Shreshth Gandhi
commited on
Commit
·
67bec88
1
Parent(s):
0ff1204
Add notebook for loading data
Browse files- tutorials/loading_data.ipynb +329 -0
tutorials/loading_data.ipynb
ADDED
|
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "ee3ff49b",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Tutorial: Creating an AnnData object from Tahoe-100M dataset\n",
|
| 9 |
+
"This notebook demonstrates how to create an `AnnData` object using the Tahoe-100M dataset on Hugging Face."
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": 1,
|
| 15 |
+
"id": "4df26b4a",
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"outputs": [],
|
| 18 |
+
"source": [
|
| 19 |
+
"# !pip install datasets anndata scipy pandas duckdb"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"cell_type": "code",
|
| 24 |
+
"execution_count": 2,
|
| 25 |
+
"id": "f5566528",
|
| 26 |
+
"metadata": {},
|
| 27 |
+
"outputs": [
|
| 28 |
+
{
|
| 29 |
+
"name": "stderr",
|
| 30 |
+
"output_type": "stream",
|
| 31 |
+
"text": [
|
| 32 |
+
"/usr/lib/python3/dist-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 33 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 34 |
+
]
|
| 35 |
+
}
|
| 36 |
+
],
|
| 37 |
+
"source": [
|
| 38 |
+
"from datasets import load_dataset\n",
|
| 39 |
+
"from scipy.sparse import csr_matrix\n",
|
| 40 |
+
"import anndata\n",
|
| 41 |
+
"import pandas as pd"
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"cell_type": "markdown",
|
| 46 |
+
"id": "601a878d",
|
| 47 |
+
"metadata": {},
|
| 48 |
+
"source": [
|
| 49 |
+
"## Helper function\n",
|
| 50 |
+
"Define a function to construct the AnnData object from a data generator."
|
| 51 |
+
]
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"cell_type": "code",
|
| 55 |
+
"execution_count": 3,
|
| 56 |
+
"id": "e72e75ce",
|
| 57 |
+
"metadata": {},
|
| 58 |
+
"outputs": [],
|
| 59 |
+
"source": [
|
| 60 |
+
"\n",
|
| 61 |
+
"def create_anndata_from_generator(generator, gene_vocab, sample_size=None):\n",
|
| 62 |
+
" sorted_vocab_items = sorted(gene_vocab.items())\n",
|
| 63 |
+
" token_ids, gene_names = zip(*sorted_vocab_items)\n",
|
| 64 |
+
" token_id_to_col_idx = {token_id: idx for idx, token_id in enumerate(token_ids)}\n",
|
| 65 |
+
"\n",
|
| 66 |
+
" data, indices, indptr = [], [], [0]\n",
|
| 67 |
+
" obs_data = []\n",
|
| 68 |
+
"\n",
|
| 69 |
+
" for i, cell in enumerate(generator):\n",
|
| 70 |
+
" if sample_size is not None and i >= sample_size:\n",
|
| 71 |
+
" break\n",
|
| 72 |
+
" genes = cell['genes']\n",
|
| 73 |
+
" expressions = cell['expressions']\n",
|
| 74 |
+
" if expressions[0] < 0: \n",
|
| 75 |
+
" genes = genes[1:]\n",
|
| 76 |
+
" expressions = expressions[1:]\n",
|
| 77 |
+
"\n",
|
| 78 |
+
" col_indices = [token_id_to_col_idx[gene] for gene in genes if gene in token_id_to_col_idx]\n",
|
| 79 |
+
" valid_expressions = [expr for gene, expr in zip(genes, expressions) if gene in token_id_to_col_idx]\n",
|
| 80 |
+
"\n",
|
| 81 |
+
" data.extend(valid_expressions)\n",
|
| 82 |
+
" indices.extend(col_indices)\n",
|
| 83 |
+
" indptr.append(len(data))\n",
|
| 84 |
+
"\n",
|
| 85 |
+
" obs_entry = {k: v for k, v in cell.items() if k not in ['genes', 'expressions']}\n",
|
| 86 |
+
" obs_data.append(obs_entry)\n",
|
| 87 |
+
"\n",
|
| 88 |
+
" expr_matrix = csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, len(gene_names)))\n",
|
| 89 |
+
" obs_df = pd.DataFrame(obs_data)\n",
|
| 90 |
+
"\n",
|
| 91 |
+
" adata = anndata.AnnData(X=expr_matrix, obs=obs_df)\n",
|
| 92 |
+
" adata.var.index = pd.Index(gene_names, name='ensembl_id')\n",
|
| 93 |
+
"\n",
|
| 94 |
+
" return adata\n"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "markdown",
|
| 99 |
+
"id": "3d3f44c4",
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"source": [
|
| 102 |
+
"## Load Tahoe-100M dataset"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"cell_type": "code",
|
| 107 |
+
"execution_count": 4,
|
| 108 |
+
"id": "66329f53",
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"outputs": [],
|
| 111 |
+
"source": [
|
| 112 |
+
"\n",
|
| 113 |
+
"# Stream the main dataset\n",
|
| 114 |
+
"tahoe_100m_ds = load_dataset(\"vevotx/Tahoe-100M\", streaming=True, split=\"train\")\n"
|
| 115 |
+
]
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"cell_type": "markdown",
|
| 119 |
+
"id": "4de64af6",
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"source": [
|
| 122 |
+
"## Load gene metadata to construct gene vocabulary"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": 5,
|
| 128 |
+
"id": "482f8461",
|
| 129 |
+
"metadata": {},
|
| 130 |
+
"outputs": [],
|
| 131 |
+
"source": [
|
| 132 |
+
"\n",
|
| 133 |
+
"gene_metadata = load_dataset(\"vevotx/Tahoe-100M\", name=\"gene_metadata\", split=\"train\")\n",
|
| 134 |
+
"gene_vocab = {entry[\"token_id\"]: entry[\"ensembl_id\"] for entry in gene_metadata}\n"
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"cell_type": "markdown",
|
| 139 |
+
"id": "18d80c71",
|
| 140 |
+
"metadata": {},
|
| 141 |
+
"source": [
|
| 142 |
+
"## Create AnnData object from dataset"
|
| 143 |
+
]
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"cell_type": "code",
|
| 147 |
+
"execution_count": 6,
|
| 148 |
+
"id": "cf137497",
|
| 149 |
+
"metadata": {},
|
| 150 |
+
"outputs": [
|
| 151 |
+
{
|
| 152 |
+
"name": "stderr",
|
| 153 |
+
"output_type": "stream",
|
| 154 |
+
"text": [
|
| 155 |
+
"/usr/lib/python3/dist-packages/anndata/_core/aligned_df.py:68: ImplicitModificationWarning: Transforming to str index.\n",
|
| 156 |
+
" warnings.warn(\"Transforming to str index.\", ImplicitModificationWarning)\n"
|
| 157 |
+
]
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"data": {
|
| 161 |
+
"text/plain": [
|
| 162 |
+
"AnnData object with n_obs × n_vars = 1000 × 62710\n",
|
| 163 |
+
" obs: 'drug', 'sample', 'BARCODE_SUB_LIB_ID', 'cell_line_id', 'moa-fine', 'canonical_smiles', 'pubchem_cid', 'plate'"
|
| 164 |
+
]
|
| 165 |
+
},
|
| 166 |
+
"execution_count": 6,
|
| 167 |
+
"metadata": {},
|
| 168 |
+
"output_type": "execute_result"
|
| 169 |
+
}
|
| 170 |
+
],
|
| 171 |
+
"source": [
|
| 172 |
+
"\n",
|
| 173 |
+
"adata = create_anndata_from_generator(tahoe_100m_ds, gene_vocab, sample_size=1000)\n",
|
| 174 |
+
"adata\n"
|
| 175 |
+
]
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"cell_type": "markdown",
|
| 179 |
+
"id": "0069a2bb",
|
| 180 |
+
"metadata": {},
|
| 181 |
+
"source": [
|
| 182 |
+
"## Inspect metadata (`obs`)"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "code",
|
| 187 |
+
"execution_count": 7,
|
| 188 |
+
"id": "9a3180c0",
|
| 189 |
+
"metadata": {},
|
| 190 |
+
"outputs": [
|
| 191 |
+
{
|
| 192 |
+
"data": {
|
| 193 |
+
"text/html": [
|
| 194 |
+
"<div>\n",
|
| 195 |
+
"<style scoped>\n",
|
| 196 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 197 |
+
" vertical-align: middle;\n",
|
| 198 |
+
" }\n",
|
| 199 |
+
"\n",
|
| 200 |
+
" .dataframe tbody tr th {\n",
|
| 201 |
+
" vertical-align: top;\n",
|
| 202 |
+
" }\n",
|
| 203 |
+
"\n",
|
| 204 |
+
" .dataframe thead th {\n",
|
| 205 |
+
" text-align: right;\n",
|
| 206 |
+
" }\n",
|
| 207 |
+
"</style>\n",
|
| 208 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 209 |
+
" <thead>\n",
|
| 210 |
+
" <tr style=\"text-align: right;\">\n",
|
| 211 |
+
" <th></th>\n",
|
| 212 |
+
" <th>drug</th>\n",
|
| 213 |
+
" <th>sample</th>\n",
|
| 214 |
+
" <th>BARCODE_SUB_LIB_ID</th>\n",
|
| 215 |
+
" <th>cell_line_id</th>\n",
|
| 216 |
+
" <th>moa-fine</th>\n",
|
| 217 |
+
" <th>canonical_smiles</th>\n",
|
| 218 |
+
" <th>pubchem_cid</th>\n",
|
| 219 |
+
" <th>plate</th>\n",
|
| 220 |
+
" </tr>\n",
|
| 221 |
+
" </thead>\n",
|
| 222 |
+
" <tbody>\n",
|
| 223 |
+
" <tr>\n",
|
| 224 |
+
" <th>0</th>\n",
|
| 225 |
+
" <td>8-Hydroxyquinoline</td>\n",
|
| 226 |
+
" <td>smp_1783</td>\n",
|
| 227 |
+
" <td>01_001_052-lib_1105</td>\n",
|
| 228 |
+
" <td>CVCL_0480</td>\n",
|
| 229 |
+
" <td>unclear</td>\n",
|
| 230 |
+
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
| 231 |
+
" <td>1923.0</td>\n",
|
| 232 |
+
" <td>plate4</td>\n",
|
| 233 |
+
" </tr>\n",
|
| 234 |
+
" <tr>\n",
|
| 235 |
+
" <th>1</th>\n",
|
| 236 |
+
" <td>8-Hydroxyquinoline</td>\n",
|
| 237 |
+
" <td>smp_1783</td>\n",
|
| 238 |
+
" <td>01_001_105-lib_1105</td>\n",
|
| 239 |
+
" <td>CVCL_0546</td>\n",
|
| 240 |
+
" <td>unclear</td>\n",
|
| 241 |
+
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
| 242 |
+
" <td>1923.0</td>\n",
|
| 243 |
+
" <td>plate4</td>\n",
|
| 244 |
+
" </tr>\n",
|
| 245 |
+
" <tr>\n",
|
| 246 |
+
" <th>2</th>\n",
|
| 247 |
+
" <td>8-Hydroxyquinoline</td>\n",
|
| 248 |
+
" <td>smp_1783</td>\n",
|
| 249 |
+
" <td>01_001_165-lib_1105</td>\n",
|
| 250 |
+
" <td>CVCL_1717</td>\n",
|
| 251 |
+
" <td>unclear</td>\n",
|
| 252 |
+
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
| 253 |
+
" <td>1923.0</td>\n",
|
| 254 |
+
" <td>plate4</td>\n",
|
| 255 |
+
" </tr>\n",
|
| 256 |
+
" <tr>\n",
|
| 257 |
+
" <th>3</th>\n",
|
| 258 |
+
" <td>8-Hydroxyquinoline</td>\n",
|
| 259 |
+
" <td>smp_1783</td>\n",
|
| 260 |
+
" <td>01_003_094-lib_1105</td>\n",
|
| 261 |
+
" <td>CVCL_1717</td>\n",
|
| 262 |
+
" <td>unclear</td>\n",
|
| 263 |
+
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
| 264 |
+
" <td>1923.0</td>\n",
|
| 265 |
+
" <td>plate4</td>\n",
|
| 266 |
+
" </tr>\n",
|
| 267 |
+
" <tr>\n",
|
| 268 |
+
" <th>4</th>\n",
|
| 269 |
+
" <td>8-Hydroxyquinoline</td>\n",
|
| 270 |
+
" <td>smp_1783</td>\n",
|
| 271 |
+
" <td>01_003_164-lib_1105</td>\n",
|
| 272 |
+
" <td>CVCL_1056</td>\n",
|
| 273 |
+
" <td>unclear</td>\n",
|
| 274 |
+
" <td>C1=CC2=C(C(=C1)O)N=CC=C2</td>\n",
|
| 275 |
+
" <td>1923.0</td>\n",
|
| 276 |
+
" <td>plate4</td>\n",
|
| 277 |
+
" </tr>\n",
|
| 278 |
+
" </tbody>\n",
|
| 279 |
+
"</table>\n",
|
| 280 |
+
"</div>"
|
| 281 |
+
],
|
| 282 |
+
"text/plain": [
|
| 283 |
+
" drug sample BARCODE_SUB_LIB_ID cell_line_id moa-fine \\\n",
|
| 284 |
+
"0 8-Hydroxyquinoline smp_1783 01_001_052-lib_1105 CVCL_0480 unclear \n",
|
| 285 |
+
"1 8-Hydroxyquinoline smp_1783 01_001_105-lib_1105 CVCL_0546 unclear \n",
|
| 286 |
+
"2 8-Hydroxyquinoline smp_1783 01_001_165-lib_1105 CVCL_1717 unclear \n",
|
| 287 |
+
"3 8-Hydroxyquinoline smp_1783 01_003_094-lib_1105 CVCL_1717 unclear \n",
|
| 288 |
+
"4 8-Hydroxyquinoline smp_1783 01_003_164-lib_1105 CVCL_1056 unclear \n",
|
| 289 |
+
"\n",
|
| 290 |
+
" canonical_smiles pubchem_cid plate \n",
|
| 291 |
+
"0 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
| 292 |
+
"1 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
| 293 |
+
"2 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
| 294 |
+
"3 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 \n",
|
| 295 |
+
"4 C1=CC2=C(C(=C1)O)N=CC=C2 1923.0 plate4 "
|
| 296 |
+
]
|
| 297 |
+
},
|
| 298 |
+
"execution_count": 7,
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"output_type": "execute_result"
|
| 301 |
+
}
|
| 302 |
+
],
|
| 303 |
+
"source": [
|
| 304 |
+
"adata.obs.head()"
|
| 305 |
+
]
|
| 306 |
+
}
|
| 307 |
+
],
|
| 308 |
+
"metadata": {
|
| 309 |
+
"kernelspec": {
|
| 310 |
+
"display_name": "Python 3 (ipykernel)",
|
| 311 |
+
"language": "python",
|
| 312 |
+
"name": "python3"
|
| 313 |
+
},
|
| 314 |
+
"language_info": {
|
| 315 |
+
"codemirror_mode": {
|
| 316 |
+
"name": "ipython",
|
| 317 |
+
"version": 3
|
| 318 |
+
},
|
| 319 |
+
"file_extension": ".py",
|
| 320 |
+
"mimetype": "text/x-python",
|
| 321 |
+
"name": "python",
|
| 322 |
+
"nbconvert_exporter": "python",
|
| 323 |
+
"pygments_lexer": "ipython3",
|
| 324 |
+
"version": "3.11.10"
|
| 325 |
+
}
|
| 326 |
+
},
|
| 327 |
+
"nbformat": 4,
|
| 328 |
+
"nbformat_minor": 5
|
| 329 |
+
}
|