: reverb.Client, variable_source: acme.VariableSource, counter: counting.Counter, ) -> acme.EnvironmentLoop: """The actor process.""" # Create the behavior policy. networks = self._network_factory(self._environment_spec.actions) networks.init(self._environment_spec) policy_network = networks.make_policy( environment_spec=self._environment_spec, sigma=self._sigma, ) # Create the agent. actor = self._builder.make_actor( policy_network=policy_network, adder=self._builder.make_adder(replay), variable_source=variable_source, ) # Create the environment. environment = self._environment_factory(False) # Create logger and counter; actors will not spam bigtable. counter = counting.Counter(counter, 'actor') logger = loggers.make_default_logger( 'actor', save_data=False, time_delta=self._log_every, steps_key='actor_steps') # Create the loop to connect environment and agent. return acme.EnvironmentLoop(environment, actor, counter, logger) def evaluator( self, variable_source: acme.VariableSource, counter: counting.Counter, logger: Optional[loggers.Logger] = None, ): """The evaluation process.""" # Create the behavior policy. networks = self._network_factory(self._environment_spec.actions) networks.init(self._environment_spec) policy_network = networks.make_policy(self._environment_spec) # Create the agent. actor = self._builder.make_actor( policy_network=policy_network, variable_source=variable_source, ) # Make the environment. environment = self._environment_factory(True) # Create logger and counter. counter = counting.Counter(counter, 'evaluator') logger = logger or loggers.make_default_logger( 'evaluator', time_delta=self._log_every, steps_key='evaluator_steps', ) # Create the run loop and return it. return acme.EnvironmentLoop(environment, actor, counter, logger) def build(self, name='d4pg'): """Build the distributed agent topology.""" program = lp.Program(name=name) with program.group('replay'): replay = program.add_node(lp.ReverbNode(self.replay)) with program.group('counter'): counter = program.add_node(lp.CourierNode(self.counter)) if self._max_actor_steps: with program.group('coordinator'): _ = program.add_node(lp.CourierNode(self.coordinator, counter)) with program.group('learner'): learner = program.add_node(lp.CourierNode(self.learner, replay, counter)) with program.group('evaluator'): program.add_node(lp.CourierNode(self.evaluator, learner, counter)) if not self._num_caches: # Use our learner as a single variable source. sources = [learner] else: with program.group('cacher'): # Create a set of learner caches. sources = [] for _ in range(self._num_caches): cacher = program.add_node( lp.CacherNode( learner, refresh_interval_ms=2000, stale_after_ms=4000)) sources.append(cacher) with program.group('actor'): # Add actors which pull round-robin from our variable sources. for actor_id in range(self._num_actors): source = sources[actor_id % len(sources)] program.add_node(lp.CourierNode(self.actor, replay, source, counter)) return program
acme-master
acme/agents/tf/d4pg/agent_distributed.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementations of a D4PG agent.""" from acme.agents.tf.d4pg.agent import D4PG from acme.agents.tf.d4pg.agent_distributed import DistributedD4PG from acme.agents.tf.d4pg.learning import D4PGLearner from acme.agents.tf.d4pg.networks import make_default_networks
acme-master
acme/agents/tf/d4pg/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Shared helpers for different experiment flavours.""" from typing import Mapping, Sequence from acme import specs from acme import types from acme.tf import networks from acme.tf import utils as tf2_utils import numpy as np import sonnet as snt def make_default_networks( action_spec: specs.BoundedArray, policy_layer_sizes: Sequence[int] = (256, 256, 256), critic_layer_sizes: Sequence[int] = (512, 512, 256), vmin: float = -150., vmax: float = 150., num_atoms: int = 51, ) -> Mapping[str, types.TensorTransformation]: """Creates networks used by the agent.""" # Get total number of action dimensions from action spec. num_dimensions = np.prod(action_spec.shape, dtype=int) # Create the shared observation network; here simply a state-less operation. observation_network = tf2_utils.batch_concat # Create the policy network. policy_network = snt.Sequential([ networks.LayerNormMLP(policy_layer_sizes, activate_final=True), networks.NearZeroInitializedLinear(num_dimensions), networks.TanhToSpec(action_spec), ]) # Create the critic network. critic_network = snt.Sequential([ # The multiplexer concatenates the observations/actions. networks.CriticMultiplexer(), networks.LayerNormMLP(critic_layer_sizes, activate_final=True), networks.DiscreteValuedHead(vmin, vmax, num_atoms), ]) return { 'policy': policy_network, 'critic': critic_network, 'observation': observation_network, }
acme-master
acme/agents/tf/d4pg/networks.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the D4PG agent.""" import sys from typing import Dict, Sequence import acme from acme import specs from acme import types from acme.agents.tf import d4pg from acme.testing import fakes from acme.tf import networks import numpy as np import sonnet as snt import tensorflow as tf from absl.testing import absltest def make_networks( action_spec: types.NestedSpec, policy_layer_sizes: Sequence[int] = (10, 10), critic_layer_sizes: Sequence[int] = (10, 10), vmin: float = -150., vmax: float = 150., num_atoms: int = 51, ) -> Dict[str, snt.Module]: """Creates networks used by the agent.""" num_dimensions = np.prod(action_spec.shape, dtype=int) policy_layer_sizes = list(policy_layer_sizes) + [num_dimensions] policy_network = snt.Sequential( [networks.LayerNormMLP(policy_layer_sizes), tf.tanh]) critic_network = snt.Sequential([ networks.CriticMultiplexer( critic_network=networks.LayerNormMLP( critic_layer_sizes, activate_final=True)), networks.DiscreteValuedHead(vmin, vmax, num_atoms) ]) return { 'policy': policy_network, 'critic': critic_network, } class D4PGTest(absltest.TestCase): def test_d4pg(self): # Create a fake environment to test with. environment = fakes.ContinuousEnvironment(episode_length=10, bounded=True) spec = specs.make_environment_spec(environment) # Create the networks. agent_networks = make_networks(spec.actions) # Construct the agent. agent = d4pg.D4PG( environment_spec=spec, accelerator='CPU', policy_network=agent_networks['policy'], critic_network=agent_networks['critic'], batch_size=10, samples_per_insert=2, min_replay_size=10, ) # Try running the environment loop. We have no assertions here because all # we care about is that the agent runs without raising any errors. loop = acme.EnvironmentLoop(environment, agent) loop.run(num_episodes=2) # Imports check if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/d4pg/agent_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """D4PG agent implementation.""" import copy import dataclasses import functools from typing import Iterator, List, Optional, Tuple, Union, Sequence from acme import adders from acme import core from acme import datasets from acme import specs from acme import types from acme.adders import reverb as reverb_adders from acme.agents import agent from acme.agents.tf import actors from acme.agents.tf.d4pg import learning from acme.tf import networks as network_utils from acme.tf import utils from acme.tf import variable_utils from acme.utils import counting from acme.utils import loggers import reverb import sonnet as snt import tensorflow as tf Replicator = Union[snt.distribute.Replicator, snt.distribute.TpuReplicator] @dataclasses.dataclass class D4PGConfig: """Configuration options for the D4PG agent.""" accelerator: Optional[str] = None discount: float = 0.99 batch_size: int = 256 prefetch_size: int = 4 target_update_period: int = 100 variable_update_period: int = 1000 policy_optimizer: Optional[snt.Optimizer] = None critic_optimizer: Optional[snt.Optimizer] = None min_replay_size: int = 1000 max_replay_size: int = 1000000 samples_per_insert: Optional[float] = 32.0 n_step: int = 5 sigma: float = 0.3 clipping: bool = True replay_table_name: str = reverb_adders.DEFAULT_PRIORITY_TABLE @dataclasses.dataclass class D4PGNetworks: """Structure containing the networks for D4PG.""" policy_network: snt.Module critic_network: snt.Module observation_network: snt.Module def __init__( self, policy_network: snt.Module, critic_network: snt.Module, observation_network: types.TensorTransformation, ): # This method is implemented (rather than added by the dataclass decorator) # in order to allow observation network to be passed as an arbitrary tensor # transformation rather than as a snt Module. # TODO(mwhoffman): use Protocol rather than Module/TensorTransformation. self.policy_network = policy_network self.critic_network = critic_network self.observation_network = utils.to_sonnet_module(observation_network) def init(self, environment_spec: specs.EnvironmentSpec): """Initialize the networks given an environment spec.""" # Get observation and action specs. act_spec = environment_spec.actions obs_spec = environment_spec.observations # Create variables for the observation net and, as a side-effect, get a # spec describing the embedding space. emb_spec = utils.create_variables(self.observation_network, [obs_spec]) # Create variables for the policy and critic nets. _ = utils.create_variables(self.policy_network, [emb_spec]) _ = utils.create_variables(self.critic_network, [emb_spec, act_spec]) def make_policy( self, environment_spec: specs.EnvironmentSpec, sigma: float = 0.0, ) -> snt.Module: """Create a single network which evaluates the policy.""" # Stack the observation and policy networks. stack = [ self.observation_network, self.policy_network, ] # If a stochastic/non-greedy policy is requested, add Gaussian noise on # top to enable a simple form of exploration. # TODO(mwhoffman): Refactor this to remove it from the class. if sigma > 0.0: stack += [ network_utils.ClippedGaussian(sigma), network_utils.ClipToSpec(environment_spec.actions), ] # Return a network which sequentially evaluates everything in the stack. return snt.Sequential(stack) class D4PGBuilder: """Builder for D4PG which constructs individual components of the agent.""" def __init__(self, config: D4PGConfig): self._config = config def make_replay_tables( self, environment_spec: specs.EnvironmentSpec, ) -> List[reverb.Table]: """Create tables to insert data into.""" if self._config.samples_per_insert is None: # We will take a samples_per_insert ratio of None to mean that there is # no limit, i.e. this only implies a min size limit. limiter = reverb.rate_limiters.MinSize(self._config.min_replay_size) else: # Create enough of an error buffer to give a 10% tolerance in rate. samples_per_insert_tolerance = 0.1 * self._config.samples_per_insert error_buffer = self._config.min_replay_size * samples_per_insert_tolerance limiter = reverb.rate_limiters.SampleToInsertRatio( min_size_to_sample=self._config.min_replay_size, samples_per_insert=self._config.samples_per_insert, error_buffer=error_buffer) replay_table = reverb.Table( name=self._config.replay_table_name, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=self._config.max_replay_size, rate_limiter=limiter, signature=reverb_adders.NStepTransitionAdder.signature( environment_spec)) return [replay_table] def make_dataset_iterator( self, reverb_client: reverb.Client, ) -> Iterator[reverb.ReplaySample]: """Create a dataset iterator to use for learning/updating the agent.""" # The dataset provides an interface to sample from replay. dataset = datasets.make_reverb_dataset( table=self._config.replay_table_name, server_address=reverb_client.server_address, batch_size=self._config.batch_size, prefetch_size=self._config.prefetch_size) replicator = get_replicator(self._config.accelerator) dataset = replicator.experimental_distribute_dataset(dataset) # TODO(b/155086959): Fix type stubs and remove. return iter(dataset) # pytype: disable=wrong-arg-types def make_adder( self, replay_client: reverb.Client, ) -> adders.Adder: """Create an adder which records data generated by the actor/environment.""" return reverb_adders.NStepTransitionAdder( priority_fns={self._config.replay_table_name: lambda x: 1.}, client=replay_client, n_step=self._config.n_step, discount=self._config.discount) def make_actor( self, policy_network: snt.Module, adder: Optional[adders.Adder] = None, variable_source: Optional[core.VariableSource] = None, ): """Create an actor instance.""" if variable_source: # Create the variable client responsible for keeping the actor up-to-date. variable_client = variable_utils.VariableClient( client=variable_source, variables={'policy': policy_network.variables}, update_period=self._config.variable_update_period, ) # Make sure not to use a random policy after checkpoint restoration by # assigning variables before running the environment loop. variable_client.update_and_wait() else: variable_client = None # Create the actor which defines how we take actions. return actors.FeedForwardActor( policy_network=policy_network, adder=adder, variable_client=variable_client, ) def make_learner( self, networks: Tuple[D4PGNetworks, D4PGNetworks], dataset: Iterator[reverb.ReplaySample], counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = False, ): """Creates an instance of the learner.""" online_networks, target_networks = networks # The learner updates the parameters (and initializes them). return learning.D4PGLearner( policy_network=online_networks.policy_network, critic_network=online_networks.critic_network, observation_network=online_networks.observation_network, target_policy_network=target_networks.policy_network, target_critic_network=target_networks.critic_network, target_observation_network=target_networks.observation_network, policy_optimizer=self._config.policy_optimizer, critic_optimizer=self._config.critic_optimizer, clipping=self._config.clipping, discount=self._config.discount, target_update_period=self._config.target_update_period, dataset_iterator=dataset, replicator=get_replicator(self._config.accelerator), counter=counter, logger=logger, checkpoint=checkpoint, ) class D4PG(agent.Agent): """D4PG Agent. This implements a single-process D4PG agent. This is an actor-critic algorithm that generates data via a behavior policy, inserts N-step transitions into a replay buffer, and periodically updates the policy (and as a result the behavior) by sampling uniformly from this buffer. """ def __init__( self, environment_spec: specs.EnvironmentSpec, policy_network: snt.Module, critic_network: snt.Module, observation_network: types.TensorTransformation = tf.identity, accelerator: Optional[str] = None, discount: float = 0.99, batch_size: int = 256, prefetch_size: int = 4, target_update_period: int = 100, policy_optimizer: Optional[snt.Optimizer] = None, critic_optimizer: Optional[snt.Optimizer] = None, min_replay_size: int = 1000, max_replay_size: int = 1000000, samples_per_insert: float = 32.0, n_step: int = 5, sigma: float = 0.3, clipping: bool = True, replay_table_name: str = reverb_adders.DEFAULT_PRIORITY_TABLE, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = True, ): """Initialize the agent. Args: environment_spec: description of the actions, observations, etc. policy_network: the online (optimized) policy. critic_network: the online critic. observation_network: optional network to transform the observations before they are fed into any network. accelerator: 'TPU', 'GPU', or 'CPU'. If omitted, the first available accelerator type from ['TPU', 'GPU', 'CPU'] will be selected. discount: discount to use for TD updates. batch_size: batch size for updates. prefetch_size: size to prefetch from replay. target_update_period: number of learner steps to perform before updating the target networks. policy_optimizer: optimizer for the policy network updates. critic_optimizer: optimizer for the critic network updates. min_replay_size: minimum replay size before updating. max_replay_size: maximum replay size. samples_per_insert: number of samples to take from replay for every insert that is made. n_step: number of steps to squash into a single transition. sigma: standard deviation of zero-mean, Gaussian exploration noise. clipping: whether to clip gradients by global norm. replay_table_name: string indicating what name to give the replay table. counter: counter object used to keep track of steps. logger: logger object to be used by learner. checkpoint: boolean indicating whether to checkpoint the learner. """ if not accelerator: accelerator = _get_first_available_accelerator_type(['TPU', 'GPU', 'CPU']) # Create the Builder object which will internally create agent components. builder = D4PGBuilder( # TODO(mwhoffman): pass the config dataclass in directly. # TODO(mwhoffman): use the limiter rather than the workaround below. # Right now this modifies min_replay_size and samples_per_insert so that # they are not controlled by a limiter and are instead handled by the # Agent base class (the above TODO directly references this behavior). D4PGConfig( accelerator=accelerator, discount=discount, batch_size=batch_size, prefetch_size=prefetch_size, target_update_period=target_update_period, policy_optimizer=policy_optimizer, critic_optimizer=critic_optimizer, min_replay_size=1, # Let the Agent class handle this. max_replay_size=max_replay_size, samples_per_insert=None, # Let the Agent class handle this. n_step=n_step, sigma=sigma, clipping=clipping, replay_table_name=replay_table_name, )) replicator = get_replicator(accelerator) with replicator.scope(): # TODO(mwhoffman): pass the network dataclass in directly. online_networks = D4PGNetworks(policy_network=policy_network, critic_network=critic_network, observation_network=observation_network) # Target networks are just a copy of the online networks. target_networks = copy.deepcopy(online_networks) # Initialize the networks. online_networks.init(environment_spec) target_networks.init(environment_spec) # TODO(mwhoffman): either make this Dataclass or pass only one struct. # The network struct passed to make_learner is just a tuple for the # time-being (for backwards compatibility). networks = (online_networks, target_networks) # Create the behavior policy. policy_network = online_networks.make_policy(environment_spec, sigma) # Create the replay server and grab its address. replay_tables = builder.make_replay_tables(environment_spec) replay_server = reverb.Server(replay_tables, port=None) replay_client = reverb.Client(f'localhost:{replay_server.port}') # Create actor, dataset, and learner for generating, storing, and consuming # data respectively. adder = builder.make_adder(replay_client) actor = builder.make_actor(policy_network, adder) dataset = builder.make_dataset_iterator(replay_client) learner = builder.make_learner(networks, dataset, counter, logger, checkpoint) super().__init__( actor=actor, learner=learner, min_observations=max(batch_size, min_replay_size), observations_per_step=float(batch_size) / samples_per_insert) # Save the replay so we don't garbage collect it. self._replay_server = replay_server def _ensure_accelerator(accelerator: str) -> str: """Checks for the existence of the expected accelerator type. Args: accelerator: 'CPU', 'GPU' or 'TPU'. Returns: The validated `accelerator` argument. Raises: RuntimeError: Thrown if the expected accelerator isn't found. """ devices = tf.config.get_visible_devices(device_type=accelerator) if devices: return accelerator else: error_messages = [f'Couldn\'t find any {accelerator} devices.', 'tf.config.get_visible_devices() returned:'] error_messages.extend([str(d) for d in devices]) raise RuntimeError('\n'.join(error_messages)) def _get_first_available_accelerator_type( wishlist: Sequence[str] = ('TPU', 'GPU', 'CPU')) -> str: """Returns the first available accelerator type listed in a wishlist. Args: wishlist: A sequence of elements from {'CPU', 'GPU', 'TPU'}, listed in order of descending preference. Returns: The first available accelerator type from `wishlist`. Raises: RuntimeError: Thrown if no accelerators from the `wishlist` are found. """ get_visible_devices = tf.config.get_visible_devices for wishlist_device in wishlist: devices = get_visible_devices(device_type=wishlist_device) if devices: return wishlist_device available = ', '.join( sorted(frozenset([d.type for d in get_visible_devices()]))) raise RuntimeError( 'Couldn\'t find any devices from {wishlist}.' + f'Only the following types are available: {available}.') # Only instantiate one replicator per (process, accelerator type), in case # a replicator stores state that needs to be carried between its method calls. @functools.lru_cache() def get_replicator(accelerator: Optional[str]) -> Replicator: """Returns a replicator instance appropriate for the given accelerator. This caches the instance using functools.cache, so that only one replicator is instantiated per process and argument value. Args: accelerator: None, 'TPU', 'GPU', or 'CPU'. If None, the first available accelerator type will be chosen from ('TPU', 'GPU', 'CPU'). Returns: A replicator, for replciating weights, datasets, and updates across one or more accelerators. """ if accelerator: accelerator = _ensure_accelerator(accelerator) else: accelerator = _get_first_available_accelerator_type() if accelerator == 'TPU': tf.tpu.experimental.initialize_tpu_system() return snt.distribute.TpuReplicator() else: return snt.distribute.Replicator()
acme-master
acme/agents/tf/d4pg/agent.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """D4PG learner implementation.""" import time from typing import Dict, Iterator, List, Optional, Union, Sequence import acme from acme import types from acme.tf import losses from acme.tf import networks as acme_nets from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import numpy as np import reverb import sonnet as snt import tensorflow as tf import tree Replicator = Union[snt.distribute.Replicator, snt.distribute.TpuReplicator] class D4PGLearner(acme.Learner): """D4PG learner. This is the learning component of a D4PG agent. IE it takes a dataset as input and implements update functionality to learn from this dataset. """ def __init__( self, policy_network: snt.Module, critic_network: snt.Module, target_policy_network: snt.Module, target_critic_network: snt.Module, discount: float, target_update_period: int, dataset_iterator: Iterator[reverb.ReplaySample], replicator: Optional[Replicator] = None, observation_network: types.TensorTransformation = lambda x: x, target_observation_network: types.TensorTransformation = lambda x: x, policy_optimizer: Optional[snt.Optimizer] = None, critic_optimizer: Optional[snt.Optimizer] = None, clipping: bool = True, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = True, ): """Initializes the learner. Args: policy_network: the online (optimized) policy. critic_network: the online critic. target_policy_network: the target policy (which lags behind the online policy). target_critic_network: the target critic. discount: discount to use for TD updates. target_update_period: number of learner steps to perform before updating the target networks. dataset_iterator: dataset to learn from, whether fixed or from a replay buffer (see `acme.datasets.reverb.make_reverb_dataset` documentation). replicator: Replicates variables and their update methods over multiple accelerators, such as the multiple chips in a TPU. observation_network: an optional online network to process observations before the policy and the critic. target_observation_network: the target observation network. policy_optimizer: the optimizer to be applied to the DPG (policy) loss. critic_optimizer: the optimizer to be applied to the distributional Bellman loss. clipping: whether to clip gradients by global norm. counter: counter object used to keep track of steps. logger: logger object to be used by learner. checkpoint: boolean indicating whether to checkpoint the learner. """ # Store online and target networks. self._policy_network = policy_network self._critic_network = critic_network self._target_policy_network = target_policy_network self._target_critic_network = target_critic_network # Make sure observation networks are snt.Module's so they have variables. self._observation_network = tf2_utils.to_sonnet_module(observation_network) self._target_observation_network = tf2_utils.to_sonnet_module( target_observation_network) # General learner book-keeping and loggers. self._counter = counter or counting.Counter() self._logger = logger or loggers.make_default_logger('learner') # Other learner parameters. self._discount = discount self._clipping = clipping # Replicates Variables across multiple accelerators if not replicator: accelerator = _get_first_available_accelerator_type() if accelerator == 'TPU': replicator = snt.distribute.TpuReplicator() else: replicator = snt.distribute.Replicator() self._replicator = replicator with replicator.scope(): # Necessary to track when to update target networks. self._num_steps = tf.Variable(0, dtype=tf.int32) self._target_update_period = target_update_period # Create optimizers if they aren't given. self._critic_optimizer = critic_optimizer or snt.optimizers.Adam(1e-4) self._policy_optimizer = policy_optimizer or snt.optimizers.Adam(1e-4) # Batch dataset and create iterator. self._iterator = dataset_iterator # Expose the variables. policy_network_to_expose = snt.Sequential( [self._target_observation_network, self._target_policy_network]) self._variables = { 'critic': self._target_critic_network.variables, 'policy': policy_network_to_expose.variables, } # Create a checkpointer and snapshotter objects. self._checkpointer = None self._snapshotter = None if checkpoint: self._checkpointer = tf2_savers.Checkpointer( subdirectory='d4pg_learner', objects_to_save={ 'counter': self._counter, 'policy': self._policy_network, 'critic': self._critic_network, 'observation': self._observation_network, 'target_policy': self._target_policy_network, 'target_critic': self._target_critic_network, 'target_observation': self._target_observation_network, 'policy_optimizer': self._policy_optimizer, 'critic_optimizer': self._critic_optimizer, 'num_steps': self._num_steps, }) critic_mean = snt.Sequential( [self._critic_network, acme_nets.StochasticMeanHead()]) self._snapshotter = tf2_savers.Snapshotter( objects_to_save={ 'policy': self._policy_network, 'critic': critic_mean, }) # Do not record timestamps until after the first learning step is done. # This is to avoid including the time it takes for actors to come online and # fill the replay buffer. self._timestamp = None @tf.function def _step(self, sample) -> Dict[str, tf.Tensor]: transitions: types.Transition = sample.data # Assuming ReverbSample. # Cast the additional discount to match the environment discount dtype. discount = tf.cast(self._discount, dtype=transitions.discount.dtype) with tf.GradientTape(persistent=True) as tape: # Maybe transform the observation before feeding into policy and critic. # Transforming the observations this way at the start of the learning # step effectively means that the policy and critic share observation # network weights. o_tm1 = self._observation_network(transitions.observation) o_t = self._target_observation_network(transitions.next_observation) # This stop_gradient prevents gradients to propagate into the target # observation network. In addition, since the online policy network is # evaluated at o_t, this also means the policy loss does not influence # the observation network training. o_t = tree.map_structure(tf.stop_gradient, o_t) # Critic learning. q_tm1 = self._critic_network(o_tm1, transitions.action) q_t = self._target_critic_network(o_t, self._target_policy_network(o_t)) # Critic loss. critic_loss = losses.categorical(q_tm1, transitions.reward, discount * transitions.discount, q_t) critic_loss = tf.reduce_mean(critic_loss, axis=[0]) # Actor learning. dpg_a_t = self._policy_network(o_t) dpg_z_t = self._critic_network(o_t, dpg_a_t) dpg_q_t = dpg_z_t.mean() # Actor loss. If clipping is true use dqda clipping and clip the norm. dqda_clipping = 1.0 if self._clipping else None policy_loss = losses.dpg( dpg_q_t, dpg_a_t, tape=tape, dqda_clipping=dqda_clipping, clip_norm=self._clipping) policy_loss = tf.reduce_mean(policy_loss, axis=[0]) # Get trainable variables. policy_variables = self._policy_network.trainable_variables critic_variables = ( # In this agent, the critic loss trains the observation network. self._observation_network.trainable_variables + self._critic_network.trainable_variables) # Compute gradients. replica_context = tf.distribute.get_replica_context() policy_gradients = _average_gradients_across_replicas( replica_context, tape.gradient(policy_loss, policy_variables)) critic_gradients = _average_gradients_across_replicas( replica_context, tape.gradient(critic_loss, critic_variables)) # Delete the tape manually because of the persistent=True flag. del tape # Maybe clip gradients. if self._clipping: policy_gradients = tf.clip_by_global_norm(policy_gradients, 40.)[0] critic_gradients = tf.clip_by_global_norm(critic_gradients, 40.)[0] # Apply gradients. self._policy_optimizer.apply(policy_gradients, policy_variables) self._critic_optimizer.apply(critic_gradients, critic_variables) # Losses to track. return { 'critic_loss': critic_loss, 'policy_loss': policy_loss, } @tf.function def _replicated_step(self): # Update target network online_variables = ( *self._observation_network.variables, *self._critic_network.variables, *self._policy_network.variables, ) target_variables = ( *self._target_observation_network.variables, *self._target_critic_network.variables, *self._target_policy_network.variables, ) # Make online -> target network update ops. if tf.math.mod(self._num_steps, self._target_update_period) == 0: for src, dest in zip(online_variables, target_variables): dest.assign(src) self._num_steps.assign_add(1) # Get data from replay (dropping extras if any). Note there is no # extra data here because we do not insert any into Reverb. sample = next(self._iterator) # This mirrors the structure of the fetches returned by self._step(), # but the Tensors are replaced with replicated Tensors, one per accelerator. replicated_fetches = self._replicator.run(self._step, args=(sample,)) def reduce_mean_over_replicas(replicated_value): """Averages a replicated_value across replicas.""" # The "axis=None" arg means reduce across replicas, not internal axes. return self._replicator.reduce( reduce_op=tf.distribute.ReduceOp.MEAN, value=replicated_value, axis=None) fetches = tree.map_structure(reduce_mean_over_replicas, replicated_fetches) return fetches def step(self): # Run the learning step. fetches = self._replicated_step() # Compute elapsed time. timestamp = time.time() elapsed_time = timestamp - self._timestamp if self._timestamp else 0 self._timestamp = timestamp # Update our counts and record it. counts = self._counter.increment(steps=1, walltime=elapsed_time) fetches.update(counts) # Checkpoint and attempt to write the logs. if self._checkpointer is not None: self._checkpointer.save() if self._snapshotter is not None: self._snapshotter.save() self._logger.write(fetches) def get_variables(self, names: List[str]) -> List[List[np.ndarray]]: return [tf2_utils.to_numpy(self._variables[name]) for name in names] def _get_first_available_accelerator_type( wishlist: Sequence[str] = ('TPU', 'GPU', 'CPU')) -> str: """Returns the first available accelerator type listed in a wishlist. Args: wishlist: A sequence of elements from {'CPU', 'GPU', 'TPU'}, listed in order of descending preference. Returns: The first available accelerator type from `wishlist`. Raises: RuntimeError: Thrown if no accelerators from the `wishlist` are found. """ get_visible_devices = tf.config.get_visible_devices for wishlist_device in wishlist: devices = get_visible_devices(device_type=wishlist_device) if devices: return wishlist_device available = ', '.join( sorted(frozenset([d.type for d in get_visible_devices()]))) raise RuntimeError( 'Couldn\'t find any devices from {wishlist}.' + f'Only the following types are available: {available}.') def _average_gradients_across_replicas(replica_context, gradients): """Computes the average gradient across replicas. This computes the gradient locally on this device, then copies over the gradients computed on the other replicas, and takes the average across replicas. This is faster than copying the gradients from TPU to CPU, and averaging them on the CPU (which is what we do for the losses/fetches). Args: replica_context: the return value of `tf.distribute.get_replica_context()`. gradients: The output of tape.gradients(loss, variables) Returns: A list of (d_loss/d_varabiable)s. """ # We must remove any Nones from gradients before passing them to all_reduce. # Nones occur when you call tape.gradient(loss, variables) with some # variables that don't affect the loss. # See: https://github.com/tensorflow/tensorflow/issues/783 gradients_without_nones = [g for g in gradients if g is not None] original_indices = [i for i, g in enumerate(gradients) if g is not None] results_without_nones = replica_context.all_reduce('mean', gradients_without_nones) results = [None] * len(gradients) for ii, result in zip(original_indices, results_without_nones): results[ii] = result return results
acme-master
acme/agents/tf/d4pg/learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration test for the distributed agent.""" import acme from acme import specs from acme.agents.tf import ddpg from acme.testing import fakes from acme.tf import networks from acme.tf import utils as tf2_utils import launchpad as lp import numpy as np import sonnet as snt from absl.testing import absltest def make_networks(action_spec: specs.BoundedArray): """Creates simple networks for testing..""" num_dimensions = np.prod(action_spec.shape, dtype=int) # Create the observation network shared between the policy and critic. observation_network = tf2_utils.batch_concat # Create the policy network (head) and the evaluation network. policy_network = snt.Sequential([ networks.LayerNormMLP([50], activate_final=True), networks.NearZeroInitializedLinear(num_dimensions), networks.TanhToSpec(action_spec) ]) evaluator_network = snt.Sequential([observation_network, policy_network]) # Create the critic network. critic_network = snt.Sequential([ # The multiplexer concatenates the observations/actions. networks.CriticMultiplexer(), networks.LayerNormMLP([50], activate_final=True), networks.NearZeroInitializedLinear(1), ]) return { 'policy': policy_network, 'critic': critic_network, 'observation': observation_network, 'evaluator': evaluator_network, } class DistributedAgentTest(absltest.TestCase): """Simple integration/smoke test for the distributed agent.""" def test_agent(self): agent = ddpg.DistributedDDPG( environment_factory=lambda x: fakes.ContinuousEnvironment(bounded=True), network_factory=make_networks, num_actors=2, batch_size=32, min_replay_size=32, max_replay_size=1000, ) program = agent.build() (learner_node,) = program.groups['learner'] learner_node.disable_run() lp.launch(program, launch_type='test_mt') learner: acme.Learner = learner_node.create_handle().dereference() for _ in range(5): learner.step() if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/ddpg/agent_distributed_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the distribted DDPG (D3PG) agent class.""" from typing import Callable, Dict, Optional import acme from acme import datasets from acme import specs from acme.adders import reverb as adders from acme.agents.tf import actors from acme.agents.tf.ddpg import learning from acme.tf import networks from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.tf import variable_utils as tf2_variable_utils from acme.utils import counting from acme.utils import loggers from acme.utils import lp_utils import dm_env import launchpad as lp import reverb import sonnet as snt import tensorflow as tf class DistributedDDPG: """Program definition for distributed DDPG (D3PG).""" def __init__( self, environment_factory: Callable[[bool], dm_env.Environment], network_factory: Callable[[specs.BoundedArray], Dict[str, snt.Module]], num_actors: int = 1, num_caches: int = 0, environment_spec: Optional[specs.EnvironmentSpec] = None, batch_size: int = 256, prefetch_size: int = 4, min_replay_size: int = 1000, max_replay_size: int = 1000000, samples_per_insert: Optional[float] = 32.0, n_step: int = 5, sigma: float = 0.3, clipping: bool = True, discount: float = 0.99, target_update_period: int = 100, variable_update_period: int = 1000, max_actor_steps: Optional[int] = None, log_every: float = 10.0, ): if not environment_spec: environment_spec = specs.make_environment_spec(environment_factory(False)) self._environment_factory = environment_factory self._network_factory = network_factory self._environment_spec = environment_spec self._num_actors = num_actors self._num_caches = num_caches self._batch_size = batch_size self._prefetch_size = prefetch_size self._min_replay_size = min_replay_size self._max_replay_size = max_replay_size self._samples_per_insert = samples_per_insert self._n_step = n_step self._sigma = sigma self._clipping = clipping self._discount = discount self._target_update_period = target_update_period self._variable_update_period = variable_update_period self._max_actor_steps = max_actor_steps self._log_every = log_every def replay(self): """The replay storage.""" if self._samples_per_insert is not None: # Create enough of an error buffer to give a 10% tolerance in rate. samples_per_insert_tolerance = 0.1 * self._samples_per_insert error_buffer = self._min_replay_size * samples_per_insert_tolerance limiter = reverb.rate_limiters.SampleToInsertRatio( min_size_to_sample=self._min_replay_size, samples_per_insert=self._samples_per_insert, error_buffer=error_buffer) else: limiter = reverb.rate_limiters.MinSize(self._min_replay_size) replay_table = reverb.Table( name=adders.DEFAULT_PRIORITY_TABLE, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=self._max_replay_size, rate_limiter=limiter, signature=adders.NStepTransitionAdder.signature( self._environment_spec)) return [replay_table] def counter(self): return tf2_savers.CheckpointingRunner(counting.Counter(), time_delta_minutes=1, subdirectory='counter') def coordinator(self, counter: counting.Counter, max_actor_steps: int): return lp_utils.StepsLimiter(counter, max_actor_steps) def learner( self, replay: reverb.Client, counter: counting.Counter, ): """The Learning part of the agent.""" act_spec = self._environment_spec.actions obs_spec = self._environment_spec.observations # Create the networks to optimize (online) and target networks. online_networks = self._network_factory(act_spec) target_networks = self._network_factory(act_spec) # Make sure observation network is a Sonnet Module. observation_network = online_networks.get('observation', tf.identity) target_observation_network = target_networks.get('observation', tf.identity) observation_network = tf2_utils.to_sonnet_module(observation_network) target_observation_network = tf2_utils.to_sonnet_module( target_observation_network) # Get embedding spec and create observation network variables. emb_spec = tf2_utils.create_variables(observation_network, [obs_spec]) # Create variables. tf2_utils.create_variables(online_networks['policy'], [emb_spec]) tf2_utils.create_variables(online_networks['critic'], [emb_spec, act_spec]) tf2_utils.create_variables(target_networks['policy'], [emb_spec]) tf2_utils.create_variables(target_networks['critic'], [emb_spec, act_spec]) tf2_utils.create_variables(target_observation_network, [obs_spec]) # The dataset object to learn from. dataset = datasets.make_reverb_dataset( server_address=replay.server_address, batch_size=self._batch_size, prefetch_size=self._prefetch_size) # Create optimizers. policy_optimizer = snt.optimizers.Adam(learning_rate=1e-4) critic_optimizer = snt.optimizers.Adam(learning_rate=1e-4) counter = counting.Counter(counter, 'learner') logger = loggers.make_default_logger( 'learner', time_delta=self._log_every, steps_key='learner_steps') # Return the learning agent. return learning.DDPGLearner( policy_network=online_networks['policy'], critic_network=online_networks['critic'], observation_network=observation_network, target_policy_network=target_networks['policy'], target_critic_network=target_networks['critic'], target_observation_network=target_observation_network, discount=self._discount, target_update_period=self._target_update_period, dataset=dataset, policy_optimizer=policy_optimizer, critic_optimizer=critic_optimizer, clipping=self._clipping, counter=counter, logger=logger, ) def actor( self, replay: reverb.Client, variable_source: acme.VariableSource, counter: counting.Counter, ): """The actor process.""" action_spec = self._environment_spec.actions observation_spec = self._environment_spec.observations # Create environment and behavior networks environment = self._environment_factory(False) agent_networks = self._network_factory(action_spec) # Create behavior network by adding some random dithering. behavior_network = snt.Sequential([ agent_networks.get('observation', tf.identity), agent_networks.get('policy'), networks.ClippedGaussian(self._sigma), ]) # Ensure network variables are created. tf2_utils.create_variables(behavior_network, [observation_spec]) variables = {'policy': behavior_network.variables} # Create the variable client responsible for keeping the actor up-to-date. variable_client = tf2_variable_utils.VariableClient( variable_source, variables, update_period=self._variable_update_period) # Make sure not to use a random policy after checkpoint restoration by # assigning variables before running the environment loop. variable_client.update_and_wait() # Component to add things into replay. adder = adders.NStepTransitionAdder( client=replay, n_step=self._n_step, discount=self._discount) # Create the agent. actor = actors.FeedForwardActor( behavior_network, adder=adder, variable_client=variable_client) # Create logger and counter; actors will not spam bigtable. counter = counting.Counter(counter, 'actor') logger = loggers.make_default_logger( 'actor', save_data=False, time_delta=self._log_every, steps_key='actor_steps') # Create the loop to connect environment and agent. return acme.EnvironmentLoop(environment, actor, counter, logger) def evaluator( self, variable_source: acme.VariableSource, counter: counting.Counter, ): """The evaluation process.""" action_spec = self._environment_spec.actions observation_spec = self._environment_spec.observations # Create environment and evaluator networks environment = self._environment_factory(True) agent_networks = self._network_factory(action_spec) # Create evaluator network. evaluator_network = snt.Sequential([ agent_networks.get('observation', tf.identity), agent_networks.get('policy'), ]) # Ensure network variables are created. tf2_utils.create_variables(evaluator_network, [observation_spec]) variables = {'policy': evaluator_network.variables} # Create the variable client responsible for keeping the actor up-to-date. variable_client = tf2_variable_utils.VariableClient( variable_source, variables, update_period=self._variable_update_period) # Make sure not to evaluate a random actor by assigning variables before # running the environment loop. variable_client.update_and_wait() # Create the evaluator; note it will not add experience to replay. evaluator = actors.FeedForwardActor( evaluator_network, variable_client=variable_client) # Create logger and counter. counter = counting.Counter(counter, 'evaluator') logger = loggers.make_default_logger( 'evaluator', time_delta=self._log_every, steps_key='evaluator_steps') # Create the run loop and return it. return acme.EnvironmentLoop( environment, evaluator, counter, logger) def build(self, name='ddpg'): """Build the distributed agent topology.""" program = lp.Program(name=name) with program.group('replay'): replay = program.add_node(lp.ReverbNode(self.replay)) with program.group('counter'): counter = program.add_node(lp.CourierNode(self.counter)) if self._max_actor_steps: _ = program.add_node( lp.CourierNode(self.coordinator, counter, self._max_actor_steps)) with program.group('learner'): learner = program.add_node( lp.CourierNode(self.learner, replay, counter)) with program.group('evaluator'): program.add_node( lp.CourierNode(self.evaluator, learner, counter)) if not self._num_caches: # Use our learner as a single variable source. sources = [learner] else: with program.group('cacher'): # Create a set of learner caches. sources = [] for _ in range(self._num_caches): cacher = program.add_node( lp.CacherNode( learner, refresh_interval_ms=2000, stale_after_ms=4000)) sources.append(cacher) with program.group('actor'): # Add actors which pull round-robin from our variable sources. for actor_id in range(self._num_actors): source = sources[actor_id % len(sources)] program.add_node(lp.CourierNode(self.actor, replay, source, counter)) return program
acme-master
acme/agents/tf/ddpg/agent_distributed.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementations of a DDPG agent.""" from acme.agents.tf.ddpg.agent import DDPG from acme.agents.tf.ddpg.agent_distributed import DistributedDDPG from acme.agents.tf.ddpg.learning import DDPGLearner
acme-master
acme/agents/tf/ddpg/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the DDPG agent.""" from typing import Dict, Sequence import acme from acme import specs from acme import types from acme.agents.tf import ddpg from acme.testing import fakes from acme.tf import networks import numpy as np import sonnet as snt import tensorflow as tf from absl.testing import absltest def make_networks( action_spec: types.NestedSpec, policy_layer_sizes: Sequence[int] = (10, 10), critic_layer_sizes: Sequence[int] = (10, 10), ) -> Dict[str, snt.Module]: """Creates networks used by the agent.""" num_dimensions = np.prod(action_spec.shape, dtype=int) policy_layer_sizes = list(policy_layer_sizes) + [num_dimensions] critic_layer_sizes = list(critic_layer_sizes) + [1] policy_network = snt.Sequential( [networks.LayerNormMLP(policy_layer_sizes), tf.tanh]) # The multiplexer concatenates the (maybe transformed) observations/actions. critic_network = networks.CriticMultiplexer( critic_network=networks.LayerNormMLP(critic_layer_sizes)) return { 'policy': policy_network, 'critic': critic_network, } class DDPGTest(absltest.TestCase): def test_ddpg(self): # Create a fake environment to test with. environment = fakes.ContinuousEnvironment(episode_length=10, bounded=True) spec = specs.make_environment_spec(environment) # Create the networks to optimize (online) and target networks. agent_networks = make_networks(spec.actions) # Construct the agent. agent = ddpg.DDPG( environment_spec=spec, policy_network=agent_networks['policy'], critic_network=agent_networks['critic'], batch_size=10, samples_per_insert=2, min_replay_size=10, ) # Try running the environment loop. We have no assertions here because all # we care about is that the agent runs without raising any errors. loop = acme.EnvironmentLoop(environment, agent) loop.run(num_episodes=2) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/ddpg/agent_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DDPG agent implementation.""" import copy from typing import Optional from acme import datasets from acme import specs from acme import types from acme.adders import reverb as adders from acme.agents import agent from acme.agents.tf import actors from acme.agents.tf.ddpg import learning from acme.tf import networks from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import reverb import sonnet as snt import tensorflow as tf class DDPG(agent.Agent): """DDPG Agent. This implements a single-process DDPG agent. This is an actor-critic algorithm that generates data via a behavior policy, inserts N-step transitions into a replay buffer, and periodically updates the policy (and as a result the behavior) by sampling uniformly from this buffer. """ def __init__(self, environment_spec: specs.EnvironmentSpec, policy_network: snt.Module, critic_network: snt.Module, observation_network: types.TensorTransformation = tf.identity, discount: float = 0.99, batch_size: int = 256, prefetch_size: int = 4, target_update_period: int = 100, min_replay_size: int = 1000, max_replay_size: int = 1000000, samples_per_insert: float = 32.0, n_step: int = 5, sigma: float = 0.3, clipping: bool = True, logger: Optional[loggers.Logger] = None, counter: Optional[counting.Counter] = None, checkpoint: bool = True, replay_table_name: str = adders.DEFAULT_PRIORITY_TABLE): """Initialize the agent. Args: environment_spec: description of the actions, observations, etc. policy_network: the online (optimized) policy. critic_network: the online critic. observation_network: optional network to transform the observations before they are fed into any network. discount: discount to use for TD updates. batch_size: batch size for updates. prefetch_size: size to prefetch from replay. target_update_period: number of learner steps to perform before updating the target networks. min_replay_size: minimum replay size before updating. max_replay_size: maximum replay size. samples_per_insert: number of samples to take from replay for every insert that is made. n_step: number of steps to squash into a single transition. sigma: standard deviation of zero-mean, Gaussian exploration noise. clipping: whether to clip gradients by global norm. logger: logger object to be used by learner. counter: counter object used to keep track of steps. checkpoint: boolean indicating whether to checkpoint the learner. replay_table_name: string indicating what name to give the replay table. """ # Create a replay server to add data to. This uses no limiter behavior in # order to allow the Agent interface to handle it. replay_table = reverb.Table( name=replay_table_name, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=max_replay_size, rate_limiter=reverb.rate_limiters.MinSize(1), signature=adders.NStepTransitionAdder.signature(environment_spec)) self._server = reverb.Server([replay_table], port=None) # The adder is used to insert observations into replay. address = f'localhost:{self._server.port}' adder = adders.NStepTransitionAdder( priority_fns={replay_table_name: lambda x: 1.}, client=reverb.Client(address), n_step=n_step, discount=discount) # The dataset provides an interface to sample from replay. dataset = datasets.make_reverb_dataset( table=replay_table_name, server_address=address, batch_size=batch_size, prefetch_size=prefetch_size) # Make sure observation network is a Sonnet Module. observation_network = tf2_utils.to_sonnet_module(observation_network) # Get observation and action specs. act_spec = environment_spec.actions obs_spec = environment_spec.observations emb_spec = tf2_utils.create_variables(observation_network, [obs_spec]) # Create target networks. target_policy_network = copy.deepcopy(policy_network) target_critic_network = copy.deepcopy(critic_network) target_observation_network = copy.deepcopy(observation_network) # Create the behavior policy. behavior_network = snt.Sequential([ observation_network, policy_network, networks.ClippedGaussian(sigma), networks.ClipToSpec(act_spec), ]) # Create variables. tf2_utils.create_variables(policy_network, [emb_spec]) tf2_utils.create_variables(critic_network, [emb_spec, act_spec]) tf2_utils.create_variables(target_policy_network, [emb_spec]) tf2_utils.create_variables(target_critic_network, [emb_spec, act_spec]) tf2_utils.create_variables(target_observation_network, [obs_spec]) # Create the actor which defines how we take actions. actor = actors.FeedForwardActor(behavior_network, adder=adder) # Create optimizers. policy_optimizer = snt.optimizers.Adam(learning_rate=1e-4) critic_optimizer = snt.optimizers.Adam(learning_rate=1e-4) # The learner updates the parameters (and initializes them). learner = learning.DDPGLearner( policy_network=policy_network, critic_network=critic_network, observation_network=observation_network, target_policy_network=target_policy_network, target_critic_network=target_critic_network, target_observation_network=target_observation_network, policy_optimizer=policy_optimizer, critic_optimizer=critic_optimizer, clipping=clipping, discount=discount, target_update_period=target_update_period, dataset=dataset, counter=counter, logger=logger, checkpoint=checkpoint, ) super().__init__( actor=actor, learner=learner, min_observations=max(batch_size, min_replay_size), observations_per_step=float(batch_size) / samples_per_insert)
acme-master
acme/agents/tf/ddpg/agent.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DDPG learner implementation.""" import time from typing import List, Optional import acme from acme import types from acme.tf import losses from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import numpy as np import sonnet as snt import tensorflow as tf import tree import trfl class DDPGLearner(acme.Learner): """DDPG learner. This is the learning component of a DDPG agent. IE it takes a dataset as input and implements update functionality to learn from this dataset. """ def __init__( self, policy_network: snt.Module, critic_network: snt.Module, target_policy_network: snt.Module, target_critic_network: snt.Module, discount: float, target_update_period: int, dataset: tf.data.Dataset, observation_network: types.TensorTransformation = lambda x: x, target_observation_network: types.TensorTransformation = lambda x: x, policy_optimizer: Optional[snt.Optimizer] = None, critic_optimizer: Optional[snt.Optimizer] = None, clipping: bool = True, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = True, ): """Initializes the learner. Args: policy_network: the online (optimized) policy. critic_network: the online critic. target_policy_network: the target policy (which lags behind the online policy). target_critic_network: the target critic. discount: discount to use for TD updates. target_update_period: number of learner steps to perform before updating the target networks. dataset: dataset to learn from, whether fixed or from a replay buffer (see `acme.datasets.reverb.make_reverb_dataset` documentation). observation_network: an optional online network to process observations before the policy and the critic. target_observation_network: the target observation network. policy_optimizer: the optimizer to be applied to the DPG (policy) loss. critic_optimizer: the optimizer to be applied to the critic loss. clipping: whether to clip gradients by global norm. counter: counter object used to keep track of steps. logger: logger object to be used by learner. checkpoint: boolean indicating whether to checkpoint the learner. """ # Store online and target networks. self._policy_network = policy_network self._critic_network = critic_network self._target_policy_network = target_policy_network self._target_critic_network = target_critic_network # Make sure observation networks are snt.Module's so they have variables. self._observation_network = tf2_utils.to_sonnet_module(observation_network) self._target_observation_network = tf2_utils.to_sonnet_module( target_observation_network) # General learner book-keeping and loggers. self._counter = counter or counting.Counter() self._logger = logger or loggers.make_default_logger('learner') # Other learner parameters. self._discount = discount self._clipping = clipping # Necessary to track when to update target networks. self._num_steps = tf.Variable(0, dtype=tf.int32) self._target_update_period = target_update_period # Create an iterator to go through the dataset. # TODO(b/155086959): Fix type stubs and remove. self._iterator = iter(dataset) # pytype: disable=wrong-arg-types # Create optimizers if they aren't given. self._critic_optimizer = critic_optimizer or snt.optimizers.Adam(1e-4) self._policy_optimizer = policy_optimizer or snt.optimizers.Adam(1e-4) # Expose the variables. policy_network_to_expose = snt.Sequential( [self._target_observation_network, self._target_policy_network]) self._variables = { 'critic': target_critic_network.variables, 'policy': policy_network_to_expose.variables, } self._checkpointer = tf2_savers.Checkpointer( time_delta_minutes=5, objects_to_save={ 'counter': self._counter, 'policy': self._policy_network, 'critic': self._critic_network, 'target_policy': self._target_policy_network, 'target_critic': self._target_critic_network, 'policy_optimizer': self._policy_optimizer, 'critic_optimizer': self._critic_optimizer, 'num_steps': self._num_steps, }, enable_checkpointing=checkpoint, ) # Do not record timestamps until after the first learning step is done. # This is to avoid including the time it takes for actors to come online and # fill the replay buffer. self._timestamp = None @tf.function def _step(self): # Update target network. online_variables = ( *self._observation_network.variables, *self._critic_network.variables, *self._policy_network.variables, ) target_variables = ( *self._target_observation_network.variables, *self._target_critic_network.variables, *self._target_policy_network.variables, ) # Make online -> target network update ops. if tf.math.mod(self._num_steps, self._target_update_period) == 0: for src, dest in zip(online_variables, target_variables): dest.assign(src) self._num_steps.assign_add(1) # Get data from replay (dropping extras if any). Note there is no # extra data here because we do not insert any into Reverb. inputs = next(self._iterator) transitions: types.Transition = inputs.data # Cast the additional discount to match the environment discount dtype. discount = tf.cast(self._discount, dtype=transitions.discount.dtype) with tf.GradientTape(persistent=True) as tape: # Maybe transform the observation before feeding into policy and critic. # Transforming the observations this way at the start of the learning # step effectively means that the policy and critic share observation # network weights. o_tm1 = self._observation_network(transitions.observation) o_t = self._target_observation_network(transitions.next_observation) # This stop_gradient prevents gradients to propagate into the target # observation network. In addition, since the online policy network is # evaluated at o_t, this also means the policy loss does not influence # the observation network training. o_t = tree.map_structure(tf.stop_gradient, o_t) # Critic learning. q_tm1 = self._critic_network(o_tm1, transitions.action) q_t = self._target_critic_network(o_t, self._target_policy_network(o_t)) # Squeeze into the shape expected by the td_learning implementation. q_tm1 = tf.squeeze(q_tm1, axis=-1) # [B] q_t = tf.squeeze(q_t, axis=-1) # [B] # Critic loss. critic_loss = trfl.td_learning(q_tm1, transitions.reward, discount * transitions.discount, q_t).loss critic_loss = tf.reduce_mean(critic_loss, axis=0) # Actor learning. dpg_a_t = self._policy_network(o_t) dpg_q_t = self._critic_network(o_t, dpg_a_t) # Actor loss. If clipping is true use dqda clipping and clip the norm. dqda_clipping = 1.0 if self._clipping else None policy_loss = losses.dpg( dpg_q_t, dpg_a_t, tape=tape, dqda_clipping=dqda_clipping, clip_norm=self._clipping) policy_loss = tf.reduce_mean(policy_loss, axis=0) # Get trainable variables. policy_variables = self._policy_network.trainable_variables critic_variables = ( # In this agent, the critic loss trains the observation network. self._observation_network.trainable_variables + self._critic_network.trainable_variables) # Compute gradients. policy_gradients = tape.gradient(policy_loss, policy_variables) critic_gradients = tape.gradient(critic_loss, critic_variables) # Delete the tape manually because of the persistent=True flag. del tape # Maybe clip gradients. if self._clipping: policy_gradients = tf.clip_by_global_norm(policy_gradients, 40.)[0] critic_gradients = tf.clip_by_global_norm(critic_gradients, 40.)[0] # Apply gradients. self._policy_optimizer.apply(policy_gradients, policy_variables) self._critic_optimizer.apply(critic_gradients, critic_variables) # Losses to track. return { 'critic_loss': critic_loss, 'policy_loss': policy_loss, } def step(self): # Run the learning step. fetches = self._step() # Compute elapsed time. timestamp = time.time() elapsed_time = timestamp - self._timestamp if self._timestamp else 0 self._timestamp = timestamp # Update our counts and record it. counts = self._counter.increment(steps=1, walltime=elapsed_time) fetches.update(counts) # Checkpoint and attempt to write the logs. self._checkpointer.save() self._logger.write(fetches) def get_variables(self, names: List[str]) -> List[List[np.ndarray]]: return [tf2_utils.to_numpy(self._variables[name]) for name in names]
acme-master
acme/agents/tf/ddpg/learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration test for the distributed agent.""" import acme from acme.agents.tf import impala from acme.testing import fakes from acme.tf import networks import launchpad as lp from absl.testing import absltest class DistributedAgentTest(absltest.TestCase): """Simple integration/smoke test for the distributed agent.""" def test_atari(self): """Tests that the agent can run for some steps without crashing.""" env_factory = lambda x: fakes.fake_atari_wrapped(oar_wrapper=True) net_factory = lambda spec: networks.IMPALAAtariNetwork(spec.num_values) agent = impala.DistributedIMPALA( environment_factory=env_factory, network_factory=net_factory, num_actors=2, batch_size=32, sequence_length=5, sequence_period=1, ) program = agent.build() (learner_node,) = program.groups['learner'] learner_node.disable_run() lp.launch(program, launch_type='test_mt') learner: acme.Learner = learner_node.create_handle().dereference() for _ in range(5): learner.step() if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/impala/agent_distributed_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the IMPALA Launchpad program.""" from typing import Callable, Optional import acme from acme import datasets from acme import specs from acme.adders import reverb as adders from acme.agents.tf.impala import acting from acme.agents.tf.impala import learning from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.tf import variable_utils as tf2_variable_utils from acme.utils import counting from acme.utils import loggers import dm_env import launchpad as lp import reverb import sonnet as snt import tensorflow as tf class DistributedIMPALA: """Program definition for IMPALA.""" def __init__(self, environment_factory: Callable[[bool], dm_env.Environment], network_factory: Callable[[specs.DiscreteArray], snt.RNNCore], num_actors: int, sequence_length: int, sequence_period: int, environment_spec: Optional[specs.EnvironmentSpec] = None, batch_size: int = 256, prefetch_size: int = 4, max_queue_size: int = 10_000, learning_rate: float = 1e-3, discount: float = 0.99, entropy_cost: float = 0.01, baseline_cost: float = 0.5, max_abs_reward: Optional[float] = None, max_gradient_norm: Optional[float] = None, variable_update_period: int = 1000, save_logs: bool = False): if environment_spec is None: environment_spec = specs.make_environment_spec(environment_factory(False)) self._environment_factory = environment_factory self._network_factory = network_factory self._environment_spec = environment_spec self._num_actors = num_actors self._batch_size = batch_size self._prefetch_size = prefetch_size self._sequence_length = sequence_length self._max_queue_size = max_queue_size self._sequence_period = sequence_period self._discount = discount self._learning_rate = learning_rate self._entropy_cost = entropy_cost self._baseline_cost = baseline_cost self._max_abs_reward = max_abs_reward self._max_gradient_norm = max_gradient_norm self._variable_update_period = variable_update_period self._save_logs = save_logs def queue(self): """The queue.""" num_actions = self._environment_spec.actions.num_values network = self._network_factory(self._environment_spec.actions) extra_spec = { 'core_state': network.initial_state(1), 'logits': tf.ones(shape=(1, num_actions), dtype=tf.float32) } # Remove batch dimensions. extra_spec = tf2_utils.squeeze_batch_dim(extra_spec) signature = adders.SequenceAdder.signature( self._environment_spec, extra_spec, sequence_length=self._sequence_length) queue = reverb.Table.queue( name=adders.DEFAULT_PRIORITY_TABLE, max_size=self._max_queue_size, signature=signature) return [queue] def counter(self): """Creates the master counter process.""" return tf2_savers.CheckpointingRunner( counting.Counter(), time_delta_minutes=1, subdirectory='counter') def learner(self, queue: reverb.Client, counter: counting.Counter): """The Learning part of the agent.""" # Use architect and create the environment. # Create the networks. network = self._network_factory(self._environment_spec.actions) tf2_utils.create_variables(network, [self._environment_spec.observations]) # The dataset object to learn from. dataset = datasets.make_reverb_dataset( server_address=queue.server_address, batch_size=self._batch_size, prefetch_size=self._prefetch_size) logger = loggers.make_default_logger('learner', steps_key='learner_steps') counter = counting.Counter(counter, 'learner') # Return the learning agent. learner = learning.IMPALALearner( environment_spec=self._environment_spec, network=network, dataset=dataset, discount=self._discount, learning_rate=self._learning_rate, entropy_cost=self._entropy_cost, baseline_cost=self._baseline_cost, max_abs_reward=self._max_abs_reward, max_gradient_norm=self._max_gradient_norm, counter=counter, logger=logger, ) return tf2_savers.CheckpointingRunner(learner, time_delta_minutes=5, subdirectory='impala_learner') def actor( self, replay: reverb.Client, variable_source: acme.VariableSource, counter: counting.Counter, ) -> acme.EnvironmentLoop: """The actor process.""" environment = self._environment_factory(False) network = self._network_factory(self._environment_spec.actions) tf2_utils.create_variables(network, [self._environment_spec.observations]) # Component to add things into the queue. adder = adders.SequenceAdder( client=replay, period=self._sequence_period, sequence_length=self._sequence_length) variable_client = tf2_variable_utils.VariableClient( client=variable_source, variables={'policy': network.variables}, update_period=self._variable_update_period) # Make sure not to use a random policy after checkpoint restoration by # assigning variables before running the environment loop. variable_client.update_and_wait() # Create the agent. actor = acting.IMPALAActor( network=network, variable_client=variable_client, adder=adder) counter = counting.Counter(counter, 'actor') logger = loggers.make_default_logger( 'actor', save_data=False, steps_key='actor_steps') # Create the loop to connect environment and agent. return acme.EnvironmentLoop(environment, actor, counter, logger) def evaluator(self, variable_source: acme.VariableSource, counter: counting.Counter): """The evaluation process.""" environment = self._environment_factory(True) network = self._network_factory(self._environment_spec.actions) tf2_utils.create_variables(network, [self._environment_spec.observations]) variable_client = tf2_variable_utils.VariableClient( client=variable_source, variables={'policy': network.variables}, update_period=self._variable_update_period) # Make sure not to use a random policy after checkpoint restoration by # assigning variables before running the environment loop. variable_client.update_and_wait() # Create the agent. actor = acting.IMPALAActor( network=network, variable_client=variable_client) # Create the run loop and return it. logger = loggers.make_default_logger( 'evaluator', steps_key='evaluator_steps') counter = counting.Counter(counter, 'evaluator') return acme.EnvironmentLoop(environment, actor, counter, logger) def build(self, name='impala'): """Build the distributed agent topology.""" program = lp.Program(name=name) with program.group('replay'): queue = program.add_node(lp.ReverbNode(self.queue)) with program.group('counter'): counter = program.add_node(lp.CourierNode(self.counter)) with program.group('learner'): learner = program.add_node( lp.CourierNode(self.learner, queue, counter)) with program.group('evaluator'): program.add_node(lp.CourierNode(self.evaluator, learner, counter)) with program.group('cacher'): cacher = program.add_node( lp.CacherNode(learner, refresh_interval_ms=2000, stale_after_ms=4000)) with program.group('actor'): for _ in range(self._num_actors): program.add_node(lp.CourierNode(self.actor, queue, cacher, counter)) return program
acme-master
acme/agents/tf/impala/agent_distributed.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Importance-weighted actor-learner architecture (IMPALA) agent.""" from acme.agents.tf.impala.acting import IMPALAActor from acme.agents.tf.impala.agent import IMPALA from acme.agents.tf.impala.agent_distributed import DistributedIMPALA from acme.agents.tf.impala.learning import IMPALALearner
acme-master
acme/agents/tf/impala/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for IMPALA agent.""" import acme from acme import specs from acme.agents.tf import impala from acme.testing import fakes from acme.tf import networks import numpy as np import sonnet as snt from absl.testing import absltest def _make_network(action_spec: specs.DiscreteArray) -> snt.RNNCore: return snt.DeepRNN([ snt.Flatten(), snt.LSTM(20), snt.nets.MLP([50, 50]), networks.PolicyValueHead(action_spec.num_values), ]) class IMPALATest(absltest.TestCase): # TODO(b/200509080): This test case is timing out. @absltest.SkipTest def test_impala(self): # Create a fake environment to test with. environment = fakes.DiscreteEnvironment( num_actions=5, num_observations=10, obs_dtype=np.float32, episode_length=10) spec = specs.make_environment_spec(environment) # Construct the agent. agent = impala.IMPALA( environment_spec=spec, network=_make_network(spec.actions), sequence_length=3, sequence_period=3, batch_size=6, ) # Try running the environment loop. We have no assertions here because all # we care about is that the agent runs without raising any errors. loop = acme.EnvironmentLoop(environment, agent) loop.run(num_episodes=20) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/impala/agent_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Importance weighted advantage actor-critic (IMPALA) agent implementation.""" from typing import Optional import acme from acme import datasets from acme import specs from acme import types from acme.adders import reverb as adders from acme.agents.tf.impala import acting from acme.agents.tf.impala import learning from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import dm_env import numpy as np import reverb import sonnet as snt import tensorflow as tf class IMPALA(acme.Actor): """IMPALA Agent.""" def __init__( self, environment_spec: specs.EnvironmentSpec, network: snt.RNNCore, sequence_length: int, sequence_period: int, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, discount: float = 0.99, max_queue_size: int = 100000, batch_size: int = 16, learning_rate: float = 1e-3, entropy_cost: float = 0.01, baseline_cost: float = 0.5, max_abs_reward: Optional[float] = None, max_gradient_norm: Optional[float] = None, ): num_actions = environment_spec.actions.num_values self._logger = logger or loggers.TerminalLogger('agent') extra_spec = { 'core_state': network.initial_state(1), 'logits': tf.ones(shape=(1, num_actions), dtype=tf.float32) } # Remove batch dimensions. extra_spec = tf2_utils.squeeze_batch_dim(extra_spec) queue = reverb.Table.queue( name=adders.DEFAULT_PRIORITY_TABLE, max_size=max_queue_size, signature=adders.SequenceAdder.signature( environment_spec, extras_spec=extra_spec, sequence_length=sequence_length)) self._server = reverb.Server([queue], port=None) self._can_sample = lambda: queue.can_sample(batch_size) address = f'localhost:{self._server.port}' # Component to add things into replay. adder = adders.SequenceAdder( client=reverb.Client(address), period=sequence_period, sequence_length=sequence_length, ) # The dataset object to learn from. dataset = datasets.make_reverb_dataset( server_address=address, batch_size=batch_size) tf2_utils.create_variables(network, [environment_spec.observations]) self._actor = acting.IMPALAActor(network, adder) self._learner = learning.IMPALALearner( environment_spec=environment_spec, network=network, dataset=dataset, counter=counter, logger=logger, discount=discount, learning_rate=learning_rate, entropy_cost=entropy_cost, baseline_cost=baseline_cost, max_gradient_norm=max_gradient_norm, max_abs_reward=max_abs_reward, ) def observe_first(self, timestep: dm_env.TimeStep): self._actor.observe_first(timestep) def observe( self, action: types.NestedArray, next_timestep: dm_env.TimeStep, ): self._actor.observe(action, next_timestep) def update(self, wait: bool = False): # Run a number of learner steps (usually gradient steps). while self._can_sample(): self._learner.step() def select_action(self, observation: np.ndarray) -> int: return self._actor.select_action(observation)
acme-master
acme/agents/tf/impala/agent.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Learner for the IMPALA actor-critic agent.""" import time from typing import Dict, List, Mapping, Optional import acme from acme import specs from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import numpy as np import reverb import sonnet as snt import tensorflow as tf import tensorflow_probability as tfp import tree import trfl tfd = tfp.distributions class IMPALALearner(acme.Learner, tf2_savers.TFSaveable): """Learner for an importanced-weighted advantage actor-critic.""" def __init__( self, environment_spec: specs.EnvironmentSpec, network: snt.RNNCore, dataset: tf.data.Dataset, learning_rate: float, discount: float = 0.99, entropy_cost: float = 0., baseline_cost: float = 1., max_abs_reward: Optional[float] = None, max_gradient_norm: Optional[float] = None, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, ): # Internalise, optimizer, and dataset. self._env_spec = environment_spec self._optimizer = snt.optimizers.Adam(learning_rate=learning_rate) self._network = network self._variables = network.variables # TODO(b/155086959): Fix type stubs and remove. self._iterator = iter(dataset) # pytype: disable=wrong-arg-types # Hyperparameters. self._discount = discount self._entropy_cost = entropy_cost self._baseline_cost = baseline_cost # Set up reward/gradient clipping. if max_abs_reward is None: max_abs_reward = np.inf if max_gradient_norm is None: max_gradient_norm = 1e10 # A very large number. Infinity results in NaNs. self._max_abs_reward = tf.convert_to_tensor(max_abs_reward) self._max_gradient_norm = tf.convert_to_tensor(max_gradient_norm) # Set up logging/counting. self._counter = counter or counting.Counter() self._logger = logger or loggers.TerminalLogger('learner', time_delta=1.) self._snapshotter = tf2_savers.Snapshotter( objects_to_save={'network': network}, time_delta_minutes=60.) # Do not record timestamps until after the first learning step is done. # This is to avoid including the time it takes for actors to come online and # fill the replay buffer. self._timestamp = None @property def state(self) -> Mapping[str, tf2_savers.Checkpointable]: """Returns the stateful objects for checkpointing.""" return { 'network': self._network, 'optimizer': self._optimizer, } @tf.function def _step(self) -> Dict[str, tf.Tensor]: """Does an SGD step on a batch of sequences.""" # Retrieve a batch of data from replay. inputs: reverb.ReplaySample = next(self._iterator) data = tf2_utils.batch_to_sequence(inputs.data) observations, actions, rewards, discounts, extra = (data.observation, data.action, data.reward, data.discount, data.extras) core_state = tree.map_structure(lambda s: s[0], extra['core_state']) # actions = actions[:-1] # [T-1] rewards = rewards[:-1] # [T-1] discounts = discounts[:-1] # [T-1] with tf.GradientTape() as tape: # Unroll current policy over observations. (logits, values), _ = snt.static_unroll(self._network, observations, core_state) # Compute importance sampling weights: current policy / behavior policy. behaviour_logits = extra['logits'] pi_behaviour = tfd.Categorical(logits=behaviour_logits[:-1]) pi_target = tfd.Categorical(logits=logits[:-1]) log_rhos = pi_target.log_prob(actions) - pi_behaviour.log_prob(actions) # Optionally clip rewards. rewards = tf.clip_by_value(rewards, tf.cast(-self._max_abs_reward, rewards.dtype), tf.cast(self._max_abs_reward, rewards.dtype)) # Critic loss. vtrace_returns = trfl.vtrace_from_importance_weights( log_rhos=tf.cast(log_rhos, tf.float32), discounts=tf.cast(self._discount * discounts, tf.float32), rewards=tf.cast(rewards, tf.float32), values=tf.cast(values[:-1], tf.float32), bootstrap_value=values[-1], ) critic_loss = tf.square(vtrace_returns.vs - values[:-1]) # Policy-gradient loss. policy_gradient_loss = trfl.policy_gradient( policies=pi_target, actions=actions, action_values=vtrace_returns.pg_advantages, ) # Entropy regulariser. entropy_loss = trfl.policy_entropy_loss(pi_target).loss # Combine weighted sum of actor & critic losses. loss = tf.reduce_mean(policy_gradient_loss + self._baseline_cost * critic_loss + self._entropy_cost * entropy_loss) # Compute gradients and optionally apply clipping. gradients = tape.gradient(loss, self._network.trainable_variables) gradients, _ = tf.clip_by_global_norm(gradients, self._max_gradient_norm) self._optimizer.apply(gradients, self._network.trainable_variables) metrics = { 'loss': loss, 'critic_loss': tf.reduce_mean(critic_loss), 'entropy_loss': tf.reduce_mean(entropy_loss), 'policy_gradient_loss': tf.reduce_mean(policy_gradient_loss), } return metrics def step(self): """Does a step of SGD and logs the results.""" # Do a batch of SGD. results = self._step() # Compute elapsed time. timestamp = time.time() elapsed_time = timestamp - self._timestamp if self._timestamp else 0 self._timestamp = timestamp # Update our counts and record it. counts = self._counter.increment(steps=1, walltime=elapsed_time) results.update(counts) # Snapshot and attempt to write logs. self._snapshotter.save() self._logger.write(results) def get_variables(self, names: List[str]) -> List[List[np.ndarray]]: return [tf2_utils.to_numpy(self._variables)]
acme-master
acme/agents/tf/impala/learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """IMPALA actor implementation.""" from typing import Optional from acme import adders from acme import core from acme import types from acme.tf import utils as tf2_utils from acme.tf import variable_utils as tf2_variable_utils import dm_env import sonnet as snt import tensorflow as tf import tensorflow_probability as tfp tfd = tfp.distributions class IMPALAActor(core.Actor): """A recurrent actor.""" def __init__( self, network: snt.RNNCore, adder: Optional[adders.Adder] = None, variable_client: Optional[tf2_variable_utils.VariableClient] = None, ): # Store these for later use. self._adder = adder self._variable_client = variable_client self._network = network # TODO(b/152382420): Ideally we would call tf.function(network) instead but # this results in an error when using acme RNN snapshots. self._policy = tf.function(network.__call__) self._state = None self._prev_state = None self._prev_logits = None def select_action(self, observation: types.NestedArray) -> types.NestedArray: # Add a dummy batch dimension and as a side effect convert numpy to TF. batched_obs = tf2_utils.add_batch_dim(observation) if self._state is None: self._state = self._network.initial_state(1) # Forward. (logits, _), new_state = self._policy(batched_obs, self._state) self._prev_logits = logits self._prev_state = self._state self._state = new_state action = tfd.Categorical(logits).sample() action = tf2_utils.to_numpy_squeeze(action) return action def observe_first(self, timestep: dm_env.TimeStep): if self._adder: self._adder.add_first(timestep) # Set the state to None so that we re-initialize at the next policy call. self._state = None def observe( self, action: types.NestedArray, next_timestep: dm_env.TimeStep, ): if not self._adder: return extras = {'logits': self._prev_logits, 'core_state': self._prev_state} extras = tf2_utils.to_numpy_squeeze(extras) self._adder.add(action, next_timestep, extras) def update(self, wait: bool = False): if self._variable_client: self._variable_client.update(wait)
acme-master
acme/agents/tf/impala/acting.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration test for the distributed agent.""" from typing import Sequence import acme from acme import specs from acme.agents.tf import svg0_prior from acme.testing import fakes from acme.tf import networks from acme.tf import utils as tf2_utils import launchpad as lp import numpy as np import sonnet as snt from absl.testing import absltest def make_networks( action_spec: specs.BoundedArray, policy_layer_sizes: Sequence[int] = (10, 10), critic_layer_sizes: Sequence[int] = (10, 10), ): """Simple networks for testing..""" # Get total number of action dimensions from action spec. num_dimensions = np.prod(action_spec.shape, dtype=int) policy_network = snt.Sequential([ tf2_utils.batch_concat, networks.LayerNormMLP(policy_layer_sizes, activate_final=True), networks.MultivariateNormalDiagHead( num_dimensions, tanh_mean=True, min_scale=0.3, init_scale=0.7, fixed_scale=False, use_tfd_independent=False) ]) # The multiplexer concatenates the (maybe transformed) observations/actions. multiplexer = networks.CriticMultiplexer() critic_network = snt.Sequential([ multiplexer, networks.LayerNormMLP(critic_layer_sizes, activate_final=True), networks.NearZeroInitializedLinear(1), ]) return { 'policy': policy_network, 'critic': critic_network, } class DistributedAgentTest(absltest.TestCase): """Simple integration/smoke test for the distributed agent.""" def test_control_suite(self): """Tests that the agent can run on the control suite without crashing.""" agent = svg0_prior.DistributedSVG0( environment_factory=lambda x: fakes.ContinuousEnvironment(), network_factory=make_networks, num_actors=2, batch_size=32, min_replay_size=32, max_replay_size=1000, ) program = agent.build() (learner_node,) = program.groups['learner'] learner_node.disable_run() lp.launch(program, launch_type='test_mt') learner: acme.Learner = learner_node.create_handle().dereference() for _ in range(5): learner.step() if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/svg0_prior/agent_distributed_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the SVG0 agent class.""" import copy from typing import Callable, Dict, Optional import acme from acme import specs from acme.agents.tf.svg0_prior import agent from acme.tf import savers as tf2_savers from acme.utils import counting from acme.utils import loggers from acme.utils import lp_utils import dm_env import launchpad as lp import reverb import sonnet as snt class DistributedSVG0: """Program definition for SVG0.""" def __init__( self, environment_factory: Callable[[bool], dm_env.Environment], network_factory: Callable[[specs.BoundedArray], Dict[str, snt.Module]], num_actors: int = 1, num_caches: int = 0, environment_spec: Optional[specs.EnvironmentSpec] = None, batch_size: int = 256, prefetch_size: int = 4, min_replay_size: int = 1000, max_replay_size: int = 1000000, samples_per_insert: Optional[float] = 32.0, sequence_length: int = 10, sigma: float = 0.3, discount: float = 0.99, policy_optimizer: Optional[snt.Optimizer] = None, critic_optimizer: Optional[snt.Optimizer] = None, prior_optimizer: Optional[snt.Optimizer] = None, distillation_cost: Optional[float] = 1e-3, entropy_regularizer_cost: Optional[float] = 1e-3, target_update_period: int = 100, max_actor_steps: Optional[int] = None, log_every: float = 10.0, ): if not environment_spec: environment_spec = specs.make_environment_spec(environment_factory(False)) # TODO(mwhoffman): Make network_factory directly return the struct. # TODO(mwhoffman): Make the factory take the entire spec. def wrapped_network_factory(action_spec): networks_dict = network_factory(action_spec) networks = agent.SVG0Networks( policy_network=networks_dict.get('policy'), critic_network=networks_dict.get('critic'), prior_network=networks_dict.get('prior', None),) return networks self._environment_factory = environment_factory self._network_factory = wrapped_network_factory self._environment_spec = environment_spec self._sigma = sigma self._num_actors = num_actors self._num_caches = num_caches self._max_actor_steps = max_actor_steps self._log_every = log_every self._sequence_length = sequence_length self._builder = agent.SVG0Builder( # TODO(mwhoffman): pass the config dataclass in directly. # TODO(mwhoffman): use the limiter rather than the workaround below. agent.SVG0Config( discount=discount, batch_size=batch_size, prefetch_size=prefetch_size, target_update_period=target_update_period, policy_optimizer=policy_optimizer, critic_optimizer=critic_optimizer, prior_optimizer=prior_optimizer, min_replay_size=min_replay_size, max_replay_size=max_replay_size, samples_per_insert=samples_per_insert, sequence_length=sequence_length, sigma=sigma, distillation_cost=distillation_cost, entropy_regularizer_cost=entropy_regularizer_cost, )) def replay(self): """The replay storage.""" return self._builder.make_replay_tables(self._environment_spec, self._sequence_length) def counter(self): return tf2_savers.CheckpointingRunner(counting.Counter(), time_delta_minutes=1, subdirectory='counter') def coordinator(self, counter: counting.Counter): return lp_utils.StepsLimiter(counter, self._max_actor_steps) def learner( self, replay: reverb.Client, counter: counting.Counter, ): """The Learning part of the agent.""" # Create the networks to optimize (online) and target networks. online_networks = self._network_factory(self._environment_spec.actions) target_networks = copy.deepcopy(online_networks) # Initialize the networks. online_networks.init(self._environment_spec) target_networks.init(self._environment_spec) dataset = self._builder.make_dataset_iterator(replay) counter = counting.Counter(counter, 'learner') logger = loggers.make_default_logger( 'learner', time_delta=self._log_every, steps_key='learner_steps') return self._builder.make_learner( networks=(online_networks, target_networks), dataset=dataset, counter=counter, logger=logger, ) def actor( self, replay: reverb.Client, variable_source: acme.VariableSource, counter: counting.Counter, ) -> acme.EnvironmentLoop: """The actor process.""" # Create the behavior policy. networks = self._network_factory(self._environment_spec.actions) networks.init(self._environment_spec) policy_network = networks.make_policy() # Create the agent. actor = self._builder.make_actor( policy_network=policy_network, adder=self._builder.make_adder(replay), variable_source=variable_source, ) # Create the environment. environment = self._environment_factory(False) # Create logger and counter; actors will not spam bigtable. counter = counting.Counter(counter, 'actor') logger = loggers.make_default_logger( 'actor', save_data=False, time_delta=self._log_every, steps_key='actor_steps') # Create the loop to connect environment and agent. return acme.EnvironmentLoop(environment, actor, counter, logger) def evaluator( self, variable_source: acme.VariableSource, counter: counting.Counter, logger: Optional[loggers.Logger] = None, ): """The evaluation process.""" # Create the behavior policy. networks = self._network_factory(self._environment_spec.actions) networks.init(self._environment_spec) policy_network = networks.make_policy() # Create the agent. actor = self._builder.make_actor( policy_network=policy_network, variable_source=variable_source, deterministic_policy=True, ) # Make the environment. environment = self._environment_factory(True) # Create logger and counter. counter = counting.Counter(counter, 'evaluator') logger = logger or loggers.make_default_logger( 'evaluator', time_delta=self._log_every, steps_key='evaluator_steps', ) # Create the run loop and return it. return acme.EnvironmentLoop(environment, actor, counter, logger) def build(self, name='svg0'): """Build the distributed agent topology.""" program = lp.Program(name=name) with program.group('replay'): replay = program.add_node(lp.ReverbNode(self.replay)) with program.group('counter'): counter = program.add_node(lp.CourierNode(self.counter)) if self._max_actor_steps: with program.group('coordinator'): _ = program.add_node(lp.CourierNode(self.coordinator, counter)) with program.group('learner'): learner = program.add_node(lp.CourierNode(self.learner, replay, counter)) with program.group('evaluator'): program.add_node(lp.CourierNode(self.evaluator, learner, counter)) if not self._num_caches: # Use our learner as a single variable source. sources = [learner] else: with program.group('cacher'): # Create a set of learner caches. sources = [] for _ in range(self._num_caches): cacher = program.add_node( lp.CacherNode( learner, refresh_interval_ms=2000, stale_after_ms=4000)) sources.append(cacher) with program.group('actor'): # Add actors which pull round-robin from our variable sources. for actor_id in range(self._num_actors): source = sources[actor_id % len(sources)] program.add_node(lp.CourierNode(self.actor, replay, source, counter)) return program
acme-master
acme/agents/tf/svg0_prior/agent_distributed.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementations of a SVG0 agent with prior.""" from acme.agents.tf.svg0_prior.agent import SVG0 from acme.agents.tf.svg0_prior.agent_distributed import DistributedSVG0 from acme.agents.tf.svg0_prior.learning import SVG0Learner from acme.agents.tf.svg0_prior.networks import make_default_networks from acme.agents.tf.svg0_prior.networks import make_network_with_prior
acme-master
acme/agents/tf/svg0_prior/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Shared helpers for different experiment flavours.""" import functools from typing import Mapping, Sequence, Optional from acme import specs from acme import types from acme.agents.tf.svg0_prior import utils as svg0_utils from acme.tf import networks from acme.tf import utils as tf2_utils import numpy as np import sonnet as snt def make_default_networks( action_spec: specs.BoundedArray, policy_layer_sizes: Sequence[int] = (256, 256, 256), critic_layer_sizes: Sequence[int] = (512, 512, 256), ) -> Mapping[str, types.TensorTransformation]: """Creates networks used by the agent.""" # Get total number of action dimensions from action spec. num_dimensions = np.prod(action_spec.shape, dtype=int) policy_network = snt.Sequential([ tf2_utils.batch_concat, networks.LayerNormMLP(policy_layer_sizes, activate_final=True), networks.MultivariateNormalDiagHead( num_dimensions, tanh_mean=True, min_scale=0.3, init_scale=0.7, fixed_scale=False, use_tfd_independent=False) ]) # The multiplexer concatenates the (maybe transformed) observations/actions. multiplexer = networks.CriticMultiplexer( action_network=networks.ClipToSpec(action_spec)) critic_network = snt.Sequential([ multiplexer, networks.LayerNormMLP(critic_layer_sizes, activate_final=True), networks.NearZeroInitializedLinear(1), ]) return { "policy": policy_network, "critic": critic_network, } def make_network_with_prior( action_spec: specs.BoundedArray, policy_layer_sizes: Sequence[int] = (200, 100), critic_layer_sizes: Sequence[int] = (400, 300), prior_layer_sizes: Sequence[int] = (200, 100), policy_keys: Optional[Sequence[str]] = None, prior_keys: Optional[Sequence[str]] = None, ) -> Mapping[str, types.TensorTransformation]: """Creates networks used by the agent.""" # Get total number of action dimensions from action spec. num_dimensions = np.prod(action_spec.shape, dtype=int) flatten_concat_policy = functools.partial( svg0_utils.batch_concat_selection, concat_keys=policy_keys) flatten_concat_prior = functools.partial( svg0_utils.batch_concat_selection, concat_keys=prior_keys) policy_network = snt.Sequential([ flatten_concat_policy, networks.LayerNormMLP(policy_layer_sizes, activate_final=True), networks.MultivariateNormalDiagHead( num_dimensions, tanh_mean=True, min_scale=0.1, init_scale=0.7, fixed_scale=False, use_tfd_independent=False) ]) # The multiplexer concatenates the (maybe transformed) observations/actions. multiplexer = networks.CriticMultiplexer( observation_network=flatten_concat_policy, action_network=networks.ClipToSpec(action_spec)) critic_network = snt.Sequential([ multiplexer, networks.LayerNormMLP(critic_layer_sizes, activate_final=True), networks.NearZeroInitializedLinear(1), ]) prior_network = snt.Sequential([ flatten_concat_prior, networks.LayerNormMLP(prior_layer_sizes, activate_final=True), networks.MultivariateNormalDiagHead( num_dimensions, tanh_mean=True, min_scale=0.1, init_scale=0.7, fixed_scale=False, use_tfd_independent=False) ]) return { "policy": policy_network, "critic": critic_network, "prior": prior_network, }
acme-master
acme/agents/tf/svg0_prior/networks.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the SVG agent.""" import sys from typing import Dict, Sequence import acme from acme import specs from acme import types from acme.agents.tf import svg0_prior from acme.testing import fakes from acme.tf import networks from acme.tf import utils as tf2_utils import numpy as np import sonnet as snt from absl.testing import absltest def make_networks( action_spec: types.NestedSpec, policy_layer_sizes: Sequence[int] = (10, 10), critic_layer_sizes: Sequence[int] = (10, 10), ) -> Dict[str, snt.Module]: """Creates networks used by the agent.""" # Get total number of action dimensions from action spec. num_dimensions = np.prod(action_spec.shape, dtype=int) policy_network = snt.Sequential([ tf2_utils.batch_concat, networks.LayerNormMLP(policy_layer_sizes, activate_final=True), networks.MultivariateNormalDiagHead( num_dimensions, tanh_mean=True, min_scale=0.3, init_scale=0.7, fixed_scale=False, use_tfd_independent=False) ]) # The multiplexer concatenates the (maybe transformed) observations/actions. multiplexer = networks.CriticMultiplexer() critic_network = snt.Sequential([ multiplexer, networks.LayerNormMLP(critic_layer_sizes, activate_final=True), networks.NearZeroInitializedLinear(1), ]) return { 'policy': policy_network, 'critic': critic_network, } class SVG0Test(absltest.TestCase): def test_svg0(self): # Create a fake environment to test with. environment = fakes.ContinuousEnvironment(episode_length=10) spec = specs.make_environment_spec(environment) # Create the networks. agent_networks = make_networks(spec.actions) # Construct the agent. agent = svg0_prior.SVG0( environment_spec=spec, policy_network=agent_networks['policy'], critic_network=agent_networks['critic'], batch_size=10, samples_per_insert=2, min_replay_size=10, ) # Try running the environment loop. We have no assertions here because all # we care about is that the agent runs without raising any errors. loop = acme.EnvironmentLoop(environment, agent) loop.run(num_episodes=2) # Imports check if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/svg0_prior/agent_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for SVG0 algorithm with priors.""" import collections from typing import Tuple, Optional, Dict, Iterable from acme import types from acme.tf import utils as tf2_utils import sonnet as snt import tensorflow as tf import tree class OnlineTargetPiQ(snt.Module): """Core to unroll online and target policies and Q functions at once. A core that runs online and target policies and Q functions. This can be more efficient if the core needs to be unrolled across time and called many times. """ def __init__(self, online_pi: snt.Module, online_q: snt.Module, target_pi: snt.Module, target_q: snt.Module, num_samples: int, online_prior: Optional[snt.Module] = None, target_prior: Optional[snt.Module] = None, name='OnlineTargetPiQ'): super().__init__(name) self._online_pi = online_pi self._target_pi = target_pi self._online_q = online_q self._target_q = target_q self._online_prior = online_prior self._target_prior = target_prior self._num_samples = num_samples output_list = [ 'online_samples', 'target_samples', 'target_log_probs_behavior_actions', 'online_log_probs', 'online_q', 'target_q' ] if online_prior is not None: output_list += ['analytic_kl_divergence', 'analytic_kl_to_target'] self._output_tuple = collections.namedtuple( 'OnlineTargetPiQ', output_list) def __call__(self, input_obs_and_action: Tuple[tf.Tensor, tf.Tensor]): (obs, action) = input_obs_and_action online_pi_dist = self._online_pi(obs) target_pi_dist = self._target_pi(obs) online_samples = online_pi_dist.sample(self._num_samples) target_samples = target_pi_dist.sample(self._num_samples) target_log_probs_behavior_actions = target_pi_dist.log_prob(action) online_log_probs = online_pi_dist.log_prob(tf.stop_gradient(online_samples)) online_q_out = self._online_q(obs, action) target_q_out = self._target_q(obs, action) output_list = [ online_samples, target_samples, target_log_probs_behavior_actions, online_log_probs, online_q_out, target_q_out ] if self._online_prior is not None: prior_dist = self._online_prior(obs) target_prior_dist = self._target_prior(obs) analytic_kl_divergence = online_pi_dist.kl_divergence(prior_dist) analytic_kl_to_target = online_pi_dist.kl_divergence(target_prior_dist) output_list += [analytic_kl_divergence, analytic_kl_to_target] output = self._output_tuple(*output_list) return output def static_rnn(core: snt.Module, inputs: types.NestedTensor, unroll_length: int): """Unroll core along inputs for unroll_length steps. Note: for time-major input tensors whose leading dimension is less than unroll_length, `None` would be provided instead. Args: core: an instance of snt.Module. inputs: a `nest` of time-major input tensors. unroll_length: number of time steps to unroll. Returns: step_outputs: a `nest` of time-major stacked output tensors of length `unroll_length`. """ step_outputs = [] for time_dim in range(unroll_length): inputs_t = tree.map_structure( lambda t, i_=time_dim: t[i_] if i_ < t.shape[0] else None, inputs) step_output = core(inputs_t) step_outputs.append(step_output) step_outputs = _nest_stack(step_outputs) return step_outputs def mask_out_restarting(tensor: tf.Tensor, start_of_episode: tf.Tensor): """Mask out `tensor` taken on the step that resets the environment. Args: tensor: a time-major 2-D `Tensor` of shape [T, B]. start_of_episode: a 2-D `Tensor` of shape [T, B] that contains the points where the episode restarts. Returns: tensor of shape [T, B] with elements are masked out according to step_types, restarting weights of shape [T, B] """ tensor.get_shape().assert_has_rank(2) start_of_episode.get_shape().assert_has_rank(2) weights = tf.cast(~start_of_episode, dtype=tf.float32) masked_tensor = tensor * weights return masked_tensor def batch_concat_selection(observation_dict: Dict[str, types.NestedTensor], concat_keys: Optional[Iterable[str]] = None, output_dtype=tf.float32) -> tf.Tensor: """Concatenate a dict of observations into 2-D tensors.""" concat_keys = concat_keys or sorted(observation_dict.keys()) to_concat = [] for obs in concat_keys: if obs not in observation_dict: raise KeyError( 'Missing observation. Requested: {} (available: {})'.format( obs, list(observation_dict.keys()))) to_concat.append(tf.cast(observation_dict[obs], output_dtype)) return tf2_utils.batch_concat(to_concat) def _nest_stack(list_of_nests, axis=0): """Convert a list of nests to a nest of stacked lists.""" return tree.map_structure(lambda *ts: tf.stack(ts, axis=axis), *list_of_nests)
acme-master
acme/agents/tf/svg0_prior/utils.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SVG0 agent implementation.""" import copy import dataclasses from typing import Iterator, List, Optional, Tuple from acme import adders from acme import core from acme import datasets from acme import specs from acme.adders import reverb as reverb_adders from acme.agents import agent from acme.agents.tf.svg0_prior import acting from acme.agents.tf.svg0_prior import learning from acme.tf import utils from acme.tf import variable_utils from acme.utils import counting from acme.utils import loggers import reverb import sonnet as snt import tensorflow as tf @dataclasses.dataclass class SVG0Config: """Configuration options for the agent.""" discount: float = 0.99 batch_size: int = 256 prefetch_size: int = 4 target_update_period: int = 100 policy_optimizer: Optional[snt.Optimizer] = None critic_optimizer: Optional[snt.Optimizer] = None prior_optimizer: Optional[snt.Optimizer] = None min_replay_size: int = 1000 max_replay_size: int = 1000000 samples_per_insert: Optional[float] = 32.0 sequence_length: int = 10 sigma: float = 0.3 replay_table_name: str = reverb_adders.DEFAULT_PRIORITY_TABLE distillation_cost: Optional[float] = 1e-3 entropy_regularizer_cost: Optional[float] = 1e-3 @dataclasses.dataclass class SVG0Networks: """Structure containing the networks for SVG0.""" policy_network: snt.Module critic_network: snt.Module prior_network: Optional[snt.Module] def __init__( self, policy_network: snt.Module, critic_network: snt.Module, prior_network: Optional[snt.Module] = None ): # This method is implemented (rather than added by the dataclass decorator) # in order to allow observation network to be passed as an arbitrary tensor # transformation rather than as a snt Module. # TODO(mwhoffman): use Protocol rather than Module/TensorTransformation. self.policy_network = policy_network self.critic_network = critic_network self.prior_network = prior_network def init(self, environment_spec: specs.EnvironmentSpec): """Initialize the networks given an environment spec.""" # Get observation and action specs. act_spec = environment_spec.actions obs_spec = environment_spec.observations # Create variables for the policy and critic nets. _ = utils.create_variables(self.policy_network, [obs_spec]) _ = utils.create_variables(self.critic_network, [obs_spec, act_spec]) if self.prior_network is not None: _ = utils.create_variables(self.prior_network, [obs_spec]) def make_policy( self, ) -> snt.Module: """Create a single network which evaluates the policy.""" return self.policy_network def make_prior( self, ) -> snt.Module: """Create a single network which evaluates the prior.""" behavior_prior = self.prior_network return behavior_prior class SVG0Builder: """Builder for SVG0 which constructs individual components of the agent.""" def __init__(self, config: SVG0Config): self._config = config def make_replay_tables( self, environment_spec: specs.EnvironmentSpec, sequence_length: int, ) -> List[reverb.Table]: """Create tables to insert data into.""" if self._config.samples_per_insert is None: # We will take a samples_per_insert ratio of None to mean that there is # no limit, i.e. this only implies a min size limit. limiter = reverb.rate_limiters.MinSize(self._config.min_replay_size) else: error_buffer = max(1, self._config.samples_per_insert) limiter = reverb.rate_limiters.SampleToInsertRatio( min_size_to_sample=self._config.min_replay_size, samples_per_insert=self._config.samples_per_insert, error_buffer=error_buffer) extras_spec = { 'log_prob': tf.ones( shape=(), dtype=tf.float32) } replay_table = reverb.Table( name=self._config.replay_table_name, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=self._config.max_replay_size, rate_limiter=limiter, signature=reverb_adders.SequenceAdder.signature( environment_spec, extras_spec=extras_spec, sequence_length=sequence_length + 1)) return [replay_table] def make_dataset_iterator( self, reverb_client: reverb.Client, ) -> Iterator[reverb.ReplaySample]: """Create a dataset iterator to use for learning/updating the agent.""" # The dataset provides an interface to sample from replay. dataset = datasets.make_reverb_dataset( table=self._config.replay_table_name, server_address=reverb_client.server_address, batch_size=self._config.batch_size, prefetch_size=self._config.prefetch_size) # TODO(b/155086959): Fix type stubs and remove. return iter(dataset) # pytype: disable=wrong-arg-types def make_adder( self, replay_client: reverb.Client, ) -> adders.Adder: """Create an adder which records data generated by the actor/environment.""" return reverb_adders.SequenceAdder( client=replay_client, sequence_length=self._config.sequence_length+1, priority_fns={self._config.replay_table_name: lambda x: 1.}, period=self._config.sequence_length, end_of_episode_behavior=reverb_adders.EndBehavior.CONTINUE, ) def make_actor( self, policy_network: snt.Module, adder: Optional[adders.Adder] = None, variable_source: Optional[core.VariableSource] = None, deterministic_policy: Optional[bool] = False, ): """Create an actor instance.""" if variable_source: # Create the variable client responsible for keeping the actor up-to-date. variable_client = variable_utils.VariableClient( client=variable_source, variables={'policy': policy_network.variables}, update_period=1000, ) # Make sure not to use a random policy after checkpoint restoration by # assigning variables before running the environment loop. variable_client.update_and_wait() else: variable_client = None # Create the actor which defines how we take actions. return acting.SVG0Actor( policy_network=policy_network, adder=adder, variable_client=variable_client, deterministic_policy=deterministic_policy ) def make_learner( self, networks: Tuple[SVG0Networks, SVG0Networks], dataset: Iterator[reverb.ReplaySample], counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = False, ): """Creates an instance of the learner.""" online_networks, target_networks = networks # The learner updates the parameters (and initializes them). return learning.SVG0Learner( policy_network=online_networks.policy_network, critic_network=online_networks.critic_network, target_policy_network=target_networks.policy_network, target_critic_network=target_networks.critic_network, prior_network=online_networks.prior_network, target_prior_network=target_networks.prior_network, policy_optimizer=self._config.policy_optimizer, critic_optimizer=self._config.critic_optimizer, prior_optimizer=self._config.prior_optimizer, distillation_cost=self._config.distillation_cost, entropy_regularizer_cost=self._config.entropy_regularizer_cost, discount=self._config.discount, target_update_period=self._config.target_update_period, dataset_iterator=dataset, counter=counter, logger=logger, checkpoint=checkpoint, ) class SVG0(agent.Agent): """SVG0 Agent with prior. This implements a single-process SVG0 agent. This is an actor-critic algorithm that generates data via a behavior policy, inserts N-step transitions into a replay buffer, and periodically updates the policy (and as a result the behavior) by sampling uniformly from this buffer. """ def __init__( self, environment_spec: specs.EnvironmentSpec, policy_network: snt.Module, critic_network: snt.Module, discount: float = 0.99, batch_size: int = 256, prefetch_size: int = 4, target_update_period: int = 100, prior_network: Optional[snt.Module] = None, policy_optimizer: Optional[snt.Optimizer] = None, critic_optimizer: Optional[snt.Optimizer] = None, prior_optimizer: Optional[snt.Optimizer] = None, distillation_cost: Optional[float] = 1e-3, entropy_regularizer_cost: Optional[float] = 1e-3, min_replay_size: int = 1000, max_replay_size: int = 1000000, samples_per_insert: float = 32.0, sequence_length: int = 10, sigma: float = 0.3, replay_table_name: str = reverb_adders.DEFAULT_PRIORITY_TABLE, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = True, ): """Initialize the agent. Args: environment_spec: description of the actions, observations, etc. policy_network: the online (optimized) policy. critic_network: the online critic. discount: discount to use for TD updates. batch_size: batch size for updates. prefetch_size: size to prefetch from replay. target_update_period: number of learner steps to perform before updating the target networks. prior_network: an optional `behavior prior` to regularize against. policy_optimizer: optimizer for the policy network updates. critic_optimizer: optimizer for the critic network updates. prior_optimizer: optimizer for the prior network updates. distillation_cost: a multiplier to be used when adding distillation against the prior to the losses. entropy_regularizer_cost: a multiplier used for per state sample based entropy added to the actor loss. min_replay_size: minimum replay size before updating. max_replay_size: maximum replay size. samples_per_insert: number of samples to take from replay for every insert that is made. sequence_length: number of timesteps to store for each trajectory. sigma: standard deviation of zero-mean, Gaussian exploration noise. replay_table_name: string indicating what name to give the replay table. counter: counter object used to keep track of steps. logger: logger object to be used by learner. checkpoint: boolean indicating whether to checkpoint the learner. """ # Create the Builder object which will internally create agent components. builder = SVG0Builder( # TODO(mwhoffman): pass the config dataclass in directly. # TODO(mwhoffman): use the limiter rather than the workaround below. # Right now this modifies min_replay_size and samples_per_insert so that # they are not controlled by a limiter and are instead handled by the # Agent base class (the above TODO directly references this behavior). SVG0Config( discount=discount, batch_size=batch_size, prefetch_size=prefetch_size, target_update_period=target_update_period, policy_optimizer=policy_optimizer, critic_optimizer=critic_optimizer, prior_optimizer=prior_optimizer, distillation_cost=distillation_cost, entropy_regularizer_cost=entropy_regularizer_cost, min_replay_size=1, # Let the Agent class handle this. max_replay_size=max_replay_size, samples_per_insert=None, # Let the Agent class handle this. sequence_length=sequence_length, sigma=sigma, replay_table_name=replay_table_name, )) # TODO(mwhoffman): pass the network dataclass in directly. online_networks = SVG0Networks(policy_network=policy_network, critic_network=critic_network, prior_network=prior_network,) # Target networks are just a copy of the online networks. target_networks = copy.deepcopy(online_networks) # Initialize the networks. online_networks.init(environment_spec) target_networks.init(environment_spec) # TODO(mwhoffman): either make this Dataclass or pass only one struct. # The network struct passed to make_learner is just a tuple for the # time-being (for backwards compatibility). networks = (online_networks, target_networks) # Create the behavior policy. policy_network = online_networks.make_policy() # Create the replay server and grab its address. replay_tables = builder.make_replay_tables(environment_spec, sequence_length) replay_server = reverb.Server(replay_tables, port=None) replay_client = reverb.Client(f'localhost:{replay_server.port}') # Create actor, dataset, and learner for generating, storing, and consuming # data respectively. adder = builder.make_adder(replay_client) actor = builder.make_actor(policy_network, adder) dataset = builder.make_dataset_iterator(replay_client) learner = builder.make_learner(networks, dataset, counter, logger, checkpoint) super().__init__( actor=actor, learner=learner, min_observations=max(batch_size, min_replay_size), observations_per_step=float(batch_size) / samples_per_insert) # Save the replay so we don't garbage collect it. self._replay_server = replay_server
acme-master
acme/agents/tf/svg0_prior/agent.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SVG learner implementation.""" import time from typing import Dict, Iterator, List, Optional import acme from acme.agents.tf.svg0_prior import utils as svg0_utils from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import numpy as np import reverb import sonnet as snt import tensorflow as tf from trfl import continuous_retrace_ops _MIN_LOG_VAL = 1e-20 class SVG0Learner(acme.Learner): """SVG0 learner with optional prior. This is the learning component of an SVG0 agent. IE it takes a dataset as input and implements update functionality to learn from this dataset. """ def __init__( self, policy_network: snt.Module, critic_network: snt.Module, target_policy_network: snt.Module, target_critic_network: snt.Module, discount: float, target_update_period: int, dataset_iterator: Iterator[reverb.ReplaySample], prior_network: Optional[snt.Module] = None, target_prior_network: Optional[snt.Module] = None, policy_optimizer: Optional[snt.Optimizer] = None, critic_optimizer: Optional[snt.Optimizer] = None, prior_optimizer: Optional[snt.Optimizer] = None, distillation_cost: Optional[float] = 1e-3, entropy_regularizer_cost: Optional[float] = 1e-3, num_action_samples: int = 10, lambda_: float = 1.0, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = True, ): """Initializes the learner. Args: policy_network: the online (optimized) policy. critic_network: the online critic. target_policy_network: the target policy (which lags behind the online policy). target_critic_network: the target critic. discount: discount to use for TD updates. target_update_period: number of learner steps to perform before updating the target networks. dataset_iterator: dataset to learn from, whether fixed or from a replay buffer (see `acme.datasets.reverb.make_reverb_dataset` documentation). prior_network: the online (optimized) prior. target_prior_network: the target prior (which lags behind the online prior). policy_optimizer: the optimizer to be applied to the SVG-0 (policy) loss. critic_optimizer: the optimizer to be applied to the distributional Bellman loss. prior_optimizer: the optimizer to be applied to the prior (distillation) loss. distillation_cost: a multiplier to be used when adding distillation against the prior to the losses. entropy_regularizer_cost: a multiplier used for per state sample based entropy added to the actor loss. num_action_samples: the number of action samples to use for estimating the value function and sample based entropy. lambda_: the `lambda` value to be used with retrace. counter: counter object used to keep track of steps. logger: logger object to be used by learner. checkpoint: boolean indicating whether to checkpoint the learner. """ # Store online and target networks. self._policy_network = policy_network self._critic_network = critic_network self._target_policy_network = target_policy_network self._target_critic_network = target_critic_network self._prior_network = prior_network self._target_prior_network = target_prior_network self._lambda = lambda_ self._num_action_samples = num_action_samples self._distillation_cost = distillation_cost self._entropy_regularizer_cost = entropy_regularizer_cost # General learner book-keeping and loggers. self._counter = counter or counting.Counter() self._logger = logger or loggers.make_default_logger('learner') # Other learner parameters. self._discount = discount # Necessary to track when to update target networks. self._num_steps = tf.Variable(0, dtype=tf.int32) self._target_update_period = target_update_period # Batch dataset and create iterator. self._iterator = dataset_iterator # Create optimizers if they aren't given. self._critic_optimizer = critic_optimizer or snt.optimizers.Adam(1e-4) self._policy_optimizer = policy_optimizer or snt.optimizers.Adam(1e-4) self._prior_optimizer = prior_optimizer or snt.optimizers.Adam(1e-4) # Expose the variables. self._variables = { 'critic': self._critic_network.variables, 'policy': self._policy_network.variables, } if self._prior_network is not None: self._variables['prior'] = self._prior_network.variables # Create a checkpointer and snapshotter objects. self._checkpointer = None self._snapshotter = None if checkpoint: objects_to_save = { 'counter': self._counter, 'policy': self._policy_network, 'critic': self._critic_network, 'target_policy': self._target_policy_network, 'target_critic': self._target_critic_network, 'policy_optimizer': self._policy_optimizer, 'critic_optimizer': self._critic_optimizer, 'num_steps': self._num_steps, } if self._prior_network is not None: objects_to_save['prior'] = self._prior_network objects_to_save['target_prior'] = self._target_prior_network objects_to_save['prior_optimizer'] = self._prior_optimizer self._checkpointer = tf2_savers.Checkpointer( subdirectory='svg0_learner', objects_to_save=objects_to_save) objects_to_snapshot = { 'policy': self._policy_network, 'critic': self._critic_network, } if self._prior_network is not None: objects_to_snapshot['prior'] = self._prior_network self._snapshotter = tf2_savers.Snapshotter( objects_to_save=objects_to_snapshot) # Do not record timestamps until after the first learning step is done. # This is to avoid including the time it takes for actors to come online and # fill the replay buffer. self._timestamp = None @tf.function def _step(self) -> Dict[str, tf.Tensor]: # Update target network online_variables = [ *self._critic_network.variables, *self._policy_network.variables, ] if self._prior_network is not None: online_variables += [*self._prior_network.variables] online_variables = tuple(online_variables) target_variables = [ *self._target_critic_network.variables, *self._target_policy_network.variables, ] if self._prior_network is not None: target_variables += [*self._target_prior_network.variables] target_variables = tuple(target_variables) # Make online -> target network update ops. if tf.math.mod(self._num_steps, self._target_update_period) == 0: for src, dest in zip(online_variables, target_variables): dest.assign(src) self._num_steps.assign_add(1) # Get data from replay (dropping extras if any) and flip to `[T, B, ...]`. sample: reverb.ReplaySample = next(self._iterator) data = tf2_utils.batch_to_sequence(sample.data) observations, actions, rewards, discounts, extra = (data.observation, data.action, data.reward, data.discount, data.extras) online_target_pi_q = svg0_utils.OnlineTargetPiQ( online_pi=self._policy_network, online_q=self._critic_network, target_pi=self._target_policy_network, target_q=self._target_critic_network, num_samples=self._num_action_samples, online_prior=self._prior_network, target_prior=self._target_prior_network, ) with tf.GradientTape(persistent=True) as tape: step_outputs = svg0_utils.static_rnn( core=online_target_pi_q, inputs=(observations, actions), unroll_length=rewards.shape[0]) # Flip target samples to have shape [S, T+1, B, ...] where 'S' is the # number of action samples taken. target_pi_samples = tf2_utils.batch_to_sequence( step_outputs.target_samples) # Tile observations to have shape [S, T+1, B,..]. tiled_observations = tf2_utils.tile_nested(observations, self._num_action_samples) # Finally compute target Q values on the new action samples. # Shape: [S, T+1, B, 1] target_q_target_pi_samples = snt.BatchApply(self._target_critic_network, 3)(tiled_observations, target_pi_samples) # Compute the value estimate by averaging over the action dimension. # Shape: [T+1, B, 1]. target_v_target_pi = tf.reduce_mean(target_q_target_pi_samples, axis=0) # Split the target V's into the target for learning # `value_function_target` and the bootstrap value. Shape: [T, B]. value_function_target = tf.squeeze(target_v_target_pi[:-1], axis=-1) # Shape: [B]. bootstrap_value = tf.squeeze(target_v_target_pi[-1], axis=-1) # When learning with a prior, add entropy terms to value targets. if self._prior_network is not None: value_function_target -= self._distillation_cost * tf.stop_gradient( step_outputs.analytic_kl_to_target[:-1] ) bootstrap_value -= self._distillation_cost * tf.stop_gradient( step_outputs.analytic_kl_to_target[-1]) # Get target log probs and behavior log probs from rollout. # Shape: [T+1, B]. target_log_probs_behavior_actions = ( step_outputs.target_log_probs_behavior_actions) behavior_log_probs = extra['log_prob'] # Calculate importance weights. Shape: [T+1, B]. rhos = tf.exp(target_log_probs_behavior_actions - behavior_log_probs) # Filter the importance weights to mask out episode restarts. Ignore the # last action and consider the step type of the next step for masking. # Shape: [T, B]. episode_start_mask = tf2_utils.batch_to_sequence( sample.data.start_of_episode)[1:] rhos = svg0_utils.mask_out_restarting(rhos[:-1], episode_start_mask) # rhos = rhos[:-1] # Compute the log importance weights with a small value added for # stability. # Shape: [T, B] log_rhos = tf.math.log(rhos + _MIN_LOG_VAL) # Retrieve the target and online Q values and throw away the last action. # Shape: [T, B]. target_q_values = tf.squeeze(step_outputs.target_q[:-1], -1) online_q_values = tf.squeeze(step_outputs.online_q[:-1], -1) # Flip target samples to have shape [S, T+1, B, ...] where 'S' is the # number of action samples taken. online_pi_samples = tf2_utils.batch_to_sequence( step_outputs.online_samples) target_q_online_pi_samples = snt.BatchApply(self._target_critic_network, 3)(tiled_observations, online_pi_samples) expected_q = tf.reduce_mean( tf.squeeze(target_q_online_pi_samples, -1), axis=0) # Flip online_log_probs to be of shape [S, T+1, B] and then compute # entropy by averaging over num samples. Final shape: [T+1, B]. online_log_probs = tf2_utils.batch_to_sequence( step_outputs.online_log_probs) sample_based_entropy = tf.reduce_mean(-online_log_probs, axis=0) retrace_outputs = continuous_retrace_ops.retrace_from_importance_weights( log_rhos=log_rhos, discounts=self._discount * discounts[:-1], rewards=rewards[:-1], q_values=target_q_values, values=value_function_target, bootstrap_value=bootstrap_value, lambda_=self._lambda, ) # Critic loss. Shape: [T, B]. critic_loss = 0.5 * tf.math.squared_difference( tf.stop_gradient(retrace_outputs.qs), online_q_values) # Policy loss- SVG0 with sample based entropy. Shape: [T, B] policy_loss = -( expected_q + self._entropy_regularizer_cost * sample_based_entropy) policy_loss = policy_loss[:-1] if self._prior_network is not None: # When training the prior, also add the per-timestep KL cost. policy_loss += ( self._distillation_cost * step_outputs.analytic_kl_to_target[:-1]) # Ensure episode restarts are masked out when computing the losses. critic_loss = svg0_utils.mask_out_restarting(critic_loss, episode_start_mask) critic_loss = tf.reduce_mean(critic_loss) policy_loss = svg0_utils.mask_out_restarting(policy_loss, episode_start_mask) policy_loss = tf.reduce_mean(policy_loss) if self._prior_network is not None: prior_loss = step_outputs.analytic_kl_divergence[:-1] prior_loss = svg0_utils.mask_out_restarting(prior_loss, episode_start_mask) prior_loss = tf.reduce_mean(prior_loss) # Get trainable variables. policy_variables = self._policy_network.trainable_variables critic_variables = self._critic_network.trainable_variables # Compute gradients. policy_gradients = tape.gradient(policy_loss, policy_variables) critic_gradients = tape.gradient(critic_loss, critic_variables) if self._prior_network is not None: prior_variables = self._prior_network.trainable_variables prior_gradients = tape.gradient(prior_loss, prior_variables) # Delete the tape manually because of the persistent=True flag. del tape # Apply gradients. self._policy_optimizer.apply(policy_gradients, policy_variables) self._critic_optimizer.apply(critic_gradients, critic_variables) losses = { 'critic_loss': critic_loss, 'policy_loss': policy_loss, } if self._prior_network is not None: self._prior_optimizer.apply(prior_gradients, prior_variables) losses['prior_loss'] = prior_loss # Losses to track. return losses def step(self): # Run the learning step. fetches = self._step() # Compute elapsed time. timestamp = time.time() elapsed_time = timestamp - self._timestamp if self._timestamp else 0 self._timestamp = timestamp # Update our counts and record it. counts = self._counter.increment(steps=1, walltime=elapsed_time) fetches.update(counts) # Checkpoint and attempt to write the logs. if self._checkpointer is not None: self._checkpointer.save() if self._snapshotter is not None: self._snapshotter.save() self._logger.write(fetches) def get_variables(self, names: List[str]) -> List[List[np.ndarray]]: return [tf2_utils.to_numpy(self._variables[name]) for name in names]
acme-master
acme/agents/tf/svg0_prior/learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SVG0 actor implementation.""" from typing import Optional from acme import adders from acme import types from acme.agents.tf import actors from acme.tf import utils as tf2_utils from acme.tf import variable_utils as tf2_variable_utils import dm_env import sonnet as snt class SVG0Actor(actors.FeedForwardActor): """An actor that also returns `log_prob`.""" def __init__( self, policy_network: snt.Module, adder: Optional[adders.Adder] = None, variable_client: Optional[tf2_variable_utils.VariableClient] = None, deterministic_policy: Optional[bool] = False, ): super().__init__(policy_network, adder, variable_client) self._log_prob = None self._deterministic_policy = deterministic_policy def select_action(self, observation: types.NestedArray) -> types.NestedArray: # Add a dummy batch dimension and as a side effect convert numpy to TF. batched_observation = tf2_utils.add_batch_dim(observation) # Compute the policy, conditioned on the observation. policy = self._policy_network(batched_observation) if self._deterministic_policy: action = policy.mean() else: action = policy.sample() self._log_prob = policy.log_prob(action) return tf2_utils.to_numpy_squeeze(action) def observe( self, action: types.NestedArray, next_timestep: dm_env.TimeStep, ): if not self._adder: return extras = {'log_prob': self._log_prob} extras = tf2_utils.to_numpy_squeeze(extras) self._adder.add(action, next_timestep, extras)
acme-master
acme/agents/tf/svg0_prior/acting.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration test for the distributed agent.""" import acme from acme.agents.tf import dqn from acme.testing import fakes from acme.tf import networks import launchpad as lp from absl.testing import absltest class DistributedAgentTest(absltest.TestCase): """Simple integration/smoke test for the distributed agent.""" def test_atari(self): """Tests that the agent can run for some steps without crashing.""" env_factory = lambda x: fakes.fake_atari_wrapped() net_factory = lambda spec: networks.DQNAtariNetwork(spec.num_values) agent = dqn.DistributedDQN( environment_factory=env_factory, network_factory=net_factory, num_actors=2, batch_size=32, min_replay_size=32, max_replay_size=1000, ) program = agent.build() (learner_node,) = program.groups['learner'] learner_node.disable_run() lp.launch(program, launch_type='test_mt') learner: acme.Learner = learner_node.create_handle().dereference() for _ in range(5): learner.step() if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/dqn/agent_distributed_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the DQN agent class.""" import copy from typing import Callable, Optional import acme from acme import datasets from acme import specs from acme.adders import reverb as adders from acme.agents.tf import actors from acme.agents.tf.dqn import learning from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.tf import variable_utils as tf2_variable_utils from acme.utils import counting from acme.utils import loggers from acme.utils import lp_utils import dm_env import launchpad as lp import numpy as np import reverb import sonnet as snt import trfl class DistributedDQN: """Distributed DQN agent.""" def __init__( self, environment_factory: Callable[[bool], dm_env.Environment], network_factory: Callable[[specs.DiscreteArray], snt.Module], num_actors: int, num_caches: int = 1, batch_size: int = 256, prefetch_size: int = 4, target_update_period: int = 100, samples_per_insert: float = 32.0, min_replay_size: int = 1000, max_replay_size: int = 1_000_000, importance_sampling_exponent: float = 0.2, priority_exponent: float = 0.6, n_step: int = 5, learning_rate: float = 1e-3, evaluator_epsilon: float = 0., max_actor_steps: Optional[int] = None, discount: float = 0.99, environment_spec: Optional[specs.EnvironmentSpec] = None, variable_update_period: int = 1000, ): assert num_caches >= 1 if environment_spec is None: environment_spec = specs.make_environment_spec(environment_factory(False)) self._environment_factory = environment_factory self._network_factory = network_factory self._num_actors = num_actors self._num_caches = num_caches self._env_spec = environment_spec self._batch_size = batch_size self._prefetch_size = prefetch_size self._target_update_period = target_update_period self._samples_per_insert = samples_per_insert self._min_replay_size = min_replay_size self._max_replay_size = max_replay_size self._importance_sampling_exponent = importance_sampling_exponent self._priority_exponent = priority_exponent self._n_step = n_step self._learning_rate = learning_rate self._evaluator_epsilon = evaluator_epsilon self._max_actor_steps = max_actor_steps self._discount = discount self._variable_update_period = variable_update_period def replay(self): """The replay storage.""" if self._samples_per_insert: limiter = reverb.rate_limiters.SampleToInsertRatio( min_size_to_sample=self._min_replay_size, samples_per_insert=self._samples_per_insert, error_buffer=self._batch_size) else: limiter = reverb.rate_limiters.MinSize(self._min_replay_size) replay_table = reverb.Table( name=adders.DEFAULT_PRIORITY_TABLE, sampler=reverb.selectors.Prioritized(self._priority_exponent), remover=reverb.selectors.Fifo(), max_size=self._max_replay_size, rate_limiter=limiter, signature=adders.NStepTransitionAdder.signature(self._env_spec)) return [replay_table] def counter(self): """Creates the master counter process.""" return tf2_savers.CheckpointingRunner( counting.Counter(), time_delta_minutes=1, subdirectory='counter') def coordinator(self, counter: counting.Counter, max_actor_steps: int): return lp_utils.StepsLimiter(counter, max_actor_steps) def learner(self, replay: reverb.Client, counter: counting.Counter): """The Learning part of the agent.""" # Create the networks. network = self._network_factory(self._env_spec.actions) target_network = copy.deepcopy(network) tf2_utils.create_variables(network, [self._env_spec.observations]) tf2_utils.create_variables(target_network, [self._env_spec.observations]) # The dataset object to learn from. replay_client = reverb.Client(replay.server_address) dataset = datasets.make_reverb_dataset( server_address=replay.server_address, batch_size=self._batch_size, prefetch_size=self._prefetch_size) logger = loggers.make_default_logger('learner', steps_key='learner_steps') # Return the learning agent. counter = counting.Counter(counter, 'learner') learner = learning.DQNLearner( network=network, target_network=target_network, discount=self._discount, importance_sampling_exponent=self._importance_sampling_exponent, learning_rate=self._learning_rate, target_update_period=self._target_update_period, dataset=dataset, replay_client=replay_client, counter=counter, logger=logger) return tf2_savers.CheckpointingRunner( learner, subdirectory='dqn_learner', time_delta_minutes=60) def actor( self, replay: reverb.Client, variable_source: acme.VariableSource, counter: counting.Counter, epsilon: float, ) -> acme.EnvironmentLoop: """The actor process.""" environment = self._environment_factory(False) network = self._network_factory(self._env_spec.actions) # Just inline the policy network here. policy_network = snt.Sequential([ network, lambda q: trfl.epsilon_greedy(q, epsilon=epsilon).sample(), ]) tf2_utils.create_variables(policy_network, [self._env_spec.observations]) variable_client = tf2_variable_utils.VariableClient( client=variable_source, variables={'policy': policy_network.trainable_variables}, update_period=self._variable_update_period) # Make sure not to use a random policy after checkpoint restoration by # assigning variables before running the environment loop. variable_client.update_and_wait() # Component to add things into replay. adder = adders.NStepTransitionAdder( client=replay, n_step=self._n_step, discount=self._discount, ) # Create the agent. actor = actors.FeedForwardActor(policy_network, adder, variable_client) # Create the loop to connect environment and agent. counter = counting.Counter(counter, 'actor') logger = loggers.make_default_logger( 'actor', save_data=False, steps_key='actor_steps') return acme.EnvironmentLoop(environment, actor, counter, logger) def evaluator( self, variable_source: acme.VariableSource, counter: counting.Counter, ): """The evaluation process.""" environment = self._environment_factory(True) network = self._network_factory(self._env_spec.actions) # Just inline the policy network here. policy_network = snt.Sequential([ network, lambda q: trfl.epsilon_greedy(q, self._evaluator_epsilon).sample(), ]) tf2_utils.create_variables(policy_network, [self._env_spec.observations]) variable_client = tf2_variable_utils.VariableClient( client=variable_source, variables={'policy': policy_network.trainable_variables}, update_period=self._variable_update_period) # Make sure not to use a random policy after checkpoint restoration by # assigning variables before running the environment loop. variable_client.update_and_wait() # Create the agent. actor = actors.FeedForwardActor( policy_network, variable_client=variable_client) # Create the run loop and return it. logger = loggers.make_default_logger( 'evaluator', steps_key='evaluator_steps') counter = counting.Counter(counter, 'evaluator') return acme.EnvironmentLoop( environment, actor, counter=counter, logger=logger) def build(self, name='dqn'): """Build the distributed agent topology.""" program = lp.Program(name=name) with program.group('replay'): replay = program.add_node(lp.ReverbNode(self.replay)) with program.group('counter'): counter = program.add_node(lp.CourierNode(self.counter)) if self._max_actor_steps: program.add_node( lp.CourierNode(self.coordinator, counter, self._max_actor_steps)) with program.group('learner'): learner = program.add_node(lp.CourierNode(self.learner, replay, counter)) with program.group('evaluator'): program.add_node(lp.CourierNode(self.evaluator, learner, counter)) # Generate an epsilon for each actor. epsilons = np.flip(np.logspace(1, 8, self._num_actors, base=0.4), axis=0) with program.group('cacher'): # Create a set of learner caches. sources = [] for _ in range(self._num_caches): cacher = program.add_node( lp.CacherNode( learner, refresh_interval_ms=2000, stale_after_ms=4000)) sources.append(cacher) with program.group('actor'): # Add actors which pull round-robin from our variable sources. for actor_id, epsilon in enumerate(epsilons): source = sources[actor_id % len(sources)] program.add_node( lp.CourierNode(self.actor, replay, source, counter, epsilon)) return program
acme-master
acme/agents/tf/dqn/agent_distributed.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of a deep Q-networks (DQN) agent.""" from acme.agents.tf.dqn.agent import DQN from acme.agents.tf.dqn.agent_distributed import DistributedDQN from acme.agents.tf.dqn.learning import DQNLearner
acme-master
acme/agents/tf/dqn/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for DQN agent.""" import acme from acme import specs from acme.agents.tf import dqn from acme.testing import fakes import numpy as np import sonnet as snt from absl.testing import absltest def _make_network(action_spec: specs.DiscreteArray) -> snt.Module: return snt.Sequential([ snt.Flatten(), snt.nets.MLP([50, 50, action_spec.num_values]), ]) class DQNTest(absltest.TestCase): def test_dqn(self): # Create a fake environment to test with. environment = fakes.DiscreteEnvironment( num_actions=5, num_observations=10, obs_dtype=np.float32, episode_length=10) spec = specs.make_environment_spec(environment) # Construct the agent. agent = dqn.DQN( environment_spec=spec, network=_make_network(spec.actions), batch_size=10, samples_per_insert=2, min_replay_size=10) # Try running the environment loop. We have no assertions here because all # we care about is that the agent runs without raising any errors. loop = acme.EnvironmentLoop(environment, agent) loop.run(num_episodes=2) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/dqn/agent_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DQN agent implementation.""" import copy from typing import Optional from acme import datasets from acme import specs from acme.adders import reverb as adders from acme.agents import agent from acme.agents.tf import actors from acme.agents.tf.dqn import learning from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import loggers import reverb import sonnet as snt import tensorflow as tf import trfl class DQN(agent.Agent): """DQN agent. This implements a single-process DQN agent. This is a simple Q-learning algorithm that inserts N-step transitions into a replay buffer, and periodically updates its policy by sampling these transitions using prioritization. """ def __init__( self, environment_spec: specs.EnvironmentSpec, network: snt.Module, batch_size: int = 256, prefetch_size: int = 4, target_update_period: int = 100, samples_per_insert: float = 32.0, min_replay_size: int = 1000, max_replay_size: int = 1000000, importance_sampling_exponent: float = 0.2, priority_exponent: float = 0.6, n_step: int = 5, epsilon: Optional[tf.Variable] = None, learning_rate: float = 1e-3, discount: float = 0.99, logger: Optional[loggers.Logger] = None, checkpoint: bool = True, checkpoint_subpath: str = '~/acme', policy_network: Optional[snt.Module] = None, max_gradient_norm: Optional[float] = None, ): """Initialize the agent. Args: environment_spec: description of the actions, observations, etc. network: the online Q network (the one being optimized) batch_size: batch size for updates. prefetch_size: size to prefetch from replay. target_update_period: number of learner steps to perform before updating the target networks. samples_per_insert: number of samples to take from replay for every insert that is made. min_replay_size: minimum replay size before updating. This and all following arguments are related to dataset construction and will be ignored if a dataset argument is passed. max_replay_size: maximum replay size. importance_sampling_exponent: power to which importance weights are raised before normalizing. priority_exponent: exponent used in prioritized sampling. n_step: number of steps to squash into a single transition. epsilon: probability of taking a random action; ignored if a policy network is given. learning_rate: learning rate for the q-network update. discount: discount to use for TD updates. logger: logger object to be used by learner. checkpoint: boolean indicating whether to checkpoint the learner. checkpoint_subpath: string indicating where the agent should save checkpoints and snapshots. policy_network: if given, this will be used as the policy network. Otherwise, an epsilon greedy policy using the online Q network will be created. Policy network is used in the actor to sample actions. max_gradient_norm: used for gradient clipping. """ # Create a replay server to add data to. This uses no limiter behavior in # order to allow the Agent interface to handle it. replay_table = reverb.Table( name=adders.DEFAULT_PRIORITY_TABLE, sampler=reverb.selectors.Prioritized(priority_exponent), remover=reverb.selectors.Fifo(), max_size=max_replay_size, rate_limiter=reverb.rate_limiters.MinSize(1), signature=adders.NStepTransitionAdder.signature(environment_spec)) self._server = reverb.Server([replay_table], port=None) # The adder is used to insert observations into replay. address = f'localhost:{self._server.port}' adder = adders.NStepTransitionAdder( client=reverb.Client(address), n_step=n_step, discount=discount) # The dataset provides an interface to sample from replay. replay_client = reverb.Client(address) dataset = datasets.make_reverb_dataset( server_address=address, batch_size=batch_size, prefetch_size=prefetch_size) # Create epsilon greedy policy network by default. if policy_network is None: # Use constant 0.05 epsilon greedy policy by default. if epsilon is None: epsilon = tf.Variable(0.05, trainable=False) policy_network = snt.Sequential([ network, lambda q: trfl.epsilon_greedy(q, epsilon=epsilon).sample(), ]) # Create a target network. target_network = copy.deepcopy(network) # Ensure that we create the variables before proceeding (maybe not needed). tf2_utils.create_variables(network, [environment_spec.observations]) tf2_utils.create_variables(target_network, [environment_spec.observations]) # Create the actor which defines how we take actions. actor = actors.FeedForwardActor(policy_network, adder) # The learner updates the parameters (and initializes them). learner = learning.DQNLearner( network=network, target_network=target_network, discount=discount, importance_sampling_exponent=importance_sampling_exponent, learning_rate=learning_rate, target_update_period=target_update_period, dataset=dataset, replay_client=replay_client, max_gradient_norm=max_gradient_norm, logger=logger, checkpoint=checkpoint, save_directory=checkpoint_subpath) if checkpoint: self._checkpointer = tf2_savers.Checkpointer( directory=checkpoint_subpath, objects_to_save=learner.state, subdirectory='dqn_learner', time_delta_minutes=60.) else: self._checkpointer = None super().__init__( actor=actor, learner=learner, min_observations=max(batch_size, min_replay_size), observations_per_step=float(batch_size) / samples_per_insert) def update(self): super().update() if self._checkpointer is not None: self._checkpointer.save()
acme-master
acme/agents/tf/dqn/agent.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DQN learner implementation.""" import time from typing import Dict, List, Optional, Union import acme from acme import types from acme.adders import reverb as adders from acme.tf import losses from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import numpy as np import reverb import sonnet as snt import tensorflow as tf import trfl class DQNLearner(acme.Learner, tf2_savers.TFSaveable): """DQN learner. This is the learning component of a DQN agent. It takes a dataset as input and implements update functionality to learn from this dataset. Optionally it takes a replay client as well to allow for updating of priorities. """ def __init__( self, network: snt.Module, target_network: snt.Module, discount: float, importance_sampling_exponent: float, learning_rate: float, target_update_period: int, dataset: tf.data.Dataset, max_abs_reward: Optional[float] = 1., huber_loss_parameter: float = 1., replay_client: Optional[Union[reverb.Client, reverb.TFClient]] = None, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = True, save_directory: str = '~/acme', max_gradient_norm: Optional[float] = None, ): """Initializes the learner. Args: network: the online Q network (the one being optimized) target_network: the target Q critic (which lags behind the online net). discount: discount to use for TD updates. importance_sampling_exponent: power to which importance weights are raised before normalizing. learning_rate: learning rate for the q-network update. target_update_period: number of learner steps to perform before updating the target networks. dataset: dataset to learn from, whether fixed or from a replay buffer (see `acme.datasets.reverb.make_reverb_dataset` documentation). max_abs_reward: Optional maximum absolute value for the reward. huber_loss_parameter: Quadratic-linear boundary for Huber loss. replay_client: client to replay to allow for updating priorities. counter: Counter object for (potentially distributed) counting. logger: Logger object for writing logs to. checkpoint: boolean indicating whether to checkpoint the learner. save_directory: string indicating where the learner should save checkpoints and snapshots. max_gradient_norm: used for gradient clipping. """ # TODO(mwhoffman): stop allowing replay_client to be passed as a TFClient. # This is just here for backwards compatability for agents which reuse this # Learner and still pass a TFClient instance. if isinstance(replay_client, reverb.TFClient): # TODO(b/170419518): open source pytype does not understand this # isinstance() check because it does not have a way of getting precise # type information for pip-installed packages. replay_client = reverb.Client(replay_client._server_address) # pytype: disable=attribute-error # Internalise agent components (replay buffer, networks, optimizer). # TODO(b/155086959): Fix type stubs and remove. self._iterator = iter(dataset) # pytype: disable=wrong-arg-types self._network = network self._target_network = target_network self._optimizer = snt.optimizers.Adam(learning_rate) self._replay_client = replay_client # Make sure to initialize the optimizer so that its variables (e.g. the Adam # moments) are included in the state returned by the learner (which can then # be checkpointed and restored). self._optimizer._initialize(network.trainable_variables) # pylint: disable= protected-access # Internalise the hyperparameters. self._discount = discount self._target_update_period = target_update_period self._importance_sampling_exponent = importance_sampling_exponent self._max_abs_reward = max_abs_reward self._huber_loss_parameter = huber_loss_parameter if max_gradient_norm is None: max_gradient_norm = 1e10 # A very large number. Infinity results in NaNs. self._max_gradient_norm = tf.convert_to_tensor(max_gradient_norm) # Learner state. self._variables: List[List[tf.Tensor]] = [network.trainable_variables] self._num_steps = tf.Variable(0, dtype=tf.int32) # Internalise logging/counting objects. self._counter = counter or counting.Counter() self._logger = logger or loggers.TerminalLogger('learner', time_delta=1.) # Create a snapshotter object. if checkpoint: self._snapshotter = tf2_savers.Snapshotter( objects_to_save={'network': network}, directory=save_directory, time_delta_minutes=60.) else: self._snapshotter = None # Do not record timestamps until after the first learning step is done. # This is to avoid including the time it takes for actors to come online and # fill the replay buffer. self._timestamp = None @tf.function def _step(self) -> Dict[str, tf.Tensor]: """Do a step of SGD and update the priorities.""" # Pull out the data needed for updates/priorities. inputs = next(self._iterator) transitions: types.Transition = inputs.data keys, probs = inputs.info[:2] with tf.GradientTape() as tape: # Evaluate our networks. q_tm1 = self._network(transitions.observation) q_t_value = self._target_network(transitions.next_observation) q_t_selector = self._network(transitions.next_observation) # The rewards and discounts have to have the same type as network values. r_t = tf.cast(transitions.reward, q_tm1.dtype) if self._max_abs_reward: r_t = tf.clip_by_value(r_t, -self._max_abs_reward, self._max_abs_reward) d_t = tf.cast(transitions.discount, q_tm1.dtype) * tf.cast( self._discount, q_tm1.dtype) # Compute the loss. _, extra = trfl.double_qlearning(q_tm1, transitions.action, r_t, d_t, q_t_value, q_t_selector) loss = losses.huber(extra.td_error, self._huber_loss_parameter) # Get the importance weights. importance_weights = 1. / probs # [B] importance_weights **= self._importance_sampling_exponent importance_weights /= tf.reduce_max(importance_weights) # Reweight. loss *= tf.cast(importance_weights, loss.dtype) # [B] loss = tf.reduce_mean(loss, axis=[0]) # [] # Do a step of SGD. gradients = tape.gradient(loss, self._network.trainable_variables) gradients, _ = tf.clip_by_global_norm(gradients, self._max_gradient_norm) self._optimizer.apply(gradients, self._network.trainable_variables) # Get the priorities that we'll use to update. priorities = tf.abs(extra.td_error) # Periodically update the target network. if tf.math.mod(self._num_steps, self._target_update_period) == 0: for src, dest in zip(self._network.variables, self._target_network.variables): dest.assign(src) self._num_steps.assign_add(1) # Report loss & statistics for logging. fetches = { 'loss': loss, 'keys': keys, 'priorities': priorities, } return fetches def step(self): # Do a batch of SGD. result = self._step() # Get the keys and priorities. keys = result.pop('keys') priorities = result.pop('priorities') # Update the priorities in the replay buffer. if self._replay_client: self._replay_client.mutate_priorities( table=adders.DEFAULT_PRIORITY_TABLE, updates=dict(zip(keys.numpy(), priorities.numpy()))) # Compute elapsed time. timestamp = time.time() elapsed_time = timestamp - self._timestamp if self._timestamp else 0 self._timestamp = timestamp # Update our counts and record it. counts = self._counter.increment(steps=1, walltime=elapsed_time) result.update(counts) # Snapshot and attempt to write logs. if self._snapshotter is not None: self._snapshotter.save() self._logger.write(result) def get_variables(self, names: List[str]) -> List[np.ndarray]: return tf2_utils.to_numpy(self._variables) @property def state(self): """Returns the stateful parts of the learner for checkpointing.""" return { 'network': self._network, 'target_network': self._target_network, 'optimizer': self._optimizer, 'num_steps': self._num_steps }
acme-master
acme/agents/tf/dqn/learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration test for the distributed agent.""" import acme from acme.agents.tf import r2d2 from acme.testing import fakes from acme.tf import networks import launchpad as lp from absl.testing import absltest class DistributedAgentTest(absltest.TestCase): """Simple integration/smoke test for the distributed agent.""" def test_agent(self): env_factory = lambda x: fakes.fake_atari_wrapped(oar_wrapper=True) net_factory = lambda spec: networks.R2D2AtariNetwork(spec.num_values) agent = r2d2.DistributedR2D2( environment_factory=env_factory, network_factory=net_factory, num_actors=2, batch_size=32, min_replay_size=32, max_replay_size=1000, replay_period=1, burn_in_length=1, trace_length=10, ) program = agent.build() (learner_node,) = program.groups['learner'] learner_node.disable_run() lp.launch(program, launch_type='test_mt') learner: acme.Learner = learner_node.create_handle().dereference() for _ in range(5): learner.step() if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/r2d2/agent_distributed_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the Recurrent DQN Launchpad program.""" import copy from typing import Callable, List, Optional import acme from acme import datasets from acme import specs from acme.adders import reverb as adders from acme.agents.tf import actors from acme.agents.tf.r2d2 import learning from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.tf import variable_utils as tf2_variable_utils from acme.utils import counting from acme.utils import loggers import dm_env import launchpad as lp import numpy as np import reverb import sonnet as snt import tensorflow as tf import trfl class DistributedR2D2: """Program definition for Recurrent Replay Distributed DQN (R2D2).""" def __init__(self, environment_factory: Callable[[bool], dm_env.Environment], network_factory: Callable[[specs.DiscreteArray], snt.RNNCore], num_actors: int, burn_in_length: int, trace_length: int, replay_period: int, environment_spec: Optional[specs.EnvironmentSpec] = None, batch_size: int = 256, prefetch_size: int = tf.data.experimental.AUTOTUNE, min_replay_size: int = 1000, max_replay_size: int = 100_000, samples_per_insert: float = 32.0, discount: float = 0.99, priority_exponent: float = 0.6, importance_sampling_exponent: float = 0.2, variable_update_period: int = 1000, learning_rate: float = 1e-3, evaluator_epsilon: float = 0., target_update_period: int = 100, save_logs: bool = False): if environment_spec is None: environment_spec = specs.make_environment_spec(environment_factory(False)) self._environment_factory = environment_factory self._network_factory = network_factory self._environment_spec = environment_spec self._num_actors = num_actors self._batch_size = batch_size self._prefetch_size = prefetch_size self._min_replay_size = min_replay_size self._max_replay_size = max_replay_size self._samples_per_insert = samples_per_insert self._burn_in_length = burn_in_length self._trace_length = trace_length self._replay_period = replay_period self._discount = discount self._target_update_period = target_update_period self._variable_update_period = variable_update_period self._save_logs = save_logs self._priority_exponent = priority_exponent self._learning_rate = learning_rate self._evaluator_epsilon = evaluator_epsilon self._importance_sampling_exponent = importance_sampling_exponent self._obs_spec = environment_spec.observations def replay(self) -> List[reverb.Table]: """The replay storage.""" network = self._network_factory(self._environment_spec.actions) extra_spec = { 'core_state': network.initial_state(1), } # Remove batch dimensions. extra_spec = tf2_utils.squeeze_batch_dim(extra_spec) if self._samples_per_insert: limiter = reverb.rate_limiters.SampleToInsertRatio( min_size_to_sample=self._min_replay_size, samples_per_insert=self._samples_per_insert, error_buffer=self._batch_size) else: limiter = reverb.rate_limiters.MinSize(self._min_replay_size) table = reverb.Table( name=adders.DEFAULT_PRIORITY_TABLE, sampler=reverb.selectors.Prioritized(self._priority_exponent), remover=reverb.selectors.Fifo(), max_size=self._max_replay_size, rate_limiter=limiter, signature=adders.SequenceAdder.signature( self._environment_spec, extra_spec, sequence_length=self._burn_in_length + self._trace_length + 1)) return [table] def counter(self): """Creates the master counter process.""" return tf2_savers.CheckpointingRunner( counting.Counter(), time_delta_minutes=1, subdirectory='counter') def learner(self, replay: reverb.Client, counter: counting.Counter): """The Learning part of the agent.""" # Use architect and create the environment. # Create the networks. network = self._network_factory(self._environment_spec.actions) target_network = copy.deepcopy(network) tf2_utils.create_variables(network, [self._obs_spec]) tf2_utils.create_variables(target_network, [self._obs_spec]) # The dataset object to learn from. reverb_client = reverb.TFClient(replay.server_address) sequence_length = self._burn_in_length + self._trace_length + 1 dataset = datasets.make_reverb_dataset( server_address=replay.server_address, batch_size=self._batch_size, prefetch_size=self._prefetch_size) counter = counting.Counter(counter, 'learner') logger = loggers.make_default_logger( 'learner', save_data=True, steps_key='learner_steps') # Return the learning agent. learner = learning.R2D2Learner( environment_spec=self._environment_spec, network=network, target_network=target_network, burn_in_length=self._burn_in_length, sequence_length=sequence_length, dataset=dataset, reverb_client=reverb_client, counter=counter, logger=logger, discount=self._discount, target_update_period=self._target_update_period, importance_sampling_exponent=self._importance_sampling_exponent, learning_rate=self._learning_rate, max_replay_size=self._max_replay_size) return tf2_savers.CheckpointingRunner( wrapped=learner, time_delta_minutes=60, subdirectory='r2d2_learner') def actor( self, replay: reverb.Client, variable_source: acme.VariableSource, counter: counting.Counter, epsilon: float, ) -> acme.EnvironmentLoop: """The actor process.""" environment = self._environment_factory(False) network = self._network_factory(self._environment_spec.actions) tf2_utils.create_variables(network, [self._obs_spec]) policy_network = snt.DeepRNN([ network, lambda qs: tf.cast(trfl.epsilon_greedy(qs, epsilon).sample(), tf.int32), ]) # Component to add things into replay. sequence_length = self._burn_in_length + self._trace_length + 1 adder = adders.SequenceAdder( client=replay, period=self._replay_period, sequence_length=sequence_length, delta_encoded=True, ) variable_client = tf2_variable_utils.VariableClient( client=variable_source, variables={'policy': policy_network.variables}, update_period=self._variable_update_period) # Make sure not to use a random policy after checkpoint restoration by # assigning variables before running the environment loop. variable_client.update_and_wait() # Create the agent. actor = actors.RecurrentActor( policy_network=policy_network, variable_client=variable_client, adder=adder) counter = counting.Counter(counter, 'actor') logger = loggers.make_default_logger( 'actor', save_data=False, steps_key='actor_steps') # Create the loop to connect environment and agent. return acme.EnvironmentLoop(environment, actor, counter, logger) def evaluator( self, variable_source: acme.VariableSource, counter: counting.Counter, ): """The evaluation process.""" environment = self._environment_factory(True) network = self._network_factory(self._environment_spec.actions) tf2_utils.create_variables(network, [self._obs_spec]) policy_network = snt.DeepRNN([ network, lambda qs: tf.cast(tf.argmax(qs, axis=-1), tf.int32), ]) variable_client = tf2_variable_utils.VariableClient( client=variable_source, variables={'policy': policy_network.variables}, update_period=self._variable_update_period) # Make sure not to use a random policy after checkpoint restoration by # assigning variables before running the environment loop. variable_client.update_and_wait() # Create the agent. actor = actors.RecurrentActor( policy_network=policy_network, variable_client=variable_client) # Create the run loop and return it. logger = loggers.make_default_logger( 'evaluator', save_data=True, steps_key='evaluator_steps') counter = counting.Counter(counter, 'evaluator') return acme.EnvironmentLoop(environment, actor, counter, logger) def build(self, name='r2d2'): """Build the distributed agent topology.""" program = lp.Program(name=name) with program.group('replay'): replay = program.add_node(lp.ReverbNode(self.replay)) with program.group('counter'): counter = program.add_node(lp.CourierNode(self.counter)) with program.group('learner'): learner = program.add_node(lp.CourierNode(self.learner, replay, counter)) with program.group('cacher'): cacher = program.add_node( lp.CacherNode(learner, refresh_interval_ms=2000, stale_after_ms=4000)) with program.group('evaluator'): program.add_node(lp.CourierNode(self.evaluator, cacher, counter)) # Generate an epsilon for each actor. epsilons = np.flip(np.logspace(1, 8, self._num_actors, base=0.4), axis=0) with program.group('actor'): for epsilon in epsilons: program.add_node( lp.CourierNode(self.actor, replay, cacher, counter, epsilon)) return program
acme-master
acme/agents/tf/r2d2/agent_distributed.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for Recurrent DQN (R2D2).""" from acme.agents.tf.r2d2.agent import R2D2 from acme.agents.tf.r2d2.agent_distributed import DistributedR2D2
acme-master
acme/agents/tf/r2d2/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for RDQN agent.""" import acme from acme import specs from acme.agents.tf import r2d2 from acme.testing import fakes from acme.tf import networks import numpy as np import sonnet as snt from absl.testing import absltest from absl.testing import parameterized class SimpleNetwork(networks.RNNCore): def __init__(self, action_spec: specs.DiscreteArray): super().__init__(name='r2d2_test_network') self._net = snt.DeepRNN([ snt.Flatten(), snt.LSTM(20), snt.nets.MLP([50, 50, action_spec.num_values]) ]) def __call__(self, inputs, state): return self._net(inputs, state) def initial_state(self, batch_size: int, **kwargs): return self._net.initial_state(batch_size) def unroll(self, inputs, state, sequence_length): return snt.static_unroll(self._net, inputs, state, sequence_length) class R2D2Test(parameterized.TestCase): @parameterized.parameters(True, False) def test_r2d2(self, store_lstm_state: bool): # Create a fake environment to test with. # TODO(b/152596848): Allow R2D2 to deal with integer observations. environment = fakes.DiscreteEnvironment( num_actions=5, num_observations=10, obs_shape=(10, 4), obs_dtype=np.float32, episode_length=10) spec = specs.make_environment_spec(environment) # Construct the agent. agent = r2d2.R2D2( environment_spec=spec, network=SimpleNetwork(spec.actions), batch_size=10, samples_per_insert=2, min_replay_size=10, store_lstm_state=store_lstm_state, burn_in_length=2, trace_length=6, replay_period=4, checkpoint=False, ) # Try running the environment loop. We have no assertions here because all # we care about is that the agent runs without raising any errors. loop = acme.EnvironmentLoop(environment, agent) loop.run(num_episodes=5) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/r2d2/agent_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Recurrent DQN (R2D2) agent implementation.""" import copy from typing import Optional from acme import datasets from acme import specs from acme.adders import reverb as adders from acme.agents import agent from acme.agents.tf import actors from acme.agents.tf.r2d2 import learning from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import reverb import sonnet as snt import tensorflow as tf import trfl class R2D2(agent.Agent): """R2D2 Agent. This implements a single-process R2D2 agent. This is a Q-learning algorithm that generates data via a (epislon-greedy) behavior policy, inserts trajectories into a replay buffer, and periodically updates the policy (and as a result the behavior) by sampling from this buffer. """ def __init__( self, environment_spec: specs.EnvironmentSpec, network: snt.RNNCore, burn_in_length: int, trace_length: int, replay_period: int, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, discount: float = 0.99, batch_size: int = 32, prefetch_size: int = tf.data.experimental.AUTOTUNE, target_update_period: int = 100, importance_sampling_exponent: float = 0.2, priority_exponent: float = 0.6, epsilon: float = 0.01, learning_rate: float = 1e-3, min_replay_size: int = 1000, max_replay_size: int = 1000000, samples_per_insert: float = 32.0, store_lstm_state: bool = True, max_priority_weight: float = 0.9, checkpoint: bool = True, ): if store_lstm_state: extra_spec = { 'core_state': tf2_utils.squeeze_batch_dim(network.initial_state(1)), } else: extra_spec = () sequence_length = burn_in_length + trace_length + 1 replay_table = reverb.Table( name=adders.DEFAULT_PRIORITY_TABLE, sampler=reverb.selectors.Prioritized(priority_exponent), remover=reverb.selectors.Fifo(), max_size=max_replay_size, rate_limiter=reverb.rate_limiters.MinSize(min_size_to_sample=1), signature=adders.SequenceAdder.signature( environment_spec, extra_spec, sequence_length=sequence_length)) self._server = reverb.Server([replay_table], port=None) address = f'localhost:{self._server.port}' # Component to add things into replay. adder = adders.SequenceAdder( client=reverb.Client(address), period=replay_period, sequence_length=sequence_length, ) # The dataset object to learn from. dataset = datasets.make_reverb_dataset( server_address=address, batch_size=batch_size, prefetch_size=prefetch_size) target_network = copy.deepcopy(network) tf2_utils.create_variables(network, [environment_spec.observations]) tf2_utils.create_variables(target_network, [environment_spec.observations]) learner = learning.R2D2Learner( environment_spec=environment_spec, network=network, target_network=target_network, burn_in_length=burn_in_length, sequence_length=sequence_length, dataset=dataset, reverb_client=reverb.TFClient(address), counter=counter, logger=logger, discount=discount, target_update_period=target_update_period, importance_sampling_exponent=importance_sampling_exponent, max_replay_size=max_replay_size, learning_rate=learning_rate, store_lstm_state=store_lstm_state, max_priority_weight=max_priority_weight, ) self._checkpointer = tf2_savers.Checkpointer( subdirectory='r2d2_learner', time_delta_minutes=60, objects_to_save=learner.state, enable_checkpointing=checkpoint, ) self._snapshotter = tf2_savers.Snapshotter( objects_to_save={'network': network}, time_delta_minutes=60.) policy_network = snt.DeepRNN([ network, lambda qs: trfl.epsilon_greedy(qs, epsilon=epsilon).sample(), ]) actor = actors.RecurrentActor( policy_network, adder, store_recurrent_state=store_lstm_state) observations_per_step = ( float(replay_period * batch_size) / samples_per_insert) super().__init__( actor=actor, learner=learner, min_observations=replay_period * max(batch_size, min_replay_size), observations_per_step=observations_per_step) def update(self): super().update() self._snapshotter.save() self._checkpointer.save()
acme-master
acme/agents/tf/r2d2/agent.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Recurrent Replay Distributed DQN (R2D2) learner implementation.""" import functools import time from typing import Dict, Iterator, List, Mapping, Union, Optional import acme from acme import specs from acme.adders import reverb as adders from acme.tf import losses from acme.tf import networks from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import numpy as np import reverb import sonnet as snt import tensorflow as tf import tree Variables = List[np.ndarray] class R2D2Learner(acme.Learner, tf2_savers.TFSaveable): """R2D2 learner. This is the learning component of the R2D2 agent. It takes a dataset as input and implements update functionality to learn from this dataset. """ def __init__( self, environment_spec: specs.EnvironmentSpec, network: Union[networks.RNNCore, snt.RNNCore], target_network: Union[networks.RNNCore, snt.RNNCore], burn_in_length: int, sequence_length: int, dataset: tf.data.Dataset, reverb_client: Optional[reverb.TFClient] = None, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, discount: float = 0.99, target_update_period: int = 100, importance_sampling_exponent: float = 0.2, max_replay_size: int = 1_000_000, learning_rate: float = 1e-3, # TODO(sergomez): rename to use_core_state for consistency with JAX agent. store_lstm_state: bool = True, max_priority_weight: float = 0.9, n_step: int = 5, clip_grad_norm: Optional[float] = None, ): if not isinstance(network, networks.RNNCore): network.unroll = functools.partial(snt.static_unroll, network) target_network.unroll = functools.partial(snt.static_unroll, target_network) # Internalise agent components (replay buffer, networks, optimizer). # TODO(b/155086959): Fix type stubs and remove. self._iterator: Iterator[reverb.ReplaySample] = iter(dataset) # pytype: disable=wrong-arg-types self._network = network self._target_network = target_network self._optimizer = snt.optimizers.Adam(learning_rate, epsilon=1e-3) self._reverb_client = reverb_client # Internalise the hyperparameters. self._store_lstm_state = store_lstm_state self._burn_in_length = burn_in_length self._discount = discount self._max_replay_size = max_replay_size self._importance_sampling_exponent = importance_sampling_exponent self._max_priority_weight = max_priority_weight self._target_update_period = target_update_period self._num_actions = environment_spec.actions.num_values self._sequence_length = sequence_length self._n_step = n_step self._clip_grad_norm = clip_grad_norm if burn_in_length: self._burn_in = lambda o, s: self._network.unroll(o, s, burn_in_length) else: self._burn_in = lambda o, s: (o, s) # pylint: disable=unnecessary-lambda # Learner state. self._variables = network.variables self._num_steps = tf.Variable( 0., dtype=tf.float32, trainable=False, name='step') # Internalise logging/counting objects. self._counter = counting.Counter(counter, 'learner') self._logger = logger or loggers.TerminalLogger('learner', time_delta=100.) # Do not record timestamps until after the first learning step is done. # This is to avoid including the time it takes for actors to come online and # fill the replay buffer. self._timestamp = None @tf.function def _step(self) -> Dict[str, tf.Tensor]: # Draw a batch of data from replay. sample: reverb.ReplaySample = next(self._iterator) data = tf2_utils.batch_to_sequence(sample.data) observations, actions, rewards, discounts, extra = (data.observation, data.action, data.reward, data.discount, data.extras) unused_sequence_length, batch_size = actions.shape # Get initial state for the LSTM, either from replay or simply use zeros. if self._store_lstm_state: core_state = tree.map_structure(lambda x: x[0], extra['core_state']) else: core_state = self._network.initial_state(batch_size) target_core_state = tree.map_structure(tf.identity, core_state) # Before training, optionally unroll the LSTM for a fixed warmup period. burn_in_obs = tree.map_structure(lambda x: x[:self._burn_in_length], observations) _, core_state = self._burn_in(burn_in_obs, core_state) _, target_core_state = self._burn_in(burn_in_obs, target_core_state) # Don't train on the warmup period. observations, actions, rewards, discounts, extra = tree.map_structure( lambda x: x[self._burn_in_length:], (observations, actions, rewards, discounts, extra)) with tf.GradientTape() as tape: # Unroll the online and target Q-networks on the sequences. q_values, _ = self._network.unroll(observations, core_state, self._sequence_length) target_q_values, _ = self._target_network.unroll(observations, target_core_state, self._sequence_length) # Compute the target policy distribution (greedy). greedy_actions = tf.argmax(q_values, output_type=tf.int32, axis=-1) target_policy_probs = tf.one_hot( greedy_actions, depth=self._num_actions, dtype=q_values.dtype) # Compute the transformed n-step loss. rewards = tree.map_structure(lambda x: x[:-1], rewards) discounts = tree.map_structure(lambda x: x[:-1], discounts) loss, extra = losses.transformed_n_step_loss( qs=q_values, targnet_qs=target_q_values, actions=actions, rewards=rewards, pcontinues=discounts * self._discount, target_policy_probs=target_policy_probs, bootstrap_n=self._n_step, ) # Calculate importance weights and use them to scale the loss. sample_info = sample.info keys, probs = sample_info.key, sample_info.probability importance_weights = 1. / (self._max_replay_size * probs) # [T, B] importance_weights **= self._importance_sampling_exponent importance_weights /= tf.reduce_max(importance_weights) loss *= tf.cast(importance_weights, tf.float32) # [T, B] loss = tf.reduce_mean(loss) # [] # Apply gradients via optimizer. gradients = tape.gradient(loss, self._network.trainable_variables) # Clip and apply gradients. if self._clip_grad_norm is not None: gradients, _ = tf.clip_by_global_norm(gradients, self._clip_grad_norm) self._optimizer.apply(gradients, self._network.trainable_variables) # Periodically update the target network. if tf.math.mod(self._num_steps, self._target_update_period) == 0: for src, dest in zip(self._network.variables, self._target_network.variables): dest.assign(src) self._num_steps.assign_add(1) if self._reverb_client: # Compute updated priorities. priorities = compute_priority(extra.errors, self._max_priority_weight) # Compute priorities and add an op to update them on the reverb side. self._reverb_client.update_priorities( table=adders.DEFAULT_PRIORITY_TABLE, keys=keys, priorities=tf.cast(priorities, tf.float64)) return {'loss': loss} def step(self): # Run the learning step. results = self._step() # Compute elapsed time. timestamp = time.time() elapsed_time = timestamp - self._timestamp if self._timestamp else 0 self._timestamp = timestamp # Update our counts and record it. counts = self._counter.increment(steps=1, walltime=elapsed_time) results.update(counts) self._logger.write(results) def get_variables(self, names: List[str]) -> List[Variables]: return [tf2_utils.to_numpy(self._variables)] @property def state(self) -> Mapping[str, tf2_savers.Checkpointable]: """Returns the stateful parts of the learner for checkpointing.""" return { 'network': self._network, 'target_network': self._target_network, 'optimizer': self._optimizer, 'num_steps': self._num_steps, } def compute_priority(errors: tf.Tensor, alpha: float): """Compute priority as mixture of max and mean sequence errors.""" abs_errors = tf.abs(errors) mean_priority = tf.reduce_mean(abs_errors, axis=0) max_priority = tf.reduce_max(abs_errors, axis=0) return alpha * max_priority + (1 - alpha) * mean_priority
acme-master
acme/agents/tf/r2d2/learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for Recurrent DQfD (R2D3).""" from acme.agents.tf.r2d3.agent import R2D3
acme-master
acme/agents/tf/r2d3/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for R2D3 agent.""" import acme from acme import specs from acme.agents.tf import r2d3 from acme.agents.tf.dqfd import bsuite_demonstrations from acme.testing import fakes from acme.tf import networks import dm_env import numpy as np import sonnet as snt from absl.testing import absltest class SimpleNetwork(networks.RNNCore): def __init__(self, action_spec: specs.DiscreteArray): super().__init__(name='r2d2_test_network') self._net = snt.DeepRNN([ snt.Flatten(), snt.LSTM(20), snt.nets.MLP([50, 50, action_spec.num_values]) ]) def __call__(self, inputs, state): return self._net(inputs, state) def initial_state(self, batch_size: int, **kwargs): return self._net.initial_state(batch_size) def unroll(self, inputs, state, sequence_length): return snt.static_unroll(self._net, inputs, state, sequence_length) class R2D3Test(absltest.TestCase): def test_r2d3(self): # Create a fake environment to test with. environment = fakes.DiscreteEnvironment( num_actions=5, num_observations=10, obs_dtype=np.float32, episode_length=10) spec = specs.make_environment_spec(environment) # Build demonstrations. dummy_action = np.zeros((), dtype=np.int32) recorder = bsuite_demonstrations.DemonstrationRecorder() timestep = environment.reset() while timestep.step_type is not dm_env.StepType.LAST: recorder.step(timestep, dummy_action) timestep = environment.step(dummy_action) recorder.step(timestep, dummy_action) recorder.record_episode() # Construct the agent. agent = r2d3.R2D3( environment_spec=spec, network=SimpleNetwork(spec.actions), target_network=SimpleNetwork(spec.actions), demonstration_dataset=recorder.make_tf_dataset(), demonstration_ratio=0.5, batch_size=10, samples_per_insert=2, min_replay_size=10, burn_in_length=2, trace_length=6, replay_period=4, checkpoint=False, ) # Try running the environment loop. We have no assertions here because all # we care about is that the agent runs without raising any errors. loop = acme.EnvironmentLoop(environment, agent) loop.run(num_episodes=5) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/r2d3/agent_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Recurrent DQfD (R2D3) agent implementation.""" import functools from typing import Optional from acme import datasets from acme import specs from acme import types as acme_types from acme.adders import reverb as adders from acme.agents import agent from acme.agents.tf import actors from acme.agents.tf.r2d2 import learning from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import reverb import sonnet as snt import tensorflow as tf import tree import trfl class R2D3(agent.Agent): """R2D3 Agent. This implements a single-process R2D2 agent that mixes demonstrations with actor experience. """ def __init__(self, environment_spec: specs.EnvironmentSpec, network: snt.RNNCore, target_network: snt.RNNCore, burn_in_length: int, trace_length: int, replay_period: int, demonstration_dataset: tf.data.Dataset, demonstration_ratio: float, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, discount: float = 0.99, batch_size: int = 32, target_update_period: int = 100, importance_sampling_exponent: float = 0.2, epsilon: float = 0.01, learning_rate: float = 1e-3, save_logs: bool = False, log_name: str = 'agent', checkpoint: bool = True, min_replay_size: int = 1000, max_replay_size: int = 1000000, samples_per_insert: float = 32.0): sequence_length = burn_in_length + trace_length + 1 extra_spec = { 'core_state': network.initial_state(1), } # Remove batch dimensions. extra_spec = tf2_utils.squeeze_batch_dim(extra_spec) replay_table = reverb.Table( name=adders.DEFAULT_PRIORITY_TABLE, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=max_replay_size, rate_limiter=reverb.rate_limiters.MinSize(min_size_to_sample=1), signature=adders.SequenceAdder.signature( environment_spec, extra_spec, sequence_length=sequence_length)) self._server = reverb.Server([replay_table], port=None) address = f'localhost:{self._server.port}' # Component to add things into replay. sequence_kwargs = dict( period=replay_period, sequence_length=sequence_length, ) adder = adders.SequenceAdder(client=reverb.Client(address), **sequence_kwargs) # The dataset object to learn from. dataset = datasets.make_reverb_dataset( server_address=address) # Combine with demonstration dataset. transition = functools.partial(_sequence_from_episode, extra_spec=extra_spec, **sequence_kwargs) dataset_demos = demonstration_dataset.map(transition) dataset = tf.data.experimental.sample_from_datasets( [dataset, dataset_demos], [1 - demonstration_ratio, demonstration_ratio]) # Batch and prefetch. dataset = dataset.batch(batch_size, drop_remainder=True) dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) tf2_utils.create_variables(network, [environment_spec.observations]) tf2_utils.create_variables(target_network, [environment_spec.observations]) learner = learning.R2D2Learner( environment_spec=environment_spec, network=network, target_network=target_network, burn_in_length=burn_in_length, dataset=dataset, reverb_client=reverb.TFClient(address), counter=counter, logger=logger, sequence_length=sequence_length, discount=discount, target_update_period=target_update_period, importance_sampling_exponent=importance_sampling_exponent, max_replay_size=max_replay_size, learning_rate=learning_rate, store_lstm_state=False, ) self._checkpointer = tf2_savers.Checkpointer( subdirectory='r2d2_learner', time_delta_minutes=60, objects_to_save=learner.state, enable_checkpointing=checkpoint, ) self._snapshotter = tf2_savers.Snapshotter( objects_to_save={'network': network}, time_delta_minutes=60.) policy_network = snt.DeepRNN([ network, lambda qs: trfl.epsilon_greedy(qs, epsilon=epsilon).sample(), ]) actor = actors.RecurrentActor(policy_network, adder) observations_per_step = (float(replay_period * batch_size) / samples_per_insert) super().__init__( actor=actor, learner=learner, min_observations=replay_period * max(batch_size, min_replay_size), observations_per_step=observations_per_step) def update(self): super().update() self._snapshotter.save() self._checkpointer.save() def _sequence_from_episode(observations: acme_types.NestedTensor, actions: tf.Tensor, rewards: tf.Tensor, discounts: tf.Tensor, extra_spec: acme_types.NestedSpec, period: int, sequence_length: int): """Produce Reverb-like sequence from a full episode. Observations, actions, rewards and discounts have the same length. This function will ignore the first reward and discount and the last action. This function generates fake (all-zero) extras. See docs for reverb.SequenceAdder() for more details. Args: observations: [L, ...] Tensor. actions: [L, ...] Tensor. rewards: [L] Tensor. discounts: [L] Tensor. extra_spec: A possibly nested structure of specs for extras. This function will generate fake (all-zero) extras. period: The period with which we add sequences. sequence_length: The fixed length of sequences we wish to add. Returns: (o_t, a_t, r_t, d_t, e_t) Tuple. """ length = tf.shape(rewards)[0] first = tf.random.uniform(shape=(), minval=0, maxval=length, dtype=tf.int32) first = first // period * period # Get a multiple of `period`. to = tf.minimum(first + sequence_length, length) def _slice_and_pad(x): pad_length = sequence_length + first - to padding_shape = tf.concat([[pad_length], tf.shape(x)[1:]], axis=0) result = tf.concat([x[first:to], tf.zeros(padding_shape, x.dtype)], axis=0) result.set_shape([sequence_length] + x.shape.as_list()[1:]) return result o_t = tree.map_structure(_slice_and_pad, observations) a_t = tree.map_structure(_slice_and_pad, actions) r_t = _slice_and_pad(rewards) d_t = _slice_and_pad(discounts) start_of_episode = tf.equal(first, 0) start_of_episode = tf.expand_dims(start_of_episode, axis=0) start_of_episode = tf.tile(start_of_episode, [sequence_length]) def _sequence_zeros(spec): return tf.zeros([sequence_length] + spec.shape, spec.dtype) e_t = tree.map_structure(_sequence_zeros, extra_spec) info = tree.map_structure(lambda dtype: tf.ones([], dtype), reverb.SampleInfo.tf_dtypes()) return reverb.ReplaySample( info=info, data=adders.Step( observation=o_t, action=a_t, reward=r_t, discount=d_t, start_of_episode=start_of_episode, extras=e_t))
acme-master
acme/agents/tf/r2d3/agent.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Batch-Constrained Deep Q-learning (BCQ).""" from acme.agents.tf.bcq.discrete_learning import DiscreteBCQLearner
acme-master
acme/agents/tf/bcq/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Discrete BCQ learner implementation. As described in https://arxiv.org/pdf/1910.01708.pdf. """ import copy from typing import Dict, List, Optional from acme import core from acme import types from acme.adders import reverb as adders from acme.agents.tf import bc from acme.tf import losses from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.tf.networks import discrete as discrete_networks from acme.utils import counting from acme.utils import loggers import numpy as np import reverb import sonnet as snt import tensorflow as tf import trfl class _InternalBCQLearner(core.Learner, tf2_savers.TFSaveable): """Internal BCQ learner. This implements the Q-learning component in the discrete BCQ algorithm. """ def __init__( self, network: discrete_networks.DiscreteFilteredQNetwork, discount: float, importance_sampling_exponent: float, learning_rate: float, target_update_period: int, dataset: tf.data.Dataset, huber_loss_parameter: float = 1., replay_client: Optional[reverb.TFClient] = None, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = False, ): """Initializes the learner. Args: network: BCQ network discount: discount to use for TD updates. importance_sampling_exponent: power to which importance weights are raised before normalizing. learning_rate: learning rate for the q-network update. target_update_period: number of learner steps to perform before updating the target networks. dataset: dataset to learn from, whether fixed or from a replay buffer (see `acme.datasets.reverb.make_reverb_dataset` documentation). huber_loss_parameter: Quadratic-linear boundary for Huber loss. replay_client: client to replay to allow for updating priorities. counter: Counter object for (potentially distributed) counting. logger: Logger object for writing logs to. checkpoint: boolean indicating whether to checkpoint the learner. """ # Internalise agent components (replay buffer, networks, optimizer). # TODO(b/155086959): Fix type stubs and remove. self._iterator = iter(dataset) # pytype: disable=wrong-arg-types self._network = network self._q_network = network.q_network self._target_q_network = copy.deepcopy(network.q_network) self._optimizer = snt.optimizers.Adam(learning_rate) self._replay_client = replay_client # Internalise the hyperparameters. self._discount = discount self._target_update_period = target_update_period self._importance_sampling_exponent = importance_sampling_exponent self._huber_loss_parameter = huber_loss_parameter # Learner state. self._variables = [self._network.trainable_variables] self._num_steps = tf.Variable(0, dtype=tf.int32) # Internalise logging/counting objects. self._counter = counter or counting.Counter() self._logger = logger or loggers.make_default_logger('learner', save_data=False) # Create a snapshotter object. if checkpoint: self._snapshotter = tf2_savers.Snapshotter( objects_to_save={'network': network}, time_delta_minutes=60.) else: self._snapshotter = None @tf.function def _step(self) -> Dict[str, tf.Tensor]: """Do a step of SGD and update the priorities.""" # Pull out the data needed for updates/priorities. inputs = next(self._iterator) transitions: types.Transition = inputs.data keys, probs = inputs.info[:2] with tf.GradientTape() as tape: # Evaluate our networks. q_tm1 = self._q_network(transitions.observation) q_t_value = self._target_q_network(transitions.next_observation) q_t_selector = self._network(transitions.next_observation) # The rewards and discounts have to have the same type as network values. r_t = tf.cast(transitions.reward, q_tm1.dtype) r_t = tf.clip_by_value(r_t, -1., 1.) d_t = tf.cast(transitions.discount, q_tm1.dtype) * tf.cast( self._discount, q_tm1.dtype) # Compute the loss. _, extra = trfl.double_qlearning(q_tm1, transitions.action, r_t, d_t, q_t_value, q_t_selector) loss = losses.huber(extra.td_error, self._huber_loss_parameter) # Get the importance weights. importance_weights = 1. / probs # [B] importance_weights **= self._importance_sampling_exponent importance_weights /= tf.reduce_max(importance_weights) # Reweight. loss *= tf.cast(importance_weights, loss.dtype) # [B] loss = tf.reduce_mean(loss, axis=[0]) # [] # Do a step of SGD. gradients = tape.gradient(loss, self._network.trainable_variables) self._optimizer.apply(gradients, self._network.trainable_variables) # Update the priorities in the replay buffer. if self._replay_client: priorities = tf.cast(tf.abs(extra.td_error), tf.float64) self._replay_client.update_priorities( table=adders.DEFAULT_PRIORITY_TABLE, keys=keys, priorities=priorities) # Periodically update the target network. if tf.math.mod(self._num_steps, self._target_update_period) == 0: for src, dest in zip(self._q_network.variables, self._target_q_network.variables): dest.assign(src) self._num_steps.assign_add(1) # Compute the global norm of the gradients for logging. global_gradient_norm = tf.linalg.global_norm(gradients) # Compute statistics of the Q-values for logging. max_q = tf.reduce_max(q_t_value) min_q = tf.reduce_min(q_t_value) mean_q, var_q = tf.nn.moments(q_t_value, [0, 1]) # Report loss & statistics for logging. fetches = { 'gradient_norm': global_gradient_norm, 'loss': loss, 'max_q': max_q, 'mean_q': mean_q, 'min_q': min_q, 'var_q': var_q, } return fetches def step(self): # Do a batch of SGD. result = self._step() # Update our counts and record it. counts = self._counter.increment(steps=1) result.update(counts) # Snapshot and attempt to write logs. if self._snapshotter is not None: self._snapshotter.save() self._logger.write(result) def get_variables(self, names: List[str]) -> List[np.ndarray]: return tf2_utils.to_numpy(self._variables) @property def state(self): """Returns the stateful parts of the learner for checkpointing.""" return { 'network': self._network, 'target_q_network': self._target_q_network, 'optimizer': self._optimizer, 'num_steps': self._num_steps } class DiscreteBCQLearner(core.Learner, tf2_savers.TFSaveable): """Discrete BCQ learner. This learner combines supervised BC learning and Q learning to implement the discrete BCQ algorithm as described in https://arxiv.org/pdf/1910.01708.pdf. """ def __init__(self, network: discrete_networks.DiscreteFilteredQNetwork, dataset: tf.data.Dataset, learning_rate: float, counter: Optional[counting.Counter] = None, bc_logger: Optional[loggers.Logger] = None, bcq_logger: Optional[loggers.Logger] = None, **bcq_learner_kwargs): counter = counter or counting.Counter() self._bc_logger = bc_logger or loggers.TerminalLogger('bc_learner', time_delta=1.) self._bcq_logger = bcq_logger or loggers.TerminalLogger('bcq_learner', time_delta=1.) self._bc_learner = bc.BCLearner( network=network.g_network, learning_rate=learning_rate, dataset=dataset, counter=counting.Counter(counter, 'bc'), logger=self._bc_logger, checkpoint=False) self._bcq_learner = _InternalBCQLearner( network=network, learning_rate=learning_rate, dataset=dataset, counter=counting.Counter(counter, 'bcq'), logger=self._bcq_logger, **bcq_learner_kwargs) def get_variables(self, names): return self._bcq_learner.get_variables(names) @property def state(self): bc_state = self._bc_learner.state bc_state.pop('network') # No need to checkpoint the BC network. bcq_state = self._bcq_learner.state state = dict() state.update({f'bc_{k}': v for k, v in bc_state.items()}) state.update({f'bcq_{k}': v for k, v in bcq_state.items()}) return state def step(self): self._bc_learner.step() self._bcq_learner.step()
acme-master
acme/agents/tf/bcq/discrete_learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for discrete BCQ learner.""" from acme import specs from acme.agents.tf import bcq from acme.testing import fakes from acme.tf import utils as tf2_utils from acme.tf.networks import discrete as discrete_networks from acme.utils import counting import numpy as np import sonnet as snt from absl.testing import absltest def _make_network(action_spec: specs.DiscreteArray) -> snt.Module: return snt.Sequential([ snt.Flatten(), snt.nets.MLP([50, 50, action_spec.num_values]), ]) class DiscreteBCQLearnerTest(absltest.TestCase): def test_full_learner(self): # Create dataset. environment = fakes.DiscreteEnvironment( num_actions=5, num_observations=10, obs_dtype=np.float32, episode_length=10) spec = specs.make_environment_spec(environment) dataset = fakes.transition_dataset(environment).batch(2) # Build network. g_network = _make_network(spec.actions) q_network = _make_network(spec.actions) network = discrete_networks.DiscreteFilteredQNetwork(g_network=g_network, q_network=q_network, threshold=0.5) tf2_utils.create_variables(network, [spec.observations]) # Build learner. counter = counting.Counter() learner = bcq.DiscreteBCQLearner( network=network, dataset=dataset, learning_rate=1e-4, discount=0.99, importance_sampling_exponent=0.2, target_update_period=100, counter=counter) # Run a learner step. learner.step() # Check counts from BC and BCQ learners. counts = counter.get_counts() self.assertEqual(1, counts['bc_steps']) self.assertEqual(1, counts['bcq_steps']) # Check learner state. self.assertEqual(1, learner.state['bc_num_steps'].numpy()) self.assertEqual(1, learner.state['bcq_num_steps'].numpy()) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/bcq/discrete_learning_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for IQN learner.""" import copy from acme import specs from acme.agents.tf import iqn from acme.testing import fakes from acme.tf import networks from acme.tf import utils as tf2_utils from acme.utils import counting import numpy as np import sonnet as snt from absl.testing import absltest def _make_torso_network(num_outputs: int) -> snt.Module: """Create torso network (outputs intermediate representation).""" return snt.Sequential([ snt.Flatten(), snt.nets.MLP([num_outputs]) ]) def _make_head_network(num_outputs: int) -> snt.Module: """Create head network (outputs Q-values).""" return snt.nets.MLP([num_outputs]) class IQNLearnerTest(absltest.TestCase): def test_full_learner(self): # Create dataset. environment = fakes.DiscreteEnvironment( num_actions=5, num_observations=10, obs_dtype=np.float32, episode_length=10) spec = specs.make_environment_spec(environment) dataset = fakes.transition_dataset(environment).batch( 2, drop_remainder=True) # Build network. network = networks.IQNNetwork( torso=_make_torso_network(num_outputs=2), head=_make_head_network(num_outputs=spec.actions.num_values), latent_dim=2, num_quantile_samples=1) tf2_utils.create_variables(network, [spec.observations]) # Build learner. counter = counting.Counter() learner = iqn.IQNLearner( network=network, target_network=copy.deepcopy(network), dataset=dataset, learning_rate=1e-4, discount=0.99, importance_sampling_exponent=0.2, target_update_period=1, counter=counter) # Run a learner step. learner.step() # Check counts from IQN learner. counts = counter.get_counts() self.assertEqual(1, counts['steps']) # Check learner state. self.assertEqual(1, learner.state['num_steps'].numpy()) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/iqn/learning_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of an IQN agent.""" from acme.agents.tf.iqn.learning import IQNLearner
acme-master
acme/agents/tf/iqn/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implicit Quantile Network (IQN) learner implementation.""" from typing import Dict, List, Optional, Tuple from acme import core from acme import types from acme.adders import reverb as adders from acme.tf import losses from acme.tf import networks from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import numpy as np import reverb import sonnet as snt import tensorflow as tf class IQNLearner(core.Learner, tf2_savers.TFSaveable): """Distributional DQN learner.""" def __init__( self, network: networks.IQNNetwork, target_network: snt.Module, discount: float, importance_sampling_exponent: float, learning_rate: float, target_update_period: int, dataset: tf.data.Dataset, huber_loss_parameter: float = 1., replay_client: Optional[reverb.TFClient] = None, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = True, ): """Initializes the learner. Args: network: the online Q network (the one being optimized) that outputs (q_values, q_logits, atoms). target_network: the target Q critic (which lags behind the online net). discount: discount to use for TD updates. importance_sampling_exponent: power to which importance weights are raised before normalizing. learning_rate: learning rate for the q-network update. target_update_period: number of learner steps to perform before updating the target networks. dataset: dataset to learn from, whether fixed or from a replay buffer (see `acme.datasets.reverb.make_reverb_dataset` documentation). huber_loss_parameter: Quadratic-linear boundary for Huber loss. replay_client: client to replay to allow for updating priorities. counter: Counter object for (potentially distributed) counting. logger: Logger object for writing logs to. checkpoint: boolean indicating whether to checkpoint the learner or not. """ # Internalise agent components (replay buffer, networks, optimizer). self._iterator = iter(dataset) # pytype: disable=wrong-arg-types self._network = network self._target_network = target_network self._optimizer = snt.optimizers.Adam(learning_rate) self._replay_client = replay_client # Internalise the hyperparameters. self._discount = discount self._target_update_period = target_update_period self._importance_sampling_exponent = importance_sampling_exponent self._huber_loss_parameter = huber_loss_parameter # Learner state. self._variables: List[List[tf.Tensor]] = [network.trainable_variables] self._num_steps = tf.Variable(0, dtype=tf.int32) # Internalise logging/counting objects. self._counter = counter or counting.Counter() self._logger = logger or loggers.TerminalLogger('learner', time_delta=1.) # Create a snapshotter object. if checkpoint: self._checkpointer = tf2_savers.Checkpointer( time_delta_minutes=5, objects_to_save={ 'network': self._network, 'target_network': self._target_network, 'optimizer': self._optimizer, 'num_steps': self._num_steps }) self._snapshotter = tf2_savers.Snapshotter( objects_to_save={'network': network}, time_delta_minutes=60.) else: self._checkpointer = None self._snapshotter = None @tf.function def _step(self) -> Dict[str, tf.Tensor]: """Do a step of SGD and update the priorities.""" # Pull out the data needed for updates/priorities. inputs = next(self._iterator) transitions: types.Transition = inputs.data keys, probs, *_ = inputs.info with tf.GradientTape() as tape: loss, fetches = self._loss_and_fetches(transitions.observation, transitions.action, transitions.reward, transitions.discount, transitions.next_observation) # Get the importance weights. importance_weights = 1. / probs # [B] importance_weights **= self._importance_sampling_exponent importance_weights /= tf.reduce_max(importance_weights) # Reweight. loss *= tf.cast(importance_weights, loss.dtype) # [B] loss = tf.reduce_mean(loss, axis=[0]) # [] # Do a step of SGD. gradients = tape.gradient(loss, self._network.trainable_variables) self._optimizer.apply(gradients, self._network.trainable_variables) # Update the priorities in the replay buffer. if self._replay_client: priorities = tf.clip_by_value(tf.abs(loss), -100, 100) priorities = tf.cast(priorities, tf.float64) self._replay_client.update_priorities( table=adders.DEFAULT_PRIORITY_TABLE, keys=keys, priorities=priorities) # Periodically update the target network. if tf.math.mod(self._num_steps, self._target_update_period) == 0: for src, dest in zip(self._network.variables, self._target_network.variables): dest.assign(src) self._num_steps.assign_add(1) # Report gradient norms. fetches.update( loss=loss, gradient_norm=tf.linalg.global_norm(gradients)) return fetches def step(self): # Do a batch of SGD. result = self._step() # Update our counts and record it. counts = self._counter.increment(steps=1) result.update(counts) # Checkpoint and attempt to write logs. if self._checkpointer is not None: self._checkpointer.save() if self._snapshotter is not None: self._snapshotter.save() self._logger.write(result) def get_variables(self, names: List[str]) -> List[np.ndarray]: return tf2_utils.to_numpy(self._variables) def _loss_and_fetches( self, o_tm1: tf.Tensor, a_tm1: tf.Tensor, r_t: tf.Tensor, d_t: tf.Tensor, o_t: tf.Tensor, ) -> Tuple[tf.Tensor, Dict[str, tf.Tensor]]: # Evaluate our networks. _, dist_tm1, tau = self._network(o_tm1) q_tm1 = _index_embs_with_actions(dist_tm1, a_tm1) q_selector, _, _ = self._target_network(o_t) a_t = tf.argmax(q_selector, axis=1) _, dist_t, _ = self._target_network(o_t) q_t = _index_embs_with_actions(dist_t, a_t) q_tm1 = losses.QuantileDistribution(values=q_tm1, logits=tf.zeros_like(q_tm1)) q_t = losses.QuantileDistribution(values=q_t, logits=tf.zeros_like(q_t)) # The rewards and discounts have to have the same type as network values. r_t = tf.cast(r_t, tf.float32) r_t = tf.clip_by_value(r_t, -1., 1.) d_t = tf.cast(d_t, tf.float32) * tf.cast(self._discount, tf.float32) # Compute the loss. loss_module = losses.NonUniformQuantileRegression( self._huber_loss_parameter) loss = loss_module(q_tm1, r_t, d_t, q_t, tau) # Compute statistics of the Q-values for logging. max_q = tf.reduce_max(q_t.values) min_q = tf.reduce_min(q_t.values) mean_q, var_q = tf.nn.moments(q_t.values, [0, 1]) fetches = { 'max_q': max_q, 'mean_q': mean_q, 'min_q': min_q, 'var_q': var_q, } return loss, fetches @property def state(self): """Returns the stateful parts of the learner for checkpointing.""" return { 'network': self._network, 'target_network': self._target_network, 'optimizer': self._optimizer, 'num_steps': self._num_steps } def _index_embs_with_actions( embeddings: tf.Tensor, actions: tf.Tensor, ) -> tf.Tensor: """Slice an embedding Tensor with action indices. Take embeddings of the form [batch_size, num_actions, embed_dim] and actions of the form [batch_size], and return the sliced embeddings like embeddings[:, actions, :]. Doing this my way because the comments in the official op are scary. Args: embeddings: Tensor of embeddings to index. actions: int Tensor to use as index into embeddings Returns: Tensor of embeddings indexed by actions """ batch_size, num_actions, _ = embeddings.shape.as_list() # Values are the 'values' in a sparse tensor we will be setting act_indx = tf.cast(actions, tf.int64)[:, None] values = tf.ones([tf.size(actions)], dtype=tf.bool) # Create a range for each index into the batch act_range = tf.range(0, batch_size, dtype=tf.int64)[:, None] # Combine this into coordinates with the action indices indices = tf.concat([act_range, act_indx], 1) actions_mask = tf.SparseTensor(indices, values, [batch_size, num_actions]) actions_mask = tf.stop_gradient( tf.sparse.to_dense(actions_mask, default_value=False)) sliced_emb = tf.boolean_mask(embeddings, actions_mask) return sliced_emb
acme-master
acme/agents/tf/iqn/learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for DQfD.""" from acme.agents.tf.dqfd.agent import DQfD from acme.agents.tf.dqfd.bsuite_demonstrations import DemonstrationRecorder
acme-master
acme/agents/tf/dqfd/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """bsuite demonstrations.""" from typing import Any, List from absl import flags from bsuite.environments import deep_sea import dm_env import numpy as np import tensorflow as tf import tree FLAGS = flags.FLAGS def _nested_stack(sequence: List[Any]): """Stack nested elements in a sequence.""" return tree.map_structure(lambda *x: np.stack(x), *sequence) class DemonstrationRecorder: """Records demonstrations. A demonstration is a (observation, action, reward, discount) tuple where every element is a numpy array corresponding to a full episode. """ def __init__(self): self._demos = [] self._reset_episode() def step(self, timestep: dm_env.TimeStep, action: np.ndarray): reward = np.array(timestep.reward or 0, np.float32) self._episode_reward += reward self._episode.append((timestep.observation, action, reward, np.array(timestep.discount or 0, np.float32))) def record_episode(self): self._demos.append(_nested_stack(self._episode)) self._reset_episode() def discard_episode(self): self._reset_episode() def _reset_episode(self): self._episode = [] self._episode_reward = 0 @property def episode_reward(self): return self._episode_reward def make_tf_dataset(self): types = tree.map_structure(lambda x: x.dtype, self._demos[0]) shapes = tree.map_structure(lambda x: x.shape, self._demos[0]) ds = tf.data.Dataset.from_generator(lambda: self._demos, types, shapes) return ds.repeat().shuffle(len(self._demos)) def _optimal_deep_sea_policy(environment: deep_sea.DeepSea, timestep: dm_env.TimeStep): action = environment._action_mapping[np.where(timestep.observation)] # pylint: disable=protected-access return action[0].astype(np.int32) def _run_optimal_deep_sea_episode(environment: deep_sea.DeepSea, recorder: DemonstrationRecorder): timestep = environment.reset() while timestep.step_type is not dm_env.StepType.LAST: action = _optimal_deep_sea_policy(environment, timestep) recorder.step(timestep, action) timestep = environment.step(action) recorder.step(timestep, np.zeros_like(action)) def _make_deep_sea_dataset(environment: deep_sea.DeepSea): """Make DeepSea demonstration dataset.""" recorder = DemonstrationRecorder() _run_optimal_deep_sea_episode(environment, recorder) assert recorder.episode_reward > 0 recorder.record_episode() return recorder.make_tf_dataset() def _make_deep_sea_stochastic_dataset(environment: deep_sea.DeepSea): """Make stochastic DeepSea demonstration dataset.""" recorder = DemonstrationRecorder() # Use 10*size demos, 80% success, 20% failure. num_demos = environment._size * 10 # pylint: disable=protected-access num_failures = num_demos // 5 num_successes = num_demos - num_failures successes_saved = 0 failures_saved = 0 while (successes_saved < num_successes) or (failures_saved < num_failures): _run_optimal_deep_sea_episode(environment, recorder) if recorder.episode_reward > 0 and successes_saved < num_successes: recorder.record_episode() successes_saved += 1 elif recorder.episode_reward <= 0 and failures_saved < num_failures: recorder.record_episode() failures_saved += 1 else: recorder.discard_episode() return recorder.make_tf_dataset() def make_dataset(environment: dm_env.Environment, stochastic: bool): """Make bsuite demos for the current task.""" if not stochastic: assert isinstance(environment, deep_sea.DeepSea) return _make_deep_sea_dataset(environment) else: assert isinstance(environment, deep_sea.DeepSea) return _make_deep_sea_stochastic_dataset(environment)
acme-master
acme/agents/tf/dqfd/bsuite_demonstrations.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for DQN agent.""" import acme from acme import specs from acme.agents.tf.dqfd import agent as dqfd from acme.agents.tf.dqfd import bsuite_demonstrations from acme.testing import fakes import dm_env import numpy as np import sonnet as snt from absl.testing import absltest def _make_network(action_spec: specs.DiscreteArray) -> snt.Module: return snt.Sequential([ snt.Flatten(), snt.nets.MLP([50, 50, action_spec.num_values]), ]) class DQfDTest(absltest.TestCase): def test_dqfd(self): # Create a fake environment to test with. # TODO(b/152596848): Allow DQN to deal with integer observations. environment = fakes.DiscreteEnvironment( num_actions=5, num_observations=10, obs_dtype=np.float32, episode_length=10) spec = specs.make_environment_spec(environment) # Build demonstrations. dummy_action = np.zeros((), dtype=np.int32) recorder = bsuite_demonstrations.DemonstrationRecorder() timestep = environment.reset() while timestep.step_type is not dm_env.StepType.LAST: recorder.step(timestep, dummy_action) timestep = environment.step(dummy_action) recorder.step(timestep, dummy_action) recorder.record_episode() # Construct the agent. agent = dqfd.DQfD( environment_spec=spec, network=_make_network(spec.actions), demonstration_dataset=recorder.make_tf_dataset(), demonstration_ratio=0.5, batch_size=10, samples_per_insert=2, min_replay_size=10) # Try running the environment loop. We have no assertions here because all # we care about is that the agent runs without raising any errors. loop = acme.EnvironmentLoop(environment, agent) loop.run(num_episodes=10) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/dqfd/agent_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DQfD Agent implementation.""" import copy import functools import operator from typing import Optional from acme import datasets from acme import specs from acme import types as acme_types from acme.adders import reverb as adders from acme.agents import agent from acme.agents.tf import actors from acme.agents.tf import dqn from acme.tf import utils as tf2_utils import reverb import sonnet as snt import tensorflow as tf import tree import trfl class DQfD(agent.Agent): """DQfD agent. This implements a single-process DQN agent that mixes demonstrations with actor experience. """ def __init__( self, environment_spec: specs.EnvironmentSpec, network: snt.Module, demonstration_dataset: tf.data.Dataset, demonstration_ratio: float, batch_size: int = 256, prefetch_size: int = 4, target_update_period: int = 100, samples_per_insert: float = 32.0, min_replay_size: int = 1000, max_replay_size: int = 1000000, importance_sampling_exponent: float = 0.2, n_step: int = 5, epsilon: Optional[tf.Tensor] = None, learning_rate: float = 1e-3, discount: float = 0.99, ): """Initialize the agent. Args: environment_spec: description of the actions, observations, etc. network: the online Q network (the one being optimized) demonstration_dataset: tf.data.Dataset producing (timestep, action) tuples containing full episodes. demonstration_ratio: Ratio of transitions coming from demonstrations. batch_size: batch size for updates. prefetch_size: size to prefetch from replay. target_update_period: number of learner steps to perform before updating the target networks. samples_per_insert: number of samples to take from replay for every insert that is made. min_replay_size: minimum replay size before updating. This and all following arguments are related to dataset construction and will be ignored if a dataset argument is passed. max_replay_size: maximum replay size. importance_sampling_exponent: power to which importance weights are raised before normalizing. n_step: number of steps to squash into a single transition. epsilon: probability of taking a random action; ignored if a policy network is given. learning_rate: learning rate for the q-network update. discount: discount to use for TD updates. """ # Create a replay server to add data to. This uses no limiter behavior in # order to allow the Agent interface to handle it. replay_table = reverb.Table( name=adders.DEFAULT_PRIORITY_TABLE, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=max_replay_size, rate_limiter=reverb.rate_limiters.MinSize(1), signature=adders.NStepTransitionAdder.signature(environment_spec)) self._server = reverb.Server([replay_table], port=None) # The adder is used to insert observations into replay. address = f'localhost:{self._server.port}' adder = adders.NStepTransitionAdder( client=reverb.Client(address), n_step=n_step, discount=discount) # The dataset provides an interface to sample from replay. replay_client = reverb.TFClient(address) dataset = datasets.make_reverb_dataset(server_address=address) # Combine with demonstration dataset. transition = functools.partial(_n_step_transition_from_episode, n_step=n_step, discount=discount) dataset_demos = demonstration_dataset.map(transition) dataset = tf.data.experimental.sample_from_datasets( [dataset, dataset_demos], [1 - demonstration_ratio, demonstration_ratio]) # Batch and prefetch. dataset = dataset.batch(batch_size, drop_remainder=True) dataset = dataset.prefetch(prefetch_size) # Use constant 0.05 epsilon greedy policy by default. if epsilon is None: epsilon = tf.Variable(0.05, trainable=False) policy_network = snt.Sequential([ network, lambda q: trfl.epsilon_greedy(q, epsilon=epsilon).sample(), ]) # Create a target network. target_network = copy.deepcopy(network) # Ensure that we create the variables before proceeding (maybe not needed). tf2_utils.create_variables(network, [environment_spec.observations]) tf2_utils.create_variables(target_network, [environment_spec.observations]) # Create the actor which defines how we take actions. actor = actors.FeedForwardActor(policy_network, adder) # The learner updates the parameters (and initializes them). learner = dqn.DQNLearner( network=network, target_network=target_network, discount=discount, importance_sampling_exponent=importance_sampling_exponent, learning_rate=learning_rate, target_update_period=target_update_period, dataset=dataset, replay_client=replay_client) super().__init__( actor=actor, learner=learner, min_observations=max(batch_size, min_replay_size), observations_per_step=float(batch_size) / samples_per_insert) def _n_step_transition_from_episode(observations: acme_types.NestedTensor, actions: tf.Tensor, rewards: tf.Tensor, discounts: tf.Tensor, n_step: int, discount: float): """Produce Reverb-like N-step transition from a full episode. Observations, actions, rewards and discounts have the same length. This function will ignore the first reward and discount and the last action. Args: observations: [L, ...] Tensor. actions: [L, ...] Tensor. rewards: [L] Tensor. discounts: [L] Tensor. n_step: number of steps to squash into a single transition. discount: discount to use for TD updates. Returns: (o_t, a_t, r_t, d_t, o_tp1) tuple. """ max_index = tf.shape(rewards)[0] - 1 first = tf.random.uniform(shape=(), minval=0, maxval=max_index - 1, dtype=tf.int32) last = tf.minimum(first + n_step, max_index) o_t = tree.map_structure(operator.itemgetter(first), observations) a_t = tree.map_structure(operator.itemgetter(first), actions) o_tp1 = tree.map_structure(operator.itemgetter(last), observations) # 0, 1, ..., n-1. discount_range = tf.cast(tf.range(last - first), tf.float32) # 1, g, ..., g^{n-1}. additional_discounts = tf.pow(discount, discount_range) # 1, d_t, d_t * d_{t+1}, ..., d_t * ... * d_{t+n-2}. discounts = tf.concat([[1.], tf.math.cumprod(discounts[first:last-1])], 0) # 1, g * d_t, ..., g^{n-1} * d_t * ... * d_{t+n-2}. discounts *= additional_discounts # r_t + g * d_t * r_{t+1} + ... + g^{n-1} * d_t * ... * d_{t+n-2} * r_{t+n-1} # We have to shift rewards by one so last=max_index corresponds to transitions # that include the last reward. r_t = tf.reduce_sum(rewards[first+1:last+1] * discounts) # g^{n-1} * d_{t} * ... * d_{t+n-1}. d_t = discounts[-1] info = tree.map_structure(lambda dtype: tf.ones([], dtype), reverb.SampleInfo.tf_dtypes()) return reverb.ReplaySample( info=info, data=acme_types.Transition(o_t, a_t, r_t, d_t, o_tp1))
acme-master
acme/agents/tf/dqfd/agent.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Recurrent CRR learner implementation.""" import operator import time from typing import Dict, List, Optional from acme import core from acme.tf import losses from acme.tf import networks from acme.tf import savers as tf2_savers from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import numpy as np import reverb import sonnet as snt import tensorflow as tf import tree class RCRRLearner(core.Learner): """Recurrent CRR learner. This is the learning component of a RCRR agent. It takes a dataset as input and implements update functionality to learn from this dataset. """ def __init__(self, policy_network: snt.RNNCore, critic_network: networks.CriticDeepRNN, target_policy_network: snt.RNNCore, target_critic_network: networks.CriticDeepRNN, dataset: tf.data.Dataset, accelerator_strategy: Optional[tf.distribute.Strategy] = None, behavior_network: Optional[snt.Module] = None, cwp_network: Optional[snt.Module] = None, policy_optimizer: Optional[snt.Optimizer] = None, critic_optimizer: Optional[snt.Optimizer] = None, discount: float = 0.99, target_update_period: int = 100, num_action_samples_td_learning: int = 1, num_action_samples_policy_weight: int = 4, baseline_reduce_function: str = 'mean', clipping: bool = True, policy_improvement_modes: str = 'exp', ratio_upper_bound: float = 20., beta: float = 1.0, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, checkpoint: bool = False): """Initializes the learner. Args: policy_network: the online (optimized) policy. critic_network: the online critic. target_policy_network: the target policy (which lags behind the online policy). target_critic_network: the target critic. dataset: dataset to learn from, whether fixed or from a replay buffer (see `acme.datasets.reverb.make_reverb_dataset` documentation). accelerator_strategy: the strategy used to distribute computation, whether on a single, or multiple, GPU or TPU; as supported by tf.distribute. behavior_network: The network to snapshot under `policy` name. If None, snapshots `policy_network` instead. cwp_network: CWP network to snapshot: samples actions from the policy and weighs them with the critic, then returns the action by sampling from the softmax distribution using critic values as logits. Used only for snapshotting, not training. policy_optimizer: the optimizer to be applied to the policy loss. critic_optimizer: the optimizer to be applied to the distributional Bellman loss. discount: discount to use for TD updates. target_update_period: number of learner steps to perform before updating the target networks. num_action_samples_td_learning: number of action samples to use to estimate expected value of the critic loss w.r.t. stochastic policy. num_action_samples_policy_weight: number of action samples to use to estimate the advantage function for the CRR weighting of the policy loss. baseline_reduce_function: one of 'mean', 'max', 'min'. Way of aggregating values from `num_action_samples` estimates of the value function. clipping: whether to clip gradients by global norm. policy_improvement_modes: one of 'exp', 'binary', 'all'. CRR mode which determines how the advantage function is processed before being multiplied by the policy loss. ratio_upper_bound: if policy_improvement_modes is 'exp', determines the upper bound of the weight (i.e. the weight is min(exp(advantage / beta), upper_bound) ). beta: if policy_improvement_modes is 'exp', determines the beta (see above). counter: counter object used to keep track of steps. logger: logger object to be used by learner. checkpoint: boolean indicating whether to checkpoint the learner. """ if accelerator_strategy is None: accelerator_strategy = snt.distribute.Replicator() self._accelerator_strategy = accelerator_strategy self._policy_improvement_modes = policy_improvement_modes self._ratio_upper_bound = ratio_upper_bound self._num_action_samples_td_learning = num_action_samples_td_learning self._num_action_samples_policy_weight = num_action_samples_policy_weight self._baseline_reduce_function = baseline_reduce_function self._beta = beta # When running on TPUs we have to know the amount of memory required (and # thus the sequence length) at the graph compilation stage. At the moment, # the only way to get it is to sample from the dataset, since the dataset # does not have any metadata, see b/160672927 to track this upcoming # feature. sample = next(dataset.as_numpy_iterator()) self._sequence_length = sample.action.shape[1] self._counter = counter or counting.Counter() self._logger = logger or loggers.TerminalLogger('learner', time_delta=1.) self._discount = discount self._clipping = clipping self._target_update_period = target_update_period with self._accelerator_strategy.scope(): # Necessary to track when to update target networks. self._num_steps = tf.Variable(0, dtype=tf.int32) # (Maybe) distributing the dataset across multiple accelerators. distributed_dataset = self._accelerator_strategy.experimental_distribute_dataset( dataset) self._iterator = iter(distributed_dataset) # Create the optimizers. self._critic_optimizer = critic_optimizer or snt.optimizers.Adam(1e-4) self._policy_optimizer = policy_optimizer or snt.optimizers.Adam(1e-4) # Store online and target networks. self._policy_network = policy_network self._critic_network = critic_network self._target_policy_network = target_policy_network self._target_critic_network = target_critic_network # Expose the variables. self._variables = { 'critic': self._target_critic_network.variables, 'policy': self._target_policy_network.variables, } # Create a checkpointer object. self._checkpointer = None self._snapshotter = None if checkpoint: self._checkpointer = tf2_savers.Checkpointer( objects_to_save={ 'counter': self._counter, 'policy': self._policy_network, 'critic': self._critic_network, 'target_policy': self._target_policy_network, 'target_critic': self._target_critic_network, 'policy_optimizer': self._policy_optimizer, 'critic_optimizer': self._critic_optimizer, 'num_steps': self._num_steps, }, time_delta_minutes=30.) raw_policy = snt.DeepRNN( [policy_network, networks.StochasticSamplingHead()]) critic_mean = networks.CriticDeepRNN( [critic_network, networks.StochasticMeanHead()]) objects_to_save = { 'raw_policy': raw_policy, 'critic': critic_mean, } if behavior_network is not None: objects_to_save['policy'] = behavior_network if cwp_network is not None: objects_to_save['cwp_policy'] = cwp_network self._snapshotter = tf2_savers.Snapshotter( objects_to_save=objects_to_save, time_delta_minutes=30) # Timestamp to keep track of the wall time. self._walltime_timestamp = time.time() def _step(self, sample: reverb.ReplaySample) -> Dict[str, tf.Tensor]: # Transpose batch and sequence axes, i.e. [B, T, ...] to [T, B, ...]. sample = tf2_utils.batch_to_sequence(sample) observations = sample.observation actions = sample.action rewards = sample.reward discounts = sample.discount dtype = rewards.dtype # Cast the additional discount to match the environment discount dtype. discount = tf.cast(self._discount, dtype=discounts.dtype) # Loss cumulants across time. These cannot be python mutable objects. critic_loss = 0. policy_loss = 0. # Each transition induces a policy loss, which we then weight using # the `policy_loss_coef_t`; shape [B], see https://arxiv.org/abs/2006.15134. # `policy_loss_coef` is a scalar average of these coefficients across # the batch and sequence length dimensions. policy_loss_coef = 0. per_device_batch_size = actions.shape[1] # Initialize recurrent states. critic_state = self._critic_network.initial_state(per_device_batch_size) target_critic_state = critic_state policy_state = self._policy_network.initial_state(per_device_batch_size) target_policy_state = policy_state with tf.GradientTape(persistent=True) as tape: for t in range(1, self._sequence_length): o_tm1 = tree.map_structure(operator.itemgetter(t - 1), observations) a_tm1 = tree.map_structure(operator.itemgetter(t - 1), actions) r_t = tree.map_structure(operator.itemgetter(t - 1), rewards) d_t = tree.map_structure(operator.itemgetter(t - 1), discounts) o_t = tree.map_structure(operator.itemgetter(t), observations) if t != 1: # By only updating the target critic state here we are forcing # the target critic to ignore observations[0]. Otherwise, the # target_critic will be unrolled for one more timestep than critic. # The smaller the sequence length, the more problematic this is: if # you use RNN on sequences of length 2, you would expect the code to # never use recurrent connections. But if you don't skip updating the # target_critic_state on observation[0] here, it won't be the case. _, target_critic_state = self._target_critic_network( o_tm1, a_tm1, target_critic_state) # ========================= Critic learning ============================ q_tm1, next_critic_state = self._critic_network(o_tm1, a_tm1, critic_state) target_action_distribution, target_policy_state = self._target_policy_network( o_t, target_policy_state) sampled_actions_t = target_action_distribution.sample( self._num_action_samples_td_learning) # [N, B, ...] tiled_o_t = tf2_utils.tile_nested( o_t, self._num_action_samples_td_learning) tiled_target_critic_state = tf2_utils.tile_nested( target_critic_state, self._num_action_samples_td_learning) # Compute the target critic's Q-value of the sampled actions. sampled_q_t, _ = snt.BatchApply(self._target_critic_network)( tiled_o_t, sampled_actions_t, tiled_target_critic_state) # Compute average logits by first reshaping them to [N, B, A] and then # normalizing them across atoms. new_shape = [self._num_action_samples_td_learning, r_t.shape[0], -1] sampled_logits = tf.reshape(sampled_q_t.logits, new_shape) sampled_logprobs = tf.math.log_softmax(sampled_logits, axis=-1) averaged_logits = tf.reduce_logsumexp(sampled_logprobs, axis=0) # Construct the expected distributional value for bootstrapping. q_t = networks.DiscreteValuedDistribution( values=sampled_q_t.values, logits=averaged_logits) critic_loss_t = losses.categorical(q_tm1, r_t, discount * d_t, q_t) critic_loss_t = tf.reduce_mean(critic_loss_t) # ========================= Actor learning ============================= action_distribution_tm1, policy_state = self._policy_network( o_tm1, policy_state) q_tm1_mean = q_tm1.mean() # Compute the estimate of the value function based on # self._num_action_samples_policy_weight samples from the policy. tiled_o_tm1 = tf2_utils.tile_nested( o_tm1, self._num_action_samples_policy_weight) tiled_critic_state = tf2_utils.tile_nested( critic_state, self._num_action_samples_policy_weight) action_tm1 = action_distribution_tm1.sample( self._num_action_samples_policy_weight) tiled_z_tm1, _ = snt.BatchApply(self._critic_network)( tiled_o_tm1, action_tm1, tiled_critic_state) tiled_v_tm1 = tf.reshape(tiled_z_tm1.mean(), [self._num_action_samples_policy_weight, -1]) # Use mean, min, or max to aggregate Q(s, a_i), a_i ~ pi(s) into the # final estimate of the value function. if self._baseline_reduce_function == 'mean': v_tm1_estimate = tf.reduce_mean(tiled_v_tm1, axis=0) elif self._baseline_reduce_function == 'max': v_tm1_estimate = tf.reduce_max(tiled_v_tm1, axis=0) elif self._baseline_reduce_function == 'min': v_tm1_estimate = tf.reduce_min(tiled_v_tm1, axis=0) # Assert that action_distribution_tm1 is a batch of multivariate # distributions (in contrast to e.g. a [batch, action_size] collection # of 1d distributions). assert len(action_distribution_tm1.batch_shape) == 1 policy_loss_batch = -action_distribution_tm1.log_prob(a_tm1) advantage = q_tm1_mean - v_tm1_estimate if self._policy_improvement_modes == 'exp': policy_loss_coef_t = tf.math.minimum( tf.math.exp(advantage / self._beta), self._ratio_upper_bound) elif self._policy_improvement_modes == 'binary': policy_loss_coef_t = tf.cast(advantage > 0, dtype=dtype) elif self._policy_improvement_modes == 'all': # Regress against all actions (effectively pure BC). policy_loss_coef_t = 1. policy_loss_coef_t = tf.stop_gradient(policy_loss_coef_t) policy_loss_batch *= policy_loss_coef_t policy_loss_t = tf.reduce_mean(policy_loss_batch) critic_state = next_critic_state critic_loss += critic_loss_t policy_loss += policy_loss_t policy_loss_coef += tf.reduce_mean(policy_loss_coef_t) # For logging. # Divide by sequence length to get mean losses. critic_loss /= tf.cast(self._sequence_length, dtype=dtype) policy_loss /= tf.cast(self._sequence_length, dtype=dtype) policy_loss_coef /= tf.cast(self._sequence_length, dtype=dtype) # Compute gradients. critic_gradients = tape.gradient(critic_loss, self._critic_network.trainable_variables) policy_gradients = tape.gradient(policy_loss, self._policy_network.trainable_variables) # Delete the tape manually because of the persistent=True flag. del tape # Sync gradients across GPUs or TPUs. ctx = tf.distribute.get_replica_context() critic_gradients = ctx.all_reduce('mean', critic_gradients) policy_gradients = ctx.all_reduce('mean', policy_gradients) # Maybe clip gradients. if self._clipping: policy_gradients = tf.clip_by_global_norm(policy_gradients, 40.)[0] critic_gradients = tf.clip_by_global_norm(critic_gradients, 40.)[0] # Apply gradients. self._critic_optimizer.apply(critic_gradients, self._critic_network.trainable_variables) self._policy_optimizer.apply(policy_gradients, self._policy_network.trainable_variables) source_variables = ( self._critic_network.variables + self._policy_network.variables) target_variables = ( self._target_critic_network.variables + self._target_policy_network.variables) # Make online -> target network update ops. if tf.math.mod(self._num_steps, self._target_update_period) == 0: for src, dest in zip(source_variables, target_variables): dest.assign(src) self._num_steps.assign_add(1) return { 'critic_loss': critic_loss, 'policy_loss': policy_loss, 'policy_loss_coef': policy_loss_coef, } @tf.function def _replicated_step(self) -> Dict[str, tf.Tensor]: sample = next(self._iterator) fetches = self._accelerator_strategy.run(self._step, args=(sample,)) mean = tf.distribute.ReduceOp.MEAN return { k: self._accelerator_strategy.reduce(mean, fetches[k], axis=None) for k in fetches } def step(self): # Run the learning step. with self._accelerator_strategy.scope(): fetches = self._replicated_step() # Update our counts and record it. new_timestamp = time.time() time_passed = new_timestamp - self._walltime_timestamp self._walltime_timestamp = new_timestamp counts = self._counter.increment(steps=1, wall_time=time_passed) fetches.update(counts) # Checkpoint and attempt to write the logs. if self._checkpointer is not None: self._checkpointer.save() self._snapshotter.save() self._logger.write(fetches) def get_variables(self, names: List[str]) -> List[List[np.ndarray]]: return [tf2_utils.to_numpy(self._variables[name]) for name in names]
acme-master
acme/agents/tf/crr/recurrent_learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementations of a CRR agent.""" from acme.agents.tf.crr.recurrent_learning import RCRRLearner
acme-master
acme/agents/tf/crr/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the distributed MCTS agent topology via Launchpad.""" from typing import Callable, Optional import acme from acme import datasets from acme import specs from acme.adders import reverb as adders from acme.agents.tf.mcts import acting from acme.agents.tf.mcts import learning from acme.agents.tf.mcts import models from acme.tf import utils as tf2_utils from acme.tf import variable_utils as tf2_variable_utils from acme.utils import counting from acme.utils import loggers import dm_env import launchpad as lp import reverb import sonnet as snt class DistributedMCTS: """Distributed MCTS agent.""" def __init__( self, environment_factory: Callable[[], dm_env.Environment], network_factory: Callable[[specs.DiscreteArray], snt.Module], model_factory: Callable[[specs.EnvironmentSpec], models.Model], num_actors: int, num_simulations: int = 50, batch_size: int = 256, prefetch_size: int = 4, target_update_period: int = 100, samples_per_insert: float = 32.0, min_replay_size: int = 1000, max_replay_size: int = 1000000, importance_sampling_exponent: float = 0.2, priority_exponent: float = 0.6, n_step: int = 5, learning_rate: float = 1e-3, discount: float = 0.99, environment_spec: Optional[specs.EnvironmentSpec] = None, save_logs: bool = False, variable_update_period: int = 1000, ): if environment_spec is None: environment_spec = specs.make_environment_spec(environment_factory()) # These 'factories' create the relevant components on the workers. self._environment_factory = environment_factory self._network_factory = network_factory self._model_factory = model_factory # Internalize hyperparameters. self._num_actors = num_actors self._num_simulations = num_simulations self._env_spec = environment_spec self._batch_size = batch_size self._prefetch_size = prefetch_size self._target_update_period = target_update_period self._samples_per_insert = samples_per_insert self._min_replay_size = min_replay_size self._max_replay_size = max_replay_size self._importance_sampling_exponent = importance_sampling_exponent self._priority_exponent = priority_exponent self._n_step = n_step self._learning_rate = learning_rate self._discount = discount self._save_logs = save_logs self._variable_update_period = variable_update_period def replay(self): """The replay storage worker.""" limiter = reverb.rate_limiters.SampleToInsertRatio( min_size_to_sample=self._min_replay_size, samples_per_insert=self._samples_per_insert, error_buffer=self._batch_size) extra_spec = { 'pi': specs.Array( shape=(self._env_spec.actions.num_values,), dtype='float32') } signature = adders.NStepTransitionAdder.signature(self._env_spec, extra_spec) replay_table = reverb.Table( name=adders.DEFAULT_PRIORITY_TABLE, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=self._max_replay_size, rate_limiter=limiter, signature=signature) return [replay_table] def learner(self, replay: reverb.Client, counter: counting.Counter): """The learning part of the agent.""" # Create the networks. network = self._network_factory(self._env_spec.actions) tf2_utils.create_variables(network, [self._env_spec.observations]) # The dataset object to learn from. dataset = datasets.make_reverb_dataset( server_address=replay.server_address, batch_size=self._batch_size, prefetch_size=self._prefetch_size) # Create the optimizer. optimizer = snt.optimizers.Adam(self._learning_rate) # Return the learning agent. return learning.AZLearner( network=network, discount=self._discount, dataset=dataset, optimizer=optimizer, counter=counter, ) def actor( self, replay: reverb.Client, variable_source: acme.VariableSource, counter: counting.Counter, ) -> acme.EnvironmentLoop: """The actor process.""" # Build environment, model, network. environment = self._environment_factory() network = self._network_factory(self._env_spec.actions) model = self._model_factory(self._env_spec) # Create variable client for communicating with the learner. tf2_utils.create_variables(network, [self._env_spec.observations]) variable_client = tf2_variable_utils.VariableClient( client=variable_source, variables={'network': network.trainable_variables}, update_period=self._variable_update_period) # Component to add things into replay. adder = adders.NStepTransitionAdder( client=replay, n_step=self._n_step, discount=self._discount, ) # Create the agent. actor = acting.MCTSActor( environment_spec=self._env_spec, model=model, network=network, discount=self._discount, adder=adder, variable_client=variable_client, num_simulations=self._num_simulations, ) # Create the loop to connect environment and agent. return acme.EnvironmentLoop(environment, actor, counter) def evaluator( self, variable_source: acme.VariableSource, counter: counting.Counter, ): """The evaluation process.""" # Build environment, model, network. environment = self._environment_factory() network = self._network_factory(self._env_spec.actions) model = self._model_factory(self._env_spec) # Create variable client for communicating with the learner. tf2_utils.create_variables(network, [self._env_spec.observations]) variable_client = tf2_variable_utils.VariableClient( client=variable_source, variables={'policy': network.trainable_variables}, update_period=self._variable_update_period) # Create the agent. actor = acting.MCTSActor( environment_spec=self._env_spec, model=model, network=network, discount=self._discount, variable_client=variable_client, num_simulations=self._num_simulations, ) # Create the run loop and return it. logger = loggers.make_default_logger('evaluator') return acme.EnvironmentLoop( environment, actor, counter=counter, logger=logger) def build(self, name='MCTS'): """Builds the distributed agent topology.""" program = lp.Program(name=name) with program.group('replay'): replay = program.add_node(lp.ReverbNode(self.replay), label='replay') with program.group('counter'): counter = program.add_node( lp.CourierNode(counting.Counter), label='counter') with program.group('learner'): learner = program.add_node( lp.CourierNode(self.learner, replay, counter), label='learner') with program.group('evaluator'): program.add_node( lp.CourierNode(self.evaluator, learner, counter), label='evaluator') with program.group('actor'): program.add_node( lp.CourierNode(self.actor, replay, learner, counter), label='actor') return program
acme-master
acme/agents/tf/mcts/agent_distributed.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Monte-Carlo tree search (MCTS) agent.""" from acme.agents.tf.mcts.agent import MCTS from acme.agents.tf.mcts.agent_distributed import DistributedMCTS
acme-master
acme/agents/tf/mcts/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Type aliases and assumptions that are specific to the MCTS agent.""" from typing import Callable, Tuple, Union import numpy as np # pylint: disable=invalid-name # Assumption: actions are scalar and discrete (integral). Action = Union[int, np.int32, np.int64] # Assumption: observations are array-like. Observation = np.ndarray # Assumption: rewards and discounts are scalar. Reward = Union[float, np.float32, np.float64] Discount = Union[float, np.float32, np.float64] # Notation: policy logits/probabilities are simply a vector of floats. Probs = np.ndarray # Notation: the value function is scalar-valued. Value = float # Notation: the 'evaluation function' maps observations -> (probs, value). EvaluationFn = Callable[[Observation], Tuple[Probs, Value]]
acme-master
acme/agents/tf/mcts/types.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the MCTS agent.""" import acme from acme import specs from acme.agents.tf import mcts from acme.agents.tf.mcts.models import simulator from acme.testing import fakes from acme.tf import networks import numpy as np import sonnet as snt from absl.testing import absltest class MCTSTest(absltest.TestCase): def test_mcts(self): # Create a fake environment to test with. num_actions = 5 environment = fakes.DiscreteEnvironment( num_actions=num_actions, num_observations=10, obs_dtype=np.float32, episode_length=10) spec = specs.make_environment_spec(environment) network = snt.Sequential([ snt.Flatten(), snt.nets.MLP([50, 50]), networks.PolicyValueHead(spec.actions.num_values), ]) model = simulator.Simulator(environment) optimizer = snt.optimizers.Adam(1e-3) # Construct the agent. agent = mcts.MCTS( environment_spec=spec, network=network, model=model, optimizer=optimizer, n_step=1, discount=1., replay_capacity=100, num_simulations=10, batch_size=10) # Try running the environment loop. We have no assertions here because all # we care about is that the agent runs without raising any errors. loop = acme.EnvironmentLoop(environment, agent) loop.run(num_episodes=2) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/mcts/agent_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A single-process MCTS agent.""" from acme import datasets from acme import specs from acme.adders import reverb as adders from acme.agents import agent from acme.agents.tf.mcts import acting from acme.agents.tf.mcts import learning from acme.agents.tf.mcts import models from acme.tf import utils as tf2_utils import numpy as np import reverb import sonnet as snt class MCTS(agent.Agent): """A single-process MCTS agent.""" def __init__( self, network: snt.Module, model: models.Model, optimizer: snt.Optimizer, n_step: int, discount: float, replay_capacity: int, num_simulations: int, environment_spec: specs.EnvironmentSpec, batch_size: int, ): extra_spec = { 'pi': specs.Array( shape=(environment_spec.actions.num_values,), dtype=np.float32) } # Create a replay server for storing transitions. replay_table = reverb.Table( name=adders.DEFAULT_PRIORITY_TABLE, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=replay_capacity, rate_limiter=reverb.rate_limiters.MinSize(1), signature=adders.NStepTransitionAdder.signature( environment_spec, extra_spec)) self._server = reverb.Server([replay_table], port=None) # The adder is used to insert observations into replay. address = f'localhost:{self._server.port}' adder = adders.NStepTransitionAdder( client=reverb.Client(address), n_step=n_step, discount=discount) # The dataset provides an interface to sample from replay. dataset = datasets.make_reverb_dataset(server_address=address) dataset = dataset.batch(batch_size, drop_remainder=True) tf2_utils.create_variables(network, [environment_spec.observations]) # Now create the agent components: actor & learner. actor = acting.MCTSActor( environment_spec=environment_spec, model=model, network=network, discount=discount, adder=adder, num_simulations=num_simulations, ) learner = learning.AZLearner( network=network, optimizer=optimizer, dataset=dataset, discount=discount, ) # The parent class combines these together into one 'agent'. super().__init__( actor=actor, learner=learner, min_observations=10, observations_per_step=1, )
acme-master
acme/agents/tf/mcts/agent.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for search.py.""" from typing import Text from acme.agents.tf.mcts import search from acme.agents.tf.mcts.models import simulator from bsuite.environments import catch import numpy as np from absl.testing import absltest from absl.testing import parameterized class TestSearch(parameterized.TestCase): @parameterized.parameters([ 'puct', 'bfs', ]) def test_catch(self, policy_type: Text): env = catch.Catch(rows=2, seed=1) num_actions = env.action_spec().num_values model = simulator.Simulator(env) eval_fn = lambda _: (np.ones(num_actions) / num_actions, 0.) timestep = env.reset() model.reset() search_policy = search.bfs if policy_type == 'bfs' else search.puct root = search.mcts( observation=timestep.observation, model=model, search_policy=search_policy, evaluation=eval_fn, num_simulations=100, num_actions=num_actions) values = np.array([c.value for c in root.children.values()]) best_action = search.argmax(values) if env._paddle_x > env._ball_x: self.assertEqual(best_action, 0) if env._paddle_x == env._ball_x: self.assertEqual(best_action, 1) if env._paddle_x < env._ball_x: self.assertEqual(best_action, 2) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/mcts/search_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A Monte Carlo Tree Search implementation.""" import dataclasses from typing import Callable, Dict from acme.agents.tf.mcts import models from acme.agents.tf.mcts import types import numpy as np @dataclasses.dataclass class Node: """A MCTS node.""" reward: float = 0. visit_count: int = 0 terminal: bool = False prior: float = 1. total_value: float = 0. children: Dict[types.Action, 'Node'] = dataclasses.field(default_factory=dict) def expand(self, prior: np.ndarray): """Expands this node, adding child nodes.""" assert prior.ndim == 1 # Prior should be a flat vector. for a, p in enumerate(prior): self.children[a] = Node(prior=p) @property def value(self) -> types.Value: # Q(s, a) """Returns the value from this node.""" if self.visit_count: return self.total_value / self.visit_count return 0. @property def children_visits(self) -> np.ndarray: """Return array of visit counts of visited children.""" return np.array([c.visit_count for c in self.children.values()]) @property def children_values(self) -> np.ndarray: """Return array of values of visited children.""" return np.array([c.value for c in self.children.values()]) SearchPolicy = Callable[[Node], types.Action] def mcts( observation: types.Observation, model: models.Model, search_policy: SearchPolicy, evaluation: types.EvaluationFn, num_simulations: int, num_actions: int, discount: float = 1., dirichlet_alpha: float = 1, exploration_fraction: float = 0., ) -> Node: """Does Monte Carlo tree search (MCTS), AlphaZero style.""" # Evaluate the prior policy for this state. prior, value = evaluation(observation) assert prior.shape == (num_actions,) # Add exploration noise to the prior. noise = np.random.dirichlet(alpha=[dirichlet_alpha] * num_actions) prior = prior * (1 - exploration_fraction) + noise * exploration_fraction # Create a fresh tree search. root = Node() root.expand(prior) # Save the model state so that we can reset it for each simulation. model.save_checkpoint() for _ in range(num_simulations): # Start a new simulation from the top. trajectory = [root] node = root # Generate a trajectory. timestep = None while node.children: # Select an action according to the search policy. action = search_policy(node) # Point the node at the corresponding child. node = node.children[action] # Step the simulator and add this timestep to the node. timestep = model.step(action) node.reward = timestep.reward or 0. node.terminal = timestep.last() trajectory.append(node) if timestep is None: raise ValueError('Generated an empty rollout; this should not happen.') # Calculate the bootstrap for leaf nodes. if node.terminal: # If terminal, there is no bootstrap value. value = 0. else: # Otherwise, bootstrap from this node with our value function. prior, value = evaluation(timestep.observation) # We also want to expand this node for next time. node.expand(prior) # Load the saved model state. model.load_checkpoint() # Monte Carlo back-up with bootstrap from value function. ret = value while trajectory: # Pop off the latest node in the trajectory. node = trajectory.pop() # Accumulate the discounted return ret *= discount ret += node.reward # Update the node. node.total_value += ret node.visit_count += 1 return root def bfs(node: Node) -> types.Action: """Breadth-first search policy.""" visit_counts = np.array([c.visit_count for c in node.children.values()]) return argmax(-visit_counts) def puct(node: Node, ucb_scaling: float = 1.) -> types.Action: """PUCT search policy, i.e. UCT with 'prior' policy.""" # Action values Q(s,a). value_scores = np.array([child.value for child in node.children.values()]) check_numerics(value_scores) # Policy prior P(s,a). priors = np.array([child.prior for child in node.children.values()]) check_numerics(priors) # Visit ratios. visit_ratios = np.array([ np.sqrt(node.visit_count) / (child.visit_count + 1) for child in node.children.values() ]) check_numerics(visit_ratios) # Combine. puct_scores = value_scores + ucb_scaling * priors * visit_ratios return argmax(puct_scores) def visit_count_policy(root: Node, temperature: float = 1.) -> types.Probs: """Probability weighted by visit^{1/temp} of children nodes.""" visits = root.children_visits if np.sum(visits) == 0: # uniform policy for zero visits visits += 1 rescaled_visits = visits**(1 / temperature) probs = rescaled_visits / np.sum(rescaled_visits) check_numerics(probs) return probs def argmax(values: np.ndarray) -> types.Action: """Argmax with random tie-breaking.""" check_numerics(values) max_value = np.max(values) return np.int32(np.random.choice(np.flatnonzero(values == max_value))) def check_numerics(values: np.ndarray): """Raises a ValueError if any of the inputs are NaN or Inf.""" if not np.isfinite(values).all(): raise ValueError('check_numerics failed. Inputs: {}. '.format(values))
acme-master
acme/agents/tf/mcts/search.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A MCTS "AlphaZero-style" learner.""" from typing import List, Optional import acme from acme.tf import utils as tf2_utils from acme.utils import counting from acme.utils import loggers import numpy as np import sonnet as snt import tensorflow as tf class AZLearner(acme.Learner): """AlphaZero-style learning.""" def __init__( self, network: snt.Module, optimizer: snt.Optimizer, dataset: tf.data.Dataset, discount: float, logger: Optional[loggers.Logger] = None, counter: Optional[counting.Counter] = None, ): # Logger and counter for tracking statistics / writing out to terminal. self._counter = counting.Counter(counter, 'learner') self._logger = logger or loggers.TerminalLogger('learner', time_delta=30.) # Internalize components. # TODO(b/155086959): Fix type stubs and remove. self._iterator = iter(dataset) # pytype: disable=wrong-arg-types self._optimizer = optimizer self._network = network self._variables = network.trainable_variables self._discount = np.float32(discount) @tf.function def _step(self) -> tf.Tensor: """Do a step of SGD on the loss.""" inputs = next(self._iterator) o_t, _, r_t, d_t, o_tp1, extras = inputs.data pi_t = extras['pi'] with tf.GradientTape() as tape: # Forward the network on the two states in the transition. logits, value = self._network(o_t) _, target_value = self._network(o_tp1) target_value = tf.stop_gradient(target_value) # Value loss is simply on-policy TD learning. value_loss = tf.square(r_t + self._discount * d_t * target_value - value) # Policy loss distills MCTS policy into the policy network. policy_loss = tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=pi_t) # Compute gradients. loss = tf.reduce_mean(value_loss + policy_loss) gradients = tape.gradient(loss, self._network.trainable_variables) self._optimizer.apply(gradients, self._network.trainable_variables) return loss def step(self): """Does a step of SGD and logs the results.""" loss = self._step() self._logger.write({'loss': loss}) def get_variables(self, names: List[str]) -> List[List[np.ndarray]]: """Exposes the variables for actors to update from.""" return tf2_utils.to_numpy(self._variables)
acme-master
acme/agents/tf/mcts/learning.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A MCTS actor.""" from typing import Optional, Tuple import acme from acme import adders from acme import specs from acme.agents.tf.mcts import models from acme.agents.tf.mcts import search from acme.agents.tf.mcts import types from acme.tf import variable_utils as tf2_variable_utils import dm_env import numpy as np from scipy import special import sonnet as snt import tensorflow as tf class MCTSActor(acme.Actor): """Executes a policy- and value-network guided MCTS search.""" _prev_timestep: dm_env.TimeStep def __init__( self, environment_spec: specs.EnvironmentSpec, model: models.Model, network: snt.Module, discount: float, num_simulations: int, adder: Optional[adders.Adder] = None, variable_client: Optional[tf2_variable_utils.VariableClient] = None, ): # Internalize components: model, network, data sink and variable source. self._model = model self._network = tf.function(network) self._variable_client = variable_client self._adder = adder # Internalize hyperparameters. self._num_actions = environment_spec.actions.num_values self._num_simulations = num_simulations self._actions = list(range(self._num_actions)) self._discount = discount # We need to save the policy so as to add it to replay on the next step. self._probs = np.ones( shape=(self._num_actions,), dtype=np.float32) / self._num_actions def _forward( self, observation: types.Observation) -> Tuple[types.Probs, types.Value]: """Performs a forward pass of the policy-value network.""" logits, value = self._network(tf.expand_dims(observation, axis=0)) # Convert to numpy & take softmax. logits = logits.numpy().squeeze(axis=0) value = value.numpy().item() probs = special.softmax(logits) return probs, value def select_action(self, observation: types.Observation) -> types.Action: """Computes the agent's policy via MCTS.""" if self._model.needs_reset: self._model.reset(observation) # Compute a fresh MCTS plan. root = search.mcts( observation, model=self._model, search_policy=search.puct, evaluation=self._forward, num_simulations=self._num_simulations, num_actions=self._num_actions, discount=self._discount, ) # The agent's policy is softmax w.r.t. the *visit counts* as in AlphaZero. probs = search.visit_count_policy(root) action = np.int32(np.random.choice(self._actions, p=probs)) # Save the policy probs so that we can add them to replay in `observe()`. self._probs = probs.astype(np.float32) return action def update(self, wait: bool = False): """Fetches the latest variables from the variable source, if needed.""" if self._variable_client: self._variable_client.update(wait) def observe_first(self, timestep: dm_env.TimeStep): self._prev_timestep = timestep if self._adder: self._adder.add_first(timestep) def observe(self, action: types.Action, next_timestep: dm_env.TimeStep): """Updates the agent's internal model and adds the transition to replay.""" self._model.update(self._prev_timestep, action, next_timestep) self._prev_timestep = next_timestep if self._adder: self._adder.add(action, next_timestep, extras={'pi': self._probs})
acme-master
acme/agents/tf/mcts/acting.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Models for planning via MCTS.""" # pylint: disable=unused-import from acme.agents.tf.mcts.models.base import Model
acme-master
acme/agents/tf/mcts/models/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple (deterministic) environment transition model from pixels.""" from typing import Optional, Tuple from acme import specs from acme.agents.tf.mcts import types from acme.agents.tf.mcts.models import base from acme.tf import utils as tf2_utils from bsuite.baselines.utils import replay import dm_env import numpy as np from scipy import special import sonnet as snt import tensorflow as tf class MLPTransitionModel(snt.Module): """This uses MLPs to model (s, a) -> (r, d, s').""" def __init__( self, environment_spec: specs.EnvironmentSpec, hidden_sizes: Tuple[int, ...], ): super(MLPTransitionModel, self).__init__(name='mlp_transition_model') # Get num actions/observation shape. self._num_actions = environment_spec.actions.num_values self._input_shape = environment_spec.observations.shape self._flat_shape = int(np.prod(self._input_shape)) # Prediction networks. self._state_network = snt.Sequential([ snt.nets.MLP(hidden_sizes + (self._flat_shape,)), snt.Reshape(self._input_shape) ]) self._reward_network = snt.Sequential([ snt.nets.MLP(hidden_sizes + (1,)), lambda r: tf.squeeze(r, axis=-1), ]) self._discount_network = snt.Sequential([ snt.nets.MLP(hidden_sizes + (1,)), lambda d: tf.squeeze(d, axis=-1), ]) def __call__(self, state: tf.Tensor, action: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: embedded_state = snt.Flatten()(state) embedded_action = tf.one_hot(action, depth=self._num_actions) embedding = tf.concat([embedded_state, embedded_action], axis=-1) # Predict the next state, reward, and termination. next_state = self._state_network(embedding) reward = self._reward_network(embedding) discount_logits = self._discount_network(embedding) return next_state, reward, discount_logits class MLPModel(base.Model): """A simple environment model.""" _checkpoint: types.Observation _state: types.Observation def __init__( self, environment_spec: specs.EnvironmentSpec, replay_capacity: int, batch_size: int, hidden_sizes: Tuple[int, ...], learning_rate: float = 1e-3, terminal_tol: float = 1e-3, ): self._obs_spec = environment_spec.observations self._action_spec = environment_spec.actions # Hyperparameters. self._batch_size = batch_size self._terminal_tol = terminal_tol # Modelling self._replay = replay.Replay(replay_capacity) self._transition_model = MLPTransitionModel(environment_spec, hidden_sizes) self._optimizer = snt.optimizers.Adam(learning_rate) self._forward = tf.function(self._transition_model) tf2_utils.create_variables( self._transition_model, [self._obs_spec, self._action_spec]) self._variables = self._transition_model.trainable_variables # Model state. self._needs_reset = True @tf.function def _step( self, o_t: tf.Tensor, a_t: tf.Tensor, r_t: tf.Tensor, d_t: tf.Tensor, o_tp1: tf.Tensor, ) -> tf.Tensor: with tf.GradientTape() as tape: next_state, reward, discount = self._transition_model(o_t, a_t) state_loss = tf.square(next_state - o_tp1) reward_loss = tf.square(reward - r_t) discount_loss = tf.nn.sigmoid_cross_entropy_with_logits(d_t, discount) loss = sum([ tf.reduce_mean(state_loss), tf.reduce_mean(reward_loss), tf.reduce_mean(discount_loss), ]) gradients = tape.gradient(loss, self._variables) self._optimizer.apply(gradients, self._variables) return loss def step(self, action: types.Action): # Reset if required. if self._needs_reset: raise ValueError('Model must be reset with an initial timestep.') # Step the model. state, action = tf2_utils.add_batch_dim([self._state, action]) new_state, reward, discount_logits = [ x.numpy().squeeze(axis=0) for x in self._forward(state, action) ] discount = special.softmax(discount_logits) # Save the resulting state for the next step. self._state = new_state # We threshold discount on a given tolerance. if discount < self._terminal_tol: self._needs_reset = True return dm_env.termination(reward=reward, observation=self._state.copy()) return dm_env.transition(reward=reward, observation=self._state.copy()) def reset(self, initial_state: Optional[types.Observation] = None): if initial_state is None: raise ValueError('Model must be reset with an initial state.') # We reset to an initial state that we are explicitly given. # This allows us to handle environments with stochastic resets (e.g. Catch). self._state = initial_state.copy() self._needs_reset = False return dm_env.restart(self._state) def update( self, timestep: dm_env.TimeStep, action: types.Action, next_timestep: dm_env.TimeStep, ) -> dm_env.TimeStep: # Add the true transition to replay. transition = [ timestep.observation, action, next_timestep.reward, next_timestep.discount, next_timestep.observation, ] self._replay.add(transition) # Step the model to generate a synthetic transition. ts = self.step(action) # Copy the *true* state on update. self._state = next_timestep.observation.copy() if ts.last() or next_timestep.last(): # Model believes that a termination has happened. # This will result in a crash during planning if the true environment # didn't terminate here as well. So, we indicate that we need a reset. self._needs_reset = True # Sample from replay and do SGD. if self._replay.size >= self._batch_size: batch = self._replay.sample(self._batch_size) self._step(*batch) return ts def save_checkpoint(self): if self._needs_reset: raise ValueError('Cannot save checkpoint: model must be reset first.') self._checkpoint = self._state.copy() def load_checkpoint(self): self._needs_reset = False self._state = self._checkpoint.copy() def action_spec(self): return self._action_spec def observation_spec(self): return self._obs_spec @property def needs_reset(self) -> bool: return self._needs_reset
acme-master
acme/agents/tf/mcts/models/mlp.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simulator model, which wraps a copy of the true environment.""" import copy import dataclasses from acme.agents.tf.mcts import types from acme.agents.tf.mcts.models import base import dm_env @dataclasses.dataclass class Checkpoint: """Holds the checkpoint state for the environment simulator.""" needs_reset: bool environment: dm_env.Environment class Simulator(base.Model): """A simulator model, which wraps a copy of the true environment. Assumptions: - The environment (including RNG) is fully copyable via `deepcopy`. - Environment dynamics (modulo episode resets) are deterministic. """ _checkpoint: Checkpoint _env: dm_env.Environment def __init__(self, env: dm_env.Environment): # Make a 'checkpoint' copy env to save/load from when doing rollouts. self._env = copy.deepcopy(env) self._needs_reset = True self.save_checkpoint() def update( self, timestep: dm_env.TimeStep, action: types.Action, next_timestep: dm_env.TimeStep, ) -> dm_env.TimeStep: # Call update() once per 'real' experience to keep this env in sync. return self.step(action) def save_checkpoint(self): self._checkpoint = Checkpoint( needs_reset=self._needs_reset, environment=copy.deepcopy(self._env), ) def load_checkpoint(self): self._env = copy.deepcopy(self._checkpoint.environment) self._needs_reset = self._checkpoint.needs_reset def step(self, action: types.Action) -> dm_env.TimeStep: if self._needs_reset: raise ValueError('This model needs to be explicitly reset.') timestep = self._env.step(action) self._needs_reset = timestep.last() return timestep def reset(self, *unused_args, **unused_kwargs): self._needs_reset = False return self._env.reset() def observation_spec(self): return self._env.observation_spec() def action_spec(self): return self._env.action_spec() @property def needs_reset(self) -> bool: return self._needs_reset
acme-master
acme/agents/tf/mcts/models/simulator.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base model class, specifying the interface..""" import abc from typing import Optional from acme.agents.tf.mcts import types import dm_env class Model(dm_env.Environment, abc.ABC): """Base (abstract) class for models used for planning via MCTS.""" @abc.abstractmethod def load_checkpoint(self): """Loads a saved model state, if it exists.""" @abc.abstractmethod def save_checkpoint(self): """Saves the model state so that we can reset it after a rollout.""" @abc.abstractmethod def update( self, timestep: dm_env.TimeStep, action: types.Action, next_timestep: dm_env.TimeStep, ) -> dm_env.TimeStep: """Updates the model given an observation, action, reward, and discount.""" @abc.abstractmethod def reset(self, initial_state: Optional[types.Observation] = None): """Resets the model, optionally to an initial state.""" @property @abc.abstractmethod def needs_reset(self) -> bool: """Returns whether or not the model needs to be reset."""
acme-master
acme/agents/tf/mcts/models/base.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for simulator.py.""" from acme.agents.tf.mcts.models import simulator from bsuite.environments import catch import dm_env import numpy as np from absl.testing import absltest class SimulatorTest(absltest.TestCase): def _check_equal(self, a: dm_env.TimeStep, b: dm_env.TimeStep): self.assertEqual(a.reward, b.reward) self.assertEqual(a.discount, b.discount) self.assertEqual(a.step_type, b.step_type) np.testing.assert_array_equal(a.observation, b.observation) def test_simulator_fidelity(self): """Tests whether the simulator match the ground truth.""" # Given an environment. env = catch.Catch() # If we instantiate a simulator 'model' of this environment. model = simulator.Simulator(env) # Then the model and environment should always agree as we step them. num_actions = env.action_spec().num_values for _ in range(10): true_timestep = env.reset() self.assertTrue(model.needs_reset) model_timestep = model.reset() self.assertFalse(model.needs_reset) self._check_equal(true_timestep, model_timestep) while not true_timestep.last(): action = np.random.randint(num_actions) true_timestep = env.step(action) model_timestep = model.step(action) self._check_equal(true_timestep, model_timestep) def test_checkpointing(self): """Tests whether checkpointing restores the state correctly.""" # Given an environment, and a model based on this environment. model = simulator.Simulator(catch.Catch()) num_actions = model.action_spec().num_values model.reset() # Now, we save a checkpoint. model.save_checkpoint() ts = model.step(1) # Step the model once and load the checkpoint. timestep = model.step(np.random.randint(num_actions)) model.load_checkpoint() self._check_equal(ts, model.step(1)) while not timestep.last(): timestep = model.step(np.random.randint(num_actions)) # The model should require a reset. self.assertTrue(model.needs_reset) # Once we load checkpoint, the model should no longer require reset. model.load_checkpoint() self.assertFalse(model.needs_reset) # Further steps should agree with the original environment state. self._check_equal(ts, model.step(1)) if __name__ == '__main__': absltest.main()
acme-master
acme/agents/tf/mcts/models/simulator_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility definitions for Acme experiments.""" from typing import Optional from acme.utils import loggers def make_experiment_logger(label: str, steps_key: Optional[str] = None, task_instance: int = 0) -> loggers.Logger: del task_instance if steps_key is None: steps_key = f'{label}_steps' return loggers.make_default_logger(label=label, steps_key=steps_key) def create_experiment_logger_factory() -> loggers.LoggerFactory: return make_experiment_logger
acme-master
acme/utils/experiment_utils.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module does nothing and exists solely for the sake of OS compatibility.""" from typing import Type, TypeVar T = TypeVar('T') def record_class_usage(cls: Type[T]) -> Type[T]: return cls
acme-master
acme/utils/metrics.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper methods for handling signals.""" import contextlib import ctypes import threading from typing import Any, Callable, Optional import launchpad _Handler = Callable[[], Any] @contextlib.contextmanager def runtime_terminator(callback: Optional[_Handler] = None): """Runtime terminator used for stopping computation upon agent termination. Runtime terminator optionally executed a provided `callback` and then raises `SystemExit` exception in the thread performing the computation. Args: callback: callback to execute before raising exception. Yields: None. """ worker_id = threading.get_ident() def signal_handler(): if callback: callback() res = ctypes.pythonapi.PyThreadState_SetAsyncExc( ctypes.c_long(worker_id), ctypes.py_object(SystemExit)) assert res < 2, 'Stopping worker failed' launchpad.register_stop_handler(signal_handler) yield launchpad.unregister_stop_handler(signal_handler)
acme-master
acme/utils/signals.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for frozen_learner.""" from unittest import mock import acme from acme.utils import frozen_learner from absl.testing import absltest class FrozenLearnerTest(absltest.TestCase): @mock.patch.object(acme, 'Learner', autospec=True) def test_step_fn(self, mock_learner): num_calls = 0 def step_fn(): nonlocal num_calls num_calls += 1 learner = frozen_learner.FrozenLearner(mock_learner, step_fn=step_fn) # Step two times. learner.step() learner.step() self.assertEqual(num_calls, 2) # step() method of the wrapped learner should not be called. mock_learner.step.assert_not_called() @mock.patch.object(acme, 'Learner', autospec=True) def test_no_step_fn(self, mock_learner): learner = frozen_learner.FrozenLearner(mock_learner) learner.step() # step() method of the wrapped learner should not be called. mock_learner.step.assert_not_called() @mock.patch.object(acme, 'Learner', autospec=True) def test_save_and_restore(self, mock_learner): learner = frozen_learner.FrozenLearner(mock_learner) mock_learner.save.return_value = 'state1' state = learner.save() self.assertEqual(state, 'state1') learner.restore('state2') # State of the wrapped learner should be restored. mock_learner.restore.assert_called_once_with('state2') @mock.patch.object(acme, 'Learner', autospec=True) def test_get_variables(self, mock_learner): learner = frozen_learner.FrozenLearner(mock_learner) mock_learner.get_variables.return_value = [1, 2] variables = learner.get_variables(['a', 'b']) # Values should match with those returned by the wrapped learner. self.assertEqual(variables, [1, 2]) mock_learner.get_variables.assert_called_once_with(['a', 'b']) if __name__ == '__main__': absltest.main()
acme-master
acme/utils/frozen_learner_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for acme launchpad utilities.""" from acme.utils import lp_utils from absl.testing import absltest class LpUtilsTest(absltest.TestCase): def test_partial_kwargs(self): def foo(a, b, c=2): return a, b, c def bar(a, b): return a, b # Override the default values. The last two should be no-ops. foo1 = lp_utils.partial_kwargs(foo, c=1) foo2 = lp_utils.partial_kwargs(foo) bar1 = lp_utils.partial_kwargs(bar) # Check that we raise errors on overriding kwargs with no default values with self.assertRaises(ValueError): lp_utils.partial_kwargs(foo, a=2) # CHeck the we raise if we try to override a kwarg that doesn't exist. with self.assertRaises(ValueError): lp_utils.partial_kwargs(foo, d=2) # Make sure we get back the correct values. self.assertEqual(foo1(1, 2), (1, 2, 1)) self.assertEqual(foo2(1, 2), (1, 2, 2)) self.assertEqual(bar1(1, 2), (1, 2)) if __name__ == '__main__': absltest.main()
acme-master
acme/utils/lp_utils_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Filesystem path helpers.""" import os import os.path import shutil import time from typing import Optional, Tuple from absl import flags ACME_ID = flags.DEFINE_string('acme_id', None, 'Experiment identifier to use for Acme.') def process_path(path: str, *subpaths: str, ttl_seconds: Optional[int] = None, backups: Optional[bool] = None, add_uid: bool = True) -> str: """Process the path string. This will process the path string by running `os.path.expanduser` to replace any initial "~". It will also append a unique string on the end of the path and create the directories leading to this path if necessary. Args: path: string defining the path to process and create. *subpaths: potential subpaths to include after uniqification. ttl_seconds: ignored. backups: ignored. add_uid: Whether to add a unique directory identifier between `path` and `subpaths`. If the `--acme_id` flag is set, will use that as the identifier. Returns: the processed, expanded path string. """ del backups, ttl_seconds path = os.path.expanduser(path) if add_uid: path = os.path.join(path, *get_unique_id()) path = os.path.join(path, *subpaths) os.makedirs(path, exist_ok=True) return path _DATETIME = time.strftime('%Y%m%d-%H%M%S') def get_unique_id() -> Tuple[str, ...]: """Makes a unique identifier for this process; override with --acme_id.""" # By default we'll use the global id. identifier = _DATETIME # If the --acme_id flag is given prefer that; ignore if flag processing has # been skipped (this happens in colab or in tests). try: identifier = ACME_ID.value or identifier except flags.UnparsedFlagAccessError: pass # Return as a tuple (for future proofing). return (identifier,) def rmdir(path: str): """Remove directory recursively.""" shutil.rmtree(path)
acme-master
acme/utils/paths.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to use within loggers.""" import queue import threading from typing import Callable, TypeVar, Generic from absl import logging E = TypeVar("E") class AsyncExecutor(Generic[E]): """Executes a blocking function asynchronously on a queue of items.""" def __init__( self, fn: Callable[[E], None], queue_size: int = 1, interruptible_interval_secs: float = 1.0, ): """Buffers elements in a queue and runs `fn` asynchronously.. NOTE: Once closed, `AsyncExecutor` will block until current `fn` finishes but is not guaranteed to dequeue all elements currently stored in the data queue. This is intentional so as to prevent a blocking `fn` call from preventing `AsyncExecutor` from closing. Args: fn: A callable to be executed upon dequeuing an element from data queue. queue_size: The maximum size of the synchronized buffer queue. interruptible_interval_secs: Timeout interval in seconds for blocking queue operations after which the background threads check for errors and if background threads should stop. """ self._data = queue.Queue(maxsize=queue_size) self._should_stop = threading.Event() self._errors = queue.Queue() self._interruptible_interval_secs = interruptible_interval_secs def _dequeue() -> None: """Dequeue data from a queue and invoke blocking call.""" while not self._should_stop.is_set(): try: element = self._data.get(timeout=self._interruptible_interval_secs) # Execute fn upon dequeuing an element from the data queue. fn(element) except queue.Empty: # If queue is Empty for longer than the specified time interval, # check again if should_stop has been requested and retry. continue except Exception as e: logging.error("AsyncExecuter thread terminated with error.") logging.exception(e) self._errors.put(e) self._should_stop.set() raise # Never caught by anything, just terminates the thread. self._thread = threading.Thread(target=_dequeue, daemon=True) self._thread.start() def _raise_on_error(self) -> None: try: # Raise the error on the caller thread if an error has been raised in the # looper thread. raise self._errors.get_nowait() except queue.Empty: pass def close(self): self._should_stop.set() # Join all background threads. self._thread.join() # Raise errors produced by background threads. self._raise_on_error() def put(self, element: E) -> None: """Puts `element` asynchronuously onto the underlying data queue. The write call blocks if the underlying data_queue contains `queue_size` elements for over `self._interruptible_interval_secs` second, in which case we check if stop has been requested or if there has been an error raised on the looper thread. If neither happened, retry enqueue. Args: element: an element to be put into the underlying data queue and dequeued asynchronuously for `fn(element)` call. """ while not self._should_stop.is_set(): try: self._data.put(element, timeout=self._interruptible_interval_secs) break except queue.Full: continue else: # If `should_stop` has been set, then raises if any has been raised on # the background thread. self._raise_on_error()
acme-master
acme/utils/async_utils.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple, hierarchical distributed counter.""" import threading import time from typing import Dict, Mapping, Optional, Union from acme import core Number = Union[int, float] class Counter(core.Saveable): """A simple counter object that can periodically sync with a parent.""" def __init__(self, parent: Optional['Counter'] = None, prefix: str = '', time_delta: float = 1.0, return_only_prefixed: bool = False): """Initialize the counter. Args: parent: a Counter object to cache locally (or None for no caching). prefix: string prefix to use for all local counts. time_delta: time difference in seconds between syncing with the parent counter. return_only_prefixed: if True, and if `prefix` isn't empty, return counts restricted to the given `prefix` on each call to `increment` and `get_counts`. The `prefix` is stripped from returned count names. """ self._parent = parent self._prefix = prefix self._time_delta = time_delta # Hold local counts and we'll lock around that. # These are counts to be synced to the parent and the cache. self._counts = {} self._lock = threading.Lock() # We'll sync periodically (when the last sync was more than self._time_delta # seconds ago.) self._cache = {} self._last_sync_time = 0.0 self._return_only_prefixed = return_only_prefixed def increment(self, **counts: Number) -> Dict[str, Number]: """Increment a set of counters. Args: **counts: keyword arguments specifying count increments. Returns: The [name, value] mapping of all counters stored, i.e. this will also include counts that were not updated by this call to increment. """ with self._lock: for key, value in counts.items(): self._counts.setdefault(key, 0) self._counts[key] += value return self.get_counts() def get_counts(self) -> Dict[str, Number]: """Return all counts tracked by this counter.""" now = time.time() # TODO(b/144421838): use futures instead of blocking. if self._parent and (now - self._last_sync_time) > self._time_delta: with self._lock: counts = _prefix_keys(self._counts, self._prefix) # Reset the local counts, as they will be merged into the parent and the # cache. self._counts = {} self._cache = self._parent.increment(**counts) self._last_sync_time = now # Potentially prefix the keys in the counts dictionary. counts = _prefix_keys(self._counts, self._prefix) # If there's no prefix make a copy of the dictionary so we don't modify the # internal self._counts. if not self._prefix: counts = dict(counts) # Combine local counts with any parent counts. for key, value in self._cache.items(): counts[key] = counts.get(key, 0) + value if self._prefix and self._return_only_prefixed: counts = dict([(key[len(self._prefix) + 1:], value) for key, value in counts.items() if key.startswith(f'{self._prefix}_')]) return counts def save(self) -> Mapping[str, Mapping[str, Number]]: return {'counts': self._counts, 'cache': self._cache} def restore(self, state: Mapping[str, Mapping[str, Number]]): # Force a sync, if necessary, on the next get_counts call. self._last_sync_time = 0. self._counts = state['counts'] self._cache = state['cache'] def get_steps_key(self) -> str: """Returns the key to use for steps by this counter.""" if not self._prefix or self._return_only_prefixed: return 'steps' return f'{self._prefix}_steps' def _prefix_keys(dictionary: Dict[str, Number], prefix: str): """Return a dictionary with prefixed keys. Args: dictionary: dictionary to return a copy of. prefix: string to use as the prefix. Returns: Return a copy of the given dictionary whose keys are replaced by "{prefix}_{key}". If the prefix is the empty string it returns the given dictionary unchanged. """ if prefix: dictionary = {f'{prefix}_{k}': v for k, v in dictionary.items()} return dictionary
acme-master
acme/utils/counting.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Acme utility functions."""
acme-master
acme/utils/__init__.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility function for building and launching launchpad programs.""" import atexit import functools import inspect import os import sys import time from typing import Any, Callable, Optional from absl import flags from absl import logging from acme.utils import counting from acme.utils import signals FLAGS = flags.FLAGS def partial_kwargs(function: Callable[..., Any], **kwargs: Any) -> Callable[..., Any]: """Return a partial function application by overriding default keywords. This function is equivalent to `functools.partial(function, **kwargs)` but will raise a `ValueError` when called if either the given keyword arguments are not defined by `function` or if they do not have defaults. This is useful as a way to define a factory function with default parameters and then to override them in a safe way. Args: function: the base function before partial application. **kwargs: keyword argument overrides. Returns: A function. """ # Try to get the argspec of our function which we'll use to get which keywords # have defaults. argspec = inspect.getfullargspec(function) # Figure out which keywords have defaults. if argspec.defaults is None: defaults = [] else: defaults = argspec.args[-len(argspec.defaults):] # Find any keys not given as defaults by the function. unknown_kwargs = set(kwargs.keys()).difference(defaults) # Raise an error if unknown_kwargs: error_string = 'Cannot override unknown or non-default kwargs: {}' raise ValueError(error_string.format(', '.join(unknown_kwargs))) return functools.partial(function, **kwargs) class StepsLimiter: """Process that terminates an experiment when `max_steps` is reached.""" def __init__(self, counter: counting.Counter, max_steps: int, steps_key: str = 'actor_steps'): self._counter = counter self._max_steps = max_steps self._steps_key = steps_key def run(self): """Run steps limiter to terminate an experiment when max_steps is reached. """ logging.info('StepsLimiter: Starting with max_steps = %d (%s)', self._max_steps, self._steps_key) with signals.runtime_terminator(): while True: # Update the counts. counts = self._counter.get_counts() num_steps = counts.get(self._steps_key, 0) logging.info('StepsLimiter: Reached %d recorded steps', num_steps) if num_steps > self._max_steps: logging.info('StepsLimiter: Max steps of %d was reached, terminating', self._max_steps) # Avoid importing Launchpad until it is actually used. import launchpad as lp # pylint: disable=g-import-not-at-top lp.stop() # Don't spam the counter. for _ in range(10): # Do not sleep for a long period of time to avoid LaunchPad program # termination hangs (time.sleep is not interruptible). time.sleep(1) def is_local_run() -> bool: return FLAGS.lp_launch_type.startswith('local') # Resources for each individual instance of the program. def make_xm_docker_resources(program, requirements: Optional[str] = None): """Returns Docker XManager resources for each program's node. For each node of the Launchpad's program appropriate hardware requirements are specified (CPU, memory...), while the list of PyPi packages specified in the requirements file will be installed inside the Docker images. Args: program: program for which to construct Docker XManager resources. requirements: file containing additional requirements to use. If not specified, default Acme dependencies are used instead. """ if (FLAGS.lp_launch_type != 'vertex_ai' and FLAGS.lp_launch_type != 'local_docker'): # Avoid importing 'xmanager' for local runs. return None # Avoid importing Launchpad until it is actually used. import launchpad as lp # pylint: disable=g-import-not-at-top # Reference lp.DockerConfig to force lazy import of xmanager by Launchpad and # then import it. It is done this way to avoid heavy imports by default. lp.DockerConfig # pylint: disable=pointless-statement from xmanager import xm # pylint: disable=g-import-not-at-top # Get number of each type of node. num_nodes = {k: len(v) for k, v in program.groups.items()} xm_resources = {} acme_location = os.path.dirname(os.path.dirname(__file__)) if not requirements: # Acme requirements are located in the Acme directory (when installed # with pip), or need to be extracted from setup.py when using Acme codebase # from GitHub without PyPi installation. requirements = os.path.join(acme_location, 'requirements.txt') if not os.path.isfile(requirements): # Try to generate requirements.txt from setup.py setup = os.path.join(os.path.dirname(acme_location), 'setup.py') if os.path.isfile(setup): # Generate requirements.txt file using setup.py. import importlib.util # pylint: disable=g-import-not-at-top spec = importlib.util.spec_from_file_location('setup', setup) setup = importlib.util.module_from_spec(spec) try: spec.loader.exec_module(setup) # pytype: disable=attribute-error except SystemExit: pass atexit.register(os.remove, requirements) setup.generate_requirements_file(requirements) # Extend PYTHONPATH with paths used by the launcher. python_path = [] for path in sys.path: if path.startswith(acme_location) and acme_location != path: python_path.append(path[len(acme_location):]) if 'replay' in num_nodes: replay_cpu = 6 + num_nodes.get('actor', 0) * 0.01 replay_cpu = min(40, replay_cpu) xm_resources['replay'] = lp.DockerConfig( acme_location, requirements, hw_requirements=xm.JobRequirements(cpu=replay_cpu, ram=10 * xm.GiB), python_path=python_path) if 'evaluator' in num_nodes: xm_resources['evaluator'] = lp.DockerConfig( acme_location, requirements, hw_requirements=xm.JobRequirements(cpu=2, ram=4 * xm.GiB), python_path=python_path) if 'actor' in num_nodes: xm_resources['actor'] = lp.DockerConfig( acme_location, requirements, hw_requirements=xm.JobRequirements(cpu=2, ram=4 * xm.GiB), python_path=python_path) if 'learner' in num_nodes: learner_cpu = 6 + num_nodes.get('actor', 0) * 0.01 learner_cpu = min(40, learner_cpu) xm_resources['learner'] = lp.DockerConfig( acme_location, requirements, hw_requirements=xm.JobRequirements( cpu=learner_cpu, ram=6 * xm.GiB, P100=1), python_path=python_path) if 'environment_loop' in num_nodes: xm_resources['environment_loop'] = lp.DockerConfig( acme_location, requirements, hw_requirements=xm.JobRequirements( cpu=6, ram=6 * xm.GiB, P100=1), python_path=python_path) if 'counter' in num_nodes: xm_resources['counter'] = lp.DockerConfig( acme_location, requirements, hw_requirements=xm.JobRequirements(cpu=3, ram=4 * xm.GiB), python_path=python_path) if 'cacher' in num_nodes: xm_resources['cacher'] = lp.DockerConfig( acme_location, requirements, hw_requirements=xm.JobRequirements(cpu=3, ram=6 * xm.GiB), python_path=python_path) return xm_resources
acme-master
acme/utils/lp_utils.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for acme.utils.reverb_utils.""" from acme import types from acme.adders import reverb as reverb_adders from acme.utils import reverb_utils import numpy as np import reverb import tree from absl.testing import absltest class ReverbUtilsTest(absltest.TestCase): def test_make_replay_table_preserves_table_info(self): limiter = reverb.rate_limiters.SampleToInsertRatio( samples_per_insert=1, min_size_to_sample=2, error_buffer=(0, 10)) table = reverb.Table( name='test', sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), max_size=10, rate_limiter=limiter) new_table = reverb_utils.make_replay_table_from_info(table.info) new_info = new_table.info # table_worker_time is not set by the above utility since this is meant to # be monitoring information about any given table. So instead we copy this # so that the assertion below checks that everything else matches. new_info.table_worker_time.sleeping_ms = ( table.info.table_worker_time.sleeping_ms) self.assertEqual(new_info, table.info) _EMPTY_INFO = reverb.SampleInfo(*[() for _ in reverb.SampleInfo.tf_dtypes()]) _DUMMY_OBS = np.array([[[0], [1], [2]]]) _DUMMY_ACTION = np.array([[[3], [4], [5]]]) _DUMMY_REWARD = np.array([[6, 7, 8]]) _DUMMY_DISCOUNT = np.array([[.99, .99, .99]]) _DUMMY_NEXT_OBS = np.array([[[1], [2], [0]]]) _DUMMY_RETURN = np.array([[20.77, 14.92, 8.]]) def _create_dummy_steps(self): return reverb_adders.Step( observation=self._DUMMY_OBS, action=self._DUMMY_ACTION, reward=self._DUMMY_REWARD, discount=self._DUMMY_DISCOUNT, start_of_episode=True, extras={'return': self._DUMMY_RETURN}) def _create_dummy_transitions(self): return types.Transition( observation=self._DUMMY_OBS, action=self._DUMMY_ACTION, reward=self._DUMMY_REWARD, discount=self._DUMMY_DISCOUNT, next_observation=self._DUMMY_NEXT_OBS, extras={'return': self._DUMMY_RETURN}) def test_replay_sample_to_sars_transition_is_sequence(self): fake_sample = reverb.ReplaySample( info=self._EMPTY_INFO, data=self._create_dummy_steps()) fake_transition = self._create_dummy_transitions() transition_from_sample = reverb_utils.replay_sample_to_sars_transition( fake_sample, is_sequence=True) tree.map_structure(np.testing.assert_array_equal, transition_from_sample, fake_transition) if __name__ == '__main__': absltest.main()
acme-master
acme/utils/reverb_utils_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Reverb utils. Contains functions manipulating reverb tables and samples. """ from acme import types import jax import numpy as np import reverb from reverb import item_selectors from reverb import rate_limiters from reverb import reverb_types import tensorflow as tf import tree def make_replay_table_from_info( table_info: reverb_types.TableInfo) -> reverb.Table: """Build a replay table out of its specs in a TableInfo. Args: table_info: A TableInfo containing the Table specs. Returns: A reverb replay table matching the info specs. """ sampler = _make_selector_from_key_distribution_options( table_info.sampler_options) remover = _make_selector_from_key_distribution_options( table_info.remover_options) rate_limiter = _make_rate_limiter_from_rate_limiter_info( table_info.rate_limiter_info) return reverb.Table( name=table_info.name, sampler=sampler, remover=remover, max_size=table_info.max_size, rate_limiter=rate_limiter, max_times_sampled=table_info.max_times_sampled, signature=table_info.signature) def _make_selector_from_key_distribution_options( options) -> reverb_types.SelectorType: """Returns a Selector from its KeyDistributionOptions description.""" one_of = options.WhichOneof('distribution') if one_of == 'fifo': return item_selectors.Fifo() if one_of == 'uniform': return item_selectors.Uniform() if one_of == 'prioritized': return item_selectors.Prioritized(options.prioritized.priority_exponent) if one_of == 'heap': if options.heap.min_heap: return item_selectors.MinHeap() return item_selectors.MaxHeap() if one_of == 'lifo': return item_selectors.Lifo() raise ValueError(f'Unknown distribution field: {one_of}') def _make_rate_limiter_from_rate_limiter_info( info) -> rate_limiters.RateLimiter: return rate_limiters.SampleToInsertRatio( samples_per_insert=info.samples_per_insert, min_size_to_sample=info.min_size_to_sample, error_buffer=(info.min_diff, info.max_diff)) def replay_sample_to_sars_transition( sample: reverb.ReplaySample, is_sequence: bool, strip_last_transition: bool = False, flatten_batch: bool = False) -> types.Transition: """Converts the replay sample to a types.Transition. NB: If is_sequence is True then the last next_observation of each sequence is rubbish. Don't train on it. Args: sample: The replay sample is_sequence: If False we expect the sample data to match the types.Transition already. Otherwise we expect a batch of sequences of steps. strip_last_transition: If True and is_sequence, the last transition will be stripped as its next_observation field is incorrect. flatten_batch: If True and is_sequence, the two batch dimensions will be flatten to one. Returns: A types.Transition built from the sample data. If is_sequence and strip_last_transition are both True, the output will be smaller than the output as the last transition of every sequence will have been removed. """ if not is_sequence: return types.Transition(*sample.data) # Note that the last next_observation is invalid. steps = sample.data def roll(observation): return np.roll(observation, shift=-1, axis=1) transitions = types.Transition( observation=steps.observation, action=steps.action, reward=steps.reward, discount=steps.discount, next_observation=tree.map_structure(roll, steps.observation), extras=steps.extras) if strip_last_transition: # We remove the last transition as its next_observation field is incorrect. # It has been obtained by rolling the observation field, such that # transitions.next_observations[:, -1] is transitions.observations[:, 0] transitions = jax.tree_map(lambda x: x[:, :-1, ...], transitions) if flatten_batch: # Merge the 2 leading batch dimensions into 1. transitions = jax.tree_map(lambda x: np.reshape(x, (-1,) + x.shape[2:]), transitions) return transitions def transition_to_replaysample( transitions: types.Transition) -> reverb.ReplaySample: """Converts a types.Transition to a reverb.ReplaySample.""" info = tree.map_structure(lambda dtype: tf.ones([], dtype), reverb.SampleInfo.tf_dtypes()) return reverb.ReplaySample(info=info, data=transitions)
acme-master
acme/utils/reverb_utils.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for acme.utils.counting.""" import threading from acme.utils import counting from absl.testing import absltest class Barrier: """Defines a simple barrier class to synchronize on a particular event.""" def __init__(self, num_threads): """Constructor. Args: num_threads: int - how many threads will be syncronizing on this barrier """ self._num_threads = num_threads self._count = 0 self._cond = threading.Condition() def wait(self): """Waits on the barrier until all threads have called this method.""" with self._cond: self._count += 1 self._cond.notifyAll() while self._count < self._num_threads: self._cond.wait() class CountingTest(absltest.TestCase): def test_counter_threading(self): counter = counting.Counter() num_threads = 10 barrier = Barrier(num_threads) # Increment in every thread at the same time. def add_to_counter(): barrier.wait() counter.increment(foo=1) # Run the threads. threads = [] for _ in range(num_threads): t = threading.Thread(target=add_to_counter) t.start() threads.append(t) for t in threads: t.join() # Make sure the counter has been incremented once per thread. counts = counter.get_counts() self.assertEqual(counts['foo'], num_threads) def test_counter_caching(self): parent = counting.Counter() counter = counting.Counter(parent, time_delta=0.) counter.increment(foo=12) self.assertEqual(parent.get_counts(), counter.get_counts()) def test_shared_counts(self): # Two counters with shared parent should share counts (modulo namespacing). parent = counting.Counter() child1 = counting.Counter(parent, 'child1') child2 = counting.Counter(parent, 'child2') child1.increment(foo=1) result = child2.increment(foo=2) expected = {'child1_foo': 1, 'child2_foo': 2} self.assertEqual(result, expected) def test_return_only_prefixed(self): parent = counting.Counter() child1 = counting.Counter( parent, 'child1', time_delta=0., return_only_prefixed=False) child2 = counting.Counter( parent, 'child2', time_delta=0., return_only_prefixed=True) child1.increment(foo=1) child2.increment(bar=1) self.assertEqual(child1.get_counts(), {'child1_foo': 1, 'child2_bar': 1}) self.assertEqual(child2.get_counts(), {'bar': 1}) def test_get_steps_key(self): parent = counting.Counter() child1 = counting.Counter( parent, 'child1', time_delta=0., return_only_prefixed=False) child2 = counting.Counter( parent, 'child2', time_delta=0., return_only_prefixed=True) self.assertEqual(child1.get_steps_key(), 'child1_steps') self.assertEqual(child2.get_steps_key(), 'steps') child1.increment(steps=1) child2.increment(steps=2) self.assertEqual(child1.get_counts().get(child1.get_steps_key()), 1) self.assertEqual(child2.get_counts().get(child2.get_steps_key()), 2) def test_parent_prefix(self): parent = counting.Counter(prefix='parent') child = counting.Counter(parent, prefix='child', time_delta=0.) self.assertEqual(child.get_steps_key(), 'child_steps') if __name__ == '__main__': absltest.main()
acme-master
acme/utils/counting_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Frozen learner.""" from typing import Callable, List, Optional, Sequence import acme class FrozenLearner(acme.Learner): """Wraps a learner ignoring the step calls, i.e. freezing it.""" def __init__(self, learner: acme.Learner, step_fn: Optional[Callable[[], None]] = None): """Initializes the frozen learner. Args: learner: Learner to be wrapped. step_fn: Function to call instead of the step() method of the learner. This can be used, e.g. to drop samples from an iterator that would normally be consumed by the learner. """ self._learner = learner self._step_fn = step_fn def step(self): """See base class.""" if self._step_fn: self._step_fn() def run(self, num_steps: Optional[int] = None): """See base class.""" self._learner.run(num_steps) def save(self): """See base class.""" return self._learner.save() def restore(self, state): """See base class.""" self._learner.restore(state) def get_variables(self, names: Sequence[str]) -> List[acme.types.NestedArray]: """See base class.""" return self._learner.get_variables(names)
acme-master
acme/utils/frozen_learner.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Iterator utilities.""" import itertools import operator from typing import Any, Iterator, List, Sequence def unzip_iterators(zipped_iterators: Iterator[Sequence[Any]], num_sub_iterators: int) -> List[Iterator[Any]]: """Returns unzipped iterators. Note that simply returning: [(x[i] for x in iter_tuple[i]) for i in range(num_sub_iterators)] seems to cause all iterators to point to the final value of i, thus causing all sub_learners to consume data from this final iterator. Args: zipped_iterators: zipped iterators (e.g., from zip_iterators()). num_sub_iterators: the number of sub-iterators in the zipped iterator. """ iter_tuple = itertools.tee(zipped_iterators, num_sub_iterators) return [ map(operator.itemgetter(i), iter_tuple[i]) for i in range(num_sub_iterators) ]
acme-master
acme/utils/iterator_utils.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tensor framework-agnostic utilities for manipulating nested structures.""" from typing import Sequence, List, TypeVar, Any import numpy as np import tree ElementType = TypeVar('ElementType') def fast_map_structure(func, *structure): """Faster map_structure implementation which skips some error checking.""" flat_structure = (tree.flatten(s) for s in structure) entries = zip(*flat_structure) # Arbitrarily choose one of the structures of the original sequence (the last) # to match the structure for the flattened sequence. return tree.unflatten_as(structure[-1], [func(*x) for x in entries]) def fast_map_structure_with_path(func, *structure): """Faster map_structure_with_path implementation.""" head_entries_with_path = tree.flatten_with_path(structure[0]) if len(structure) > 1: tail_entries = (tree.flatten(s) for s in structure[1:]) entries_with_path = [ e[0] + e[1:] for e in zip(head_entries_with_path, *tail_entries) ] else: entries_with_path = head_entries_with_path # Arbitrarily choose one of the structures of the original sequence (the last) # to match the structure for the flattened sequence. return tree.unflatten_as(structure[-1], [func(*x) for x in entries_with_path]) def stack_sequence_fields(sequence: Sequence[ElementType]) -> ElementType: """Stacks a list of identically nested objects. This takes a sequence of identically nested objects and returns a single nested object whose ith leaf is a stacked numpy array of the corresponding ith leaf from each element of the sequence. For example, if `sequence` is: ```python [{ 'action': np.array([1.0]), 'observation': (np.array([0.0, 1.0, 2.0]),), 'reward': 1.0 }, { 'action': np.array([0.5]), 'observation': (np.array([1.0, 2.0, 3.0]),), 'reward': 0.0 }, { 'action': np.array([0.3]),1 'observation': (np.array([2.0, 3.0, 4.0]),), 'reward': 0.5 }] ``` Then this function will return: ```python { 'action': np.array([....]) # array shape = [3 x 1] 'observation': (np.array([...]),) # array shape = [3 x 3] 'reward': np.array([...]) # array shape = [3] } ``` Note that the 'observation' entry in the above example has two levels of nesting, i.e it is a tuple of arrays. Args: sequence: a list of identically nested objects. Returns: A nested object with numpy. Raises: ValueError: If `sequence` is an empty sequence. """ # Handle empty input sequences. if not sequence: raise ValueError('Input sequence must not be empty') # Default to asarray when arrays don't have the same shape to be compatible # with old behaviour. try: return fast_map_structure(lambda *values: np.stack(values), *sequence) except ValueError: return fast_map_structure(lambda *values: np.asarray(values, dtype=object), *sequence) def unstack_sequence_fields(struct: ElementType, batch_size: int) -> List[ElementType]: """Converts a struct of batched arrays to a list of structs. This is effectively the inverse of `stack_sequence_fields`. Args: struct: An (arbitrarily nested) structure of arrays. batch_size: The length of the leading dimension of each array in the struct. This is assumed to be static and known. Returns: A list of structs with the same structure as `struct`, where each leaf node is an unbatched element of the original leaf node. """ return [ tree.map_structure(lambda s, i=i: s[i], struct) for i in range(batch_size) ] def broadcast_structures(*args: Any) -> Any: """Returns versions of the arguments that give them the same nested structure. Any nested items in *args must have the same structure. Any non-nested item will be replaced with a nested version that shares that structure. The leaves will all be references to the same original non-nested item. If all *args are nested, or all *args are non-nested, this function will return *args unchanged. Example: ``` a = ('a', 'b') b = 'c' tree_a, tree_b = broadcast_structure(a, b) tree_a > ('a', 'b') tree_b > ('c', 'c') ``` Args: *args: A Sequence of nested or non-nested items. Returns: `*args`, except with all items sharing the same nest structure. """ if not args: return reference_tree = None for arg in args: if tree.is_nested(arg): reference_tree = arg break # If reference_tree is None then none of args are nested and we can skip over # the rest of this function, which would be a no-op. if reference_tree is None: return args def mirror_structure(value, reference_tree): if tree.is_nested(value): # Use check_types=True so that the types of the trees we construct aren't # dependent on our arbitrary choice of which nested arg to use as the # reference_tree. tree.assert_same_structure(value, reference_tree, check_types=True) return value else: return tree.map_structure(lambda _: value, reference_tree) return tuple(mirror_structure(arg, reference_tree) for arg in args) def tree_map(f): """Transforms `f` into a tree-mapped version.""" def mapped_f(*structures): return tree.map_structure(f, *structures) return mapped_f
acme-master
acme/utils/tree_utils.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tree_utils.""" import functools from typing import Sequence from acme.utils import tree_utils import numpy as np import tree from absl.testing import absltest TEST_SEQUENCE = [ { 'action': np.array([1.0]), 'observation': (np.array([0.0, 1.0, 2.0]),), 'reward': np.array(1.0), }, { 'action': np.array([0.5]), 'observation': (np.array([1.0, 2.0, 3.0]),), 'reward': np.array(0.0), }, { 'action': np.array([0.3]), 'observation': (np.array([2.0, 3.0, 4.0]),), 'reward': np.array(0.5), }, ] class SequenceStackTest(absltest.TestCase): """Tests for various tree utilities.""" def test_stack_sequence_fields(self): """Tests that `stack_sequence_fields` behaves correctly on nested data.""" stacked = tree_utils.stack_sequence_fields(TEST_SEQUENCE) # Check that the stacked output has the correct structure. tree.assert_same_structure(stacked, TEST_SEQUENCE[0]) # Check that the leaves have the correct array shapes. self.assertEqual(stacked['action'].shape, (3, 1)) self.assertEqual(stacked['observation'][0].shape, (3, 3)) self.assertEqual(stacked['reward'].shape, (3,)) # Check values. self.assertEqual(stacked['observation'][0].tolist(), [ [0., 1., 2.], [1., 2., 3.], [2., 3., 4.], ]) self.assertEqual(stacked['action'].tolist(), [[1.], [0.5], [0.3]]) self.assertEqual(stacked['reward'].tolist(), [1., 0., 0.5]) def test_unstack_sequence_fields(self): """Tests that `unstack_sequence_fields(stack_sequence_fields(x)) == x`.""" stacked = tree_utils.stack_sequence_fields(TEST_SEQUENCE) batch_size = len(TEST_SEQUENCE) unstacked = tree_utils.unstack_sequence_fields(stacked, batch_size) tree.map_structure(np.testing.assert_array_equal, unstacked, TEST_SEQUENCE) def test_fast_map_structure_with_path(self): structure = { 'a': { 'b': np.array([0.0]) }, 'c': (np.array([1.0]), np.array([2.0])), 'd': [np.array(3.0), np.array(4.0)], } def map_fn(path: Sequence[str], x: np.ndarray, y: np.ndarray): return x + y + len(path) single_arg_map_fn = functools.partial(map_fn, y=np.array([0.0])) expected_mapped_structure = ( tree.map_structure_with_path(single_arg_map_fn, structure)) mapped_structure = ( tree_utils.fast_map_structure_with_path(single_arg_map_fn, structure)) self.assertEqual(mapped_structure, expected_mapped_structure) expected_double_mapped_structure = ( tree.map_structure_with_path(map_fn, structure, mapped_structure)) double_mapped_structure = ( tree_utils.fast_map_structure_with_path(map_fn, structure, mapped_structure)) self.assertEqual(double_mapped_structure, expected_double_mapped_structure) if __name__ == '__main__': absltest.main()
acme-master
acme/utils/tree_utils_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for iterator_utils.""" from acme.utils import iterator_utils import numpy as np from absl.testing import absltest class IteratorUtilsTest(absltest.TestCase): def test_iterator_zipping(self): def get_iters(): x = iter(range(0, 10)) y = iter(range(20, 30)) return [x, y] zipped = zip(*get_iters()) unzipped = iterator_utils.unzip_iterators(zipped, num_sub_iterators=2) expected_x, expected_y = get_iters() np.testing.assert_equal(list(unzipped[0]), list(expected_x)) np.testing.assert_equal(list(unzipped[1]), list(expected_y)) if __name__ == '__main__': absltest.main()
acme-master
acme/utils/iterator_utils_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for paths.""" from unittest import mock from acme.testing import test_utils import acme.utils.paths as paths # pylint: disable=consider-using-from-import from absl.testing import absltest class PathTest(test_utils.TestCase): def test_process_path(self): root_directory = self.get_tempdir() with mock.patch.object(paths, 'get_unique_id') as mock_unique_id: mock_unique_id.return_value = ('test',) path = paths.process_path(root_directory, 'foo', 'bar') self.assertEqual(path, f'{root_directory}/test/foo/bar') def test_unique_id_with_flag(self): with mock.patch.object(paths, 'ACME_ID') as mock_acme_id: mock_acme_id.value = 'test_flag' self.assertEqual(paths.get_unique_id(), ('test_flag',)) if __name__ == '__main__': absltest.main()
acme-master
acme/utils/paths_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for acme.utils.loggers.base.""" from acme.utils.loggers import base import jax.numpy as jnp import numpy as np import tensorflow as tf from absl.testing import absltest class BaseTest(absltest.TestCase): def test_tensor_serialisation(self): data = {'x': tf.zeros(shape=(32,))} output = base.to_numpy(data) expected = {'x': np.zeros(shape=(32,))} np.testing.assert_array_equal(output['x'], expected['x']) def test_device_array_serialisation(self): data = {'x': jnp.zeros(shape=(32,))} output = base.to_numpy(data) expected = {'x': np.zeros(shape=(32,))} np.testing.assert_array_equal(output['x'], expected['x']) if __name__ == '__main__': absltest.main()
acme-master
acme/utils/loggers/base_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for terminal logger.""" from acme.utils.loggers import terminal from absl.testing import absltest class LoggingTest(absltest.TestCase): def test_logging_output_format(self): inputs = { 'c': 'foo', 'a': 1337, 'b': 42.0001, } expected_outputs = 'A = 1337 | B = 42.000 | C = foo' test_fn = lambda outputs: self.assertEqual(outputs, expected_outputs) logger = terminal.TerminalLogger(print_fn=test_fn) logger.write(inputs) def test_label(self): inputs = {'foo': 'bar', 'baz': 123} expected_outputs = '[Test] Baz = 123 | Foo = bar' test_fn = lambda outputs: self.assertEqual(outputs, expected_outputs) logger = terminal.TerminalLogger(print_fn=test_fn, label='test') logger.write(inputs) if __name__ == '__main__': absltest.main()
acme-master
acme/utils/loggers/terminal_test.py
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Logger which makes another logger asynchronous.""" from typing import Any, Mapping from acme.utils import async_utils from acme.utils.loggers import base class AsyncLogger(base.Logger): """Logger which makes the logging to another logger asyncronous.""" def __init__(self, to: base.Logger): """Initializes the logger. Args: to: A `Logger` object to which the current object will forward its results when `write` is called. """ self._to = to self._async_worker = async_utils.AsyncExecutor(self._to.write, queue_size=5) def write(self, values: Mapping[str, Any]): self._async_worker.put(values) def close(self): """Closes the logger, closing is synchronous.""" self._async_worker.close() self._to.close()
acme-master
acme/utils/loggers/asynchronous.py