hexsha
string
size
int64
ext
string
lang
string
max_stars_repo_path
string
max_stars_repo_name
string
max_stars_repo_head_hexsha
string
max_stars_repo_licenses
list
max_stars_count
int64
max_stars_repo_stars_event_min_datetime
string
max_stars_repo_stars_event_max_datetime
string
max_issues_repo_path
string
max_issues_repo_name
string
max_issues_repo_head_hexsha
string
max_issues_repo_licenses
list
max_issues_count
int64
max_issues_repo_issues_event_min_datetime
string
max_issues_repo_issues_event_max_datetime
string
max_forks_repo_path
string
max_forks_repo_name
string
max_forks_repo_head_hexsha
string
max_forks_repo_licenses
list
max_forks_count
int64
max_forks_repo_forks_event_min_datetime
string
max_forks_repo_forks_event_max_datetime
string
content
string
avg_line_length
float64
max_line_length
int64
alphanum_fraction
float64
qsc_code_num_words_quality_signal
int64
qsc_code_num_chars_quality_signal
float64
qsc_code_mean_word_length_quality_signal
float64
qsc_code_frac_words_unique_quality_signal
float64
qsc_code_frac_chars_top_2grams_quality_signal
float64
qsc_code_frac_chars_top_3grams_quality_signal
float64
qsc_code_frac_chars_top_4grams_quality_signal
float64
qsc_code_frac_chars_dupe_5grams_quality_signal
float64
qsc_code_frac_chars_dupe_6grams_quality_signal
float64
qsc_code_frac_chars_dupe_7grams_quality_signal
float64
qsc_code_frac_chars_dupe_8grams_quality_signal
float64
qsc_code_frac_chars_dupe_9grams_quality_signal
float64
qsc_code_frac_chars_dupe_10grams_quality_signal
float64
qsc_code_frac_chars_replacement_symbols_quality_signal
float64
qsc_code_frac_chars_digital_quality_signal
float64
qsc_code_frac_chars_whitespace_quality_signal
float64
qsc_code_size_file_byte_quality_signal
float64
qsc_code_num_lines_quality_signal
float64
qsc_code_num_chars_line_max_quality_signal
float64
qsc_code_num_chars_line_mean_quality_signal
float64
qsc_code_frac_chars_alphabet_quality_signal
float64
qsc_code_frac_chars_comments_quality_signal
float64
qsc_code_cate_xml_start_quality_signal
float64
qsc_code_frac_lines_dupe_lines_quality_signal
float64
qsc_code_cate_autogen_quality_signal
float64
qsc_code_frac_lines_long_string_quality_signal
float64
qsc_code_frac_chars_string_length_quality_signal
float64
qsc_code_frac_chars_long_word_length_quality_signal
float64
qsc_code_frac_lines_string_concat_quality_signal
float64
qsc_code_cate_encoded_data_quality_signal
float64
qsc_code_frac_chars_hex_words_quality_signal
float64
qsc_code_frac_lines_prompt_comments_quality_signal
float64
qsc_code_frac_lines_assert_quality_signal
float64
qsc_codepython_cate_ast_quality_signal
float64
qsc_codepython_frac_lines_func_ratio_quality_signal
float64
qsc_codepython_cate_var_zero_quality_signal
bool
qsc_codepython_frac_lines_pass_quality_signal
float64
qsc_codepython_frac_lines_import_quality_signal
float64
qsc_codepython_frac_lines_simplefunc_quality_signal
float64
qsc_codepython_score_lines_no_logic_quality_signal
float64
qsc_codepython_frac_lines_print_quality_signal
float64
qsc_code_num_words
int64
qsc_code_num_chars
int64
qsc_code_mean_word_length
int64
qsc_code_frac_words_unique
null
qsc_code_frac_chars_top_2grams
int64
qsc_code_frac_chars_top_3grams
int64
qsc_code_frac_chars_top_4grams
int64
qsc_code_frac_chars_dupe_5grams
int64
qsc_code_frac_chars_dupe_6grams
int64
qsc_code_frac_chars_dupe_7grams
int64
qsc_code_frac_chars_dupe_8grams
int64
qsc_code_frac_chars_dupe_9grams
int64
qsc_code_frac_chars_dupe_10grams
int64
qsc_code_frac_chars_replacement_symbols
int64
qsc_code_frac_chars_digital
int64
qsc_code_frac_chars_whitespace
int64
qsc_code_size_file_byte
int64
qsc_code_num_lines
int64
qsc_code_num_chars_line_max
int64
qsc_code_num_chars_line_mean
int64
qsc_code_frac_chars_alphabet
int64
qsc_code_frac_chars_comments
int64
qsc_code_cate_xml_start
int64
qsc_code_frac_lines_dupe_lines
int64
qsc_code_cate_autogen
int64
qsc_code_frac_lines_long_string
int64
qsc_code_frac_chars_string_length
int64
qsc_code_frac_chars_long_word_length
int64
qsc_code_frac_lines_string_concat
null
qsc_code_cate_encoded_data
int64
qsc_code_frac_chars_hex_words
int64
qsc_code_frac_lines_prompt_comments
int64
qsc_code_frac_lines_assert
int64
qsc_codepython_cate_ast
int64
qsc_codepython_frac_lines_func_ratio
int64
qsc_codepython_cate_var_zero
int64
qsc_codepython_frac_lines_pass
int64
qsc_codepython_frac_lines_import
int64
qsc_codepython_frac_lines_simplefunc
int64
qsc_codepython_score_lines_no_logic
int64
qsc_codepython_frac_lines_print
int64
effective
string
hits
int64
f24ac29d015f11200dad8879234dd7ab9c174313
2,003
py
Python
N50.py
kstatebioinfo/stanford_swc
daa3f37bcbbe4a8a3cbe59a48b380603b9794634
[ "CC0-1.0" ]
null
null
null
N50.py
kstatebioinfo/stanford_swc
daa3f37bcbbe4a8a3cbe59a48b380603b9794634
[ "CC0-1.0" ]
null
null
null
N50.py
kstatebioinfo/stanford_swc
daa3f37bcbbe4a8a3cbe59a48b380603b9794634
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 ########################################################################## # USAGE: import N50 # help(N50) # N50.main(~/stanford_swc/fasta-o-matic/fasta/normal.fa) # DESCRIPTION: Function that calculates N50 for a FASTA file # Created by Jennifer M Shelton ########################################################################## import sys import re def n50(lengths): ''' Reverse sort list of lengths and return N50 ''' lengths = sorted(lengths, reverse = True) # reverse sort lengths large # to small cumulative_length = sum(lengths) # get total length fraction = cumulative_length # set fraction of total to 100% my_n50 = 0 # initialize n50 for seq_length in lengths: if fraction > (cumulative_length/2.0): fraction = fraction - seq_length my_n50 = seq_length else: # when the fraction has passed 50% total length get N50 return(my_n50) def main(): ''' calculates N50 for a FASTA file ''' script = sys.argv[0] filename = sys.argv[1] fasta = open(filename, 'r') header_pattern = re.compile('^>.*') # pattern for a header line ## Initialize strings for headers and sequences and a list for lengths lengths = [] dna = '' header = '' for line in fasta: line = line.rstrip() if header_pattern.match(line): if not dna == '': # skip the first (empty record) lengths.append(len(dna)) dna = '' else: dna = dna + line else: lengths.append(len(dna)) my_n50 = n50(lengths) print(my_n50) ########################################################################## ##### Execute main unless script is simply imported ############ ##### for individual functions ############ ########################################################################## if __name__ == '__main__': main()
34.534483
74
0.495756
211
2,003
4.601896
0.454976
0.025747
0.032956
0.035015
0.053553
0.053553
0
0
0
0
0
0.027721
0.261608
2,003
57
75
35.140351
0.628803
0.324513
0
0.2
0
0
0.013598
0
0
0
0
0
0
1
0.057143
false
0
0.057143
0
0.114286
0.028571
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f24b0ee4bbb24e050ab403a0d1e6bf087f8143ee
34,017
py
Python
ColDoc/latex.py
mennucc/ColDoc_project
947a79592b689f57e59652b37868cc22e520f724
[ "BSD-3-Clause" ]
null
null
null
ColDoc/latex.py
mennucc/ColDoc_project
947a79592b689f57e59652b37868cc22e520f724
[ "BSD-3-Clause" ]
null
null
null
ColDoc/latex.py
mennucc/ColDoc_project
947a79592b689f57e59652b37868cc22e520f724
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 __all__ = ('main_by_args','latex_main','latex_uuid','latex_tree') cmd_help=""" Command help: blob compile the blob(s) with --uuid=UUID, tree compile all the blobs starting from --uuid=UUID main_public compile the whole document, for the general public main_private compile the whole document, including protected material, visible to the editors all all of the above """ import os, sys, shutil, subprocess, json, argparse, pathlib, tempfile, hashlib, pickle, base64, re, json, dbm from os.path import join as osjoin if __name__ == '__main__': for j in ('','.'): if j in sys.path: sys.stderr.write('Warning: deleting %r from sys.path\n',j) del sys.path[sys.path.index(j)] # a = os.path.realpath(sys.argv[0]) a = os.path.dirname(a) a = os.path.dirname(a) assert os.path.isdir(a), a if a not in sys.path: sys.path.insert(0, a) del a # from ColDoc import loggin import logging logger = logging.getLogger(__name__) ############## ColDoc stuff # ColDoc_latex_engines=[ ('pdflatex','LaTeX'), ('xelatex','XeLaTeX'), ('lualatex','LuaLaTeX'), ] #from ColDoc import config, utils import ColDoc, ColDoc.utils, ColDoc.config, ColDoc.transform import plasTeX import plasTeX.TeX, plasTeX.Base.LaTeX, plasTeX.Context , plasTeX.Tokenizer , plasTeX.Base from plasTeX.TeX import TeX from plasTeX import TeXDocument, Command import plasTeX.Base as Base from plasTeX.Packages import amsthm , graphicx # the package ColDocUUID.sty defines a LaTeX command \uuid , that can be overriden in the preamble environments_we_wont_latex = ColDoc.config.ColDoc_environments_we_wont_latex standalone_template=r"""\documentclass[varwidth=%(width)s]{standalone} %(latex_macros)s \def\uuidbaseurl{%(url_UUID)s} \input{preamble.tex} \usepackage{ColDocUUID} \begin{document} %(begin)s \input{%(input)s} %(end)s \end{document} """ preview_template=r"""\documentclass %(documentclass_options)s {%(documentclass)s} %(latex_macros)s \def\uuidbaseurl{%(url_UUID)s} \input{preamble.tex} \usepackage{hyperref} \usepackage{ColDocUUID} \begin{document} %(begin)s \input{%(input)s} %(end)s \end{document} """ ## TODO investigate, this generates an empty PDF ##\setlength\PreviewBorder{5pt} ##%\usepackage[active]{preview} plastex_template=r"""\documentclass{article} %(latex_macros)s \def\uuidbaseurl{%(url_UUID)s} \input{preamble.tex} \usepackage{hyperref} \usepackage{ColDocUUID} \begin{document} %(begin)s \input{%(input)s} %(end)s \end{document} """ def latex_uuid(blobs_dir, uuid, lang=None, metadata=None, warn=True, options = {}): " `latex` the blob identified `uuid`; if `lang` is None, `latex` all languages; ( `metadata` are courtesy , to avoid recomputing )" log_level = logging.WARNING if warn else logging.DEBUG if metadata is None: uuid_, uuid_dir, metadata = ColDoc.utils.resolve_uuid(uuid=uuid, uuid_dir=None, blobs_dir = blobs_dir, coldoc = options.get('coldoc'), metadata_class= options['metadata_class']) else: uuid_dir = None # if metadata.environ in environments_we_wont_latex : ## 'include_preamble' is maybe illegal LaTeX; 'usepackage' is not yet implemented logger.log(warn, 'Cannot `pdflatex` environ=%r',metadata.environ) return True # if metadata.environ == 'main_file': logger.log(log_level, 'Do not need to `pdflatex` the main_file') return True # if lang is not None: langs=[lang] else: langs=metadata.get('lang') if not langs: logger.debug('No languages for blob %r in blobs_dir %r',uuid,blobs_dir) return True # res = True for l in langs: rh, rp = latex_blob(blobs_dir, metadata=metadata, lang=l, uuid_dir=uuid_dir, options = options) res = res and rh and rp if lang is None: # update only if all languages were recomputed metadata.latex_time_update() metadata.save() return res def latex_blob(blobs_dir, metadata, lang, uuid_dir=None, options = {}, squash = True): """ `latex` the blob identified by the `metadata`, for the given language `lang`. ( `uuid` and `uuid_dir` are courtesy , to avoid recomputing ) Optionally squashes all sublevels, replacing with \\uuidplaceholder """ uuid = metadata.uuid if uuid_dir is None: uuid_dir = ColDoc.utils.uuid_to_dir(uuid, blobs_dir=blobs_dir) # if lang is None or lang == '': _lang='' else: _lang = '_' + lang # if squash is None: squash = options.get('squash') # note that extensions are missing save_name = os.path.join(uuid_dir, 'view' + _lang) save_abs_name = os.path.join(blobs_dir, save_name) fake_texfile = tempfile.NamedTemporaryFile(prefix='fakelatex' + _lang + '_' + uuid + '_', suffix='.tex', dir = blobs_dir , mode='w+', delete=False) fake_abs_name = fake_texfile.name[:-4] fake_name = os.path.basename(fake_abs_name) # D = {'uuiddir':uuid_dir, 'lang':lang, 'uuid':uuid, '_lang':_lang, 'width':'4in', 'begin':'','end':'', 'url_UUID' : options['url_UUID'], 'latex_macros' : options.get('latex_macros',metadata.coldoc.latex_macros_uuid), } # b = os.path.join(uuid_dir,'blob'+_lang+'.tex') s = os.path.join(uuid_dir,'squash'+_lang+'.tex') if squash: ColDoc.transform.squash_latex(b, s, blobs_dir, options, helper = options.get('squash_helper')(blobs_dir, metadata, options)) D['input'] = s else: D['input'] = b # environ = metadata.environ if environ[:2] == 'E_' and environ not in ( 'E_document', ): env = environ[2:] D['begin'] = r'\begin{'+env+'}' D['end'] = r'\end{'+env+'}' if 'split_list' in options and env in options['split_list']: D['begin'] += r'\item' ## ## create pdf logger.debug('create pdf for %r',save_abs_name) env = metadata.environ if env == 'main_file': # never used, the main_file is compiled with the latex_main() function logger.error("should never reach this line") fake_texfile.write(open(os.path.join(blobs_dir, uuid_dir, 'blob'+_lang+'.tex')).read()) fake_texfile.close() else: # ltclsch = metadata.get('latex_documentclass_choice') ltclsch = ltclsch[0] if ltclsch else 'auto' ltcls = options.get('documentclass') if ltclsch == 'auto': if env in ColDoc.config.ColDoc_environments_sectioning or env == 'E_document': ltclsch = 'main' else: ltclsch = 'standalone' if ltclsch == 'main' and not ltcls: logger.warning('When LaTeXing uuid %r, could not use latex_documentclass_choice = "main"', uuid) ltclsch = 'standalone' if ltclsch == 'main': latextemplate = preview_template D['documentclass'] = ltcls elif ltclsch == 'standalone': latextemplate = standalone_template elif ltclsch in ('article','book'): latextemplate = preview_template D['documentclass'] = ltclsch else: raise RuntimeError("unimplemented latex_documentclass_choice = %r",ltclsch) # from metadata or from coldoc ltclsopt = metadata.get('documentclassoptions') if ltclsopt: ltclsopt = ltclsopt[0] else: ltclsopt = options.get('documentclassoptions') ltclsopt = ColDoc.utils.parenthesizes(ltclsopt, '[]') D['documentclass_options'] = ltclsopt # fake_texfile.write(latextemplate % D) fake_texfile.close() rp = pdflatex_engine(blobs_dir, fake_name, save_name, environ, options) ## # rewrite log to replace temporary file name with final file name for ext in '.log','.fls': try: a = open(save_abs_name+ext).read() b = a.replace(fake_name,save_name) open(save_abs_name+ext,'w').write(b) except Exception as e: logger.warning(e) ## create html logger.debug('create html for %r',save_abs_name) main_file = open(fake_abs_name+'.tex', 'w') D['url_UUID'] = ColDoc.config.ColDoc_url_placeholder main_file.write(plastex_template % D) main_file.close() rh = plastex_engine(blobs_dir, fake_name, save_name, environ, options) # paux is quite large and it will not be used after this line if os.path.isfile(save_abs_name+'_plastex.paux'): os.unlink(save_abs_name+'_plastex.paux') # TODO there is a fundamental mistake here. This function may be called to # update the PDF/HTML view of only one language. This timestamp # does not record which language was updated. We should have different timestamps # for different languages. if len(metadata.get('lang')) == 1: metadata.latex_time_update() # retcodes = ColDoc.utils.json_to_dict(metadata.latex_return_codes) j = (':'+lang) if (isinstance(lang,str) and lang) else '' ColDoc.utils.dict_save_or_del( retcodes, 'latex'+j, rp) ColDoc.utils.dict_save_or_del( retcodes, 'plastex'+j, rh) metadata.latex_return_codes = ColDoc.utils.dict_to_json(retcodes) # metadata.save() return rh, rp def latex_anon(coldoc_dir, uuid='001', lang=None, options = {}, access='public', verbose_name=None, email_to=None): # assert access=='public' # if isinstance(options, (str,bytes) ): # base64 accepts both bytes and str options = pickle.loads(base64.b64decode(options)) # metadata_class = options.get('metadata_class') assert coldoc_dir == options.get('coldoc_dir',coldoc_dir) coldoc = options.get('coldoc') warn = options.get('warn') # n, anon_dir = ColDoc.utils.prepare_anon_tree(coldoc_dir, uuid=uuid, lang=lang, metadata_class=metadata_class, coldoc=coldoc) if anon_dir is not None: assert isinstance(anon_dir, (str, pathlib.Path)), anon_dir return latex_main(anon_dir, uuid=uuid, lang=lang, options = options, access='public') else: return False def latex_main(blobs_dir, uuid='001', lang=None, options = {}, access=None, verbose_name=None, email_to=None): "latex the main document, as the authors intended it ; save all results in UUID dir, as main.* " # assert access in ('public','private') assert isinstance(blobs_dir, (str, pathlib.Path)), blobs_dir assert os.path.isdir(blobs_dir) # if isinstance(options, (str,bytes) ): # base64 accepts both bytes and str options = pickle.loads(base64.b64decode(options)) # metadata_class = options.get('metadata_class') coldoc_dir = options.get('coldoc_dir') coldoc = options.get('coldoc') # if coldoc_dir is not None: options = prepare_options_for_latex(coldoc_dir, blobs_dir, metadata_class, coldoc, options) # uuid_, uuid_dir, metadata = ColDoc.utils.resolve_uuid(uuid=uuid, uuid_dir=None, blobs_dir = blobs_dir, coldoc = coldoc, metadata_class = metadata_class) environ = metadata.environ # if access =='public': options['plastex_theme'] = 'blue' latex_macros = metadata.coldoc.latex_macros_public else: options['plastex_theme'] = 'green' latex_macros = metadata.coldoc.latex_macros_private if lang is not None: langs=[lang] else: langs=metadata.get('lang') # ret = True coldoc = options.get('coldoc') if coldoc is not None: retcodes = ColDoc.utils.json_to_dict(coldoc.latex_return_codes) # for lang in langs: # _lang = ('_'+lang) if (isinstance(lang,str) and lang) else '' lang_ = (':'+lang) if (isinstance(lang,str) and lang) else '' # uuid_dir = ColDoc.utils.uuid_to_dir(uuid, blobs_dir=blobs_dir) # note that extensions are missing save_name = os.path.join(uuid_dir, 'main' + _lang) save_abs_name = os.path.join(blobs_dir, save_name) fake_name = 'fakemain' + _lang fake_abs_name = os.path.join(blobs_dir, fake_name) # a = os.path.join(blobs_dir, uuid_dir, 'blob'+_lang+'.tex') prologue, preamble, body, epilogue = ColDoc.utils.split_blob(open(a)) if not(preamble): logger.warning(r" cannot locate '\begin{document}' ") if True: preamble = [latex_macros] + preamble import re r = re.compile(r'\\usepackage{ColDocUUID}') if not any(r.match(a) for a in preamble): preamble += ['\\usepackage{ColDocUUID}\n'] logger.debug(r" adding \usepackage{ColDocUUID}") a = (r'\def\uuidbaseurl{%s}'%(options['url_UUID'],)+'\n') f_pdf = ''.join(prologue + preamble + [a] + body + epilogue) a = (r'\def\uuidbaseurl{%s}'%(ColDoc.config.ColDoc_url_placeholder,)+'\n') f_html = ''.join(prologue + preamble + [a] + body + epilogue) # open(fake_abs_name+'.tex','w').write(f_pdf) rp = pdflatex_engine(blobs_dir, fake_name, save_name, environ, options) ColDoc.utils.dict_save_or_del(retcodes, 'latex'+lang_+':'+access, rp) try: ColDoc.utils.os_rel_symlink(save_name+'.pdf','main'+_lang+'.pdf', blobs_dir, False, True) except: logger.exception('while symlinking') open(fake_abs_name+'.tex','w').write(f_html) rh = plastex_engine(blobs_dir, fake_name, save_name, environ, options, levels = True, tok = True, strip_head = False) parse_plastex_html(blobs_dir, osjoin(blobs_dir, save_name+'_html'), save_abs_name+'_plastex.paux') # paux is quite large and it will not be used after this line os.unlink(save_abs_name+'_plastex.paux') ColDoc.utils.dict_save_or_del(retcodes, 'plastex'+lang_+':'+access, rh) try: ColDoc.utils.os_rel_symlink(save_name+'_html','main'+_lang+'_html', blobs_dir, True, True) except: logger.exception('while symlinking') # for e in ('.aux','.bbl','_plastex.paux'): # keep a copy of the aux file # TODO should encode by language a,b = osjoin(blobs_dir,save_name+e), osjoin(blobs_dir,'main'+e) if os.path.isfile(a): logger.debug('Copy %r to %r',a,b) shutil.copy(a,b) # ret = ret and rh and rp # if coldoc is not None: if lang is None: # update only if all languages were updated coldoc.latex_time_update() coldoc.latex_return_codes = ColDoc.utils.dict_to_json(retcodes) coldoc.save() return ret def parse_plastex_paux(blobs_dir, paux): if isinstance(paux,str): if not os.path.isabs(paux): paux = osjoin(blobs_dir, paux) try: paux = open(paux,'rb') except OSError as e: logger.error('Cannot open %r : %r',paux,e) return {} a = pickle.load(paux) a = a['HTML5'] D = {} for n in a: try: if n.startswith('UUID:'): uuid = n[5:] url = a[n]['url'] if '#' in url: S,name = url.split('#') D[uuid] = (S, '#' + name) else: D[uuid] = (url, '') except: logger.exception('vv') return D def parse_plastex_html(blobs_dir, html_dir, paux): try: from bs4 import BeautifulSoup except ImportError: logger.error('Please install BeautifulSoup4: pip3 install BeautifulSoup4') return D = parse_plastex_paux(blobs_dir, paux) P = ColDoc.config.ColDoc_url_placeholder for S in os.listdir(html_dir): if S.endswith('html'): name = href = uuid = None soup = BeautifulSoup(open(osjoin(html_dir,S)).read(), 'html.parser') for link in soup.find_all('a'): h = link.get('href') n = link.get('name') if n: if n.startswith('UUID:'): uuid = n[5:] D[uuid] = (S, n) else: name = n if h and h.startswith(P): uuid = h[len(P):] if uuid not in D and name: D[uuid] = (S, '#' + name) #pickle.dump(D,open(osjoin(blobs_dir,'.UUID_html_mapping.pickle'),'wb')) db = dbm.open(osjoin(blobs_dir,'.UUID_html_mapping.dbm'),'c') for k,v in D.items(): db[k] = json.dumps(v) db.close() json.dump(D,open(osjoin(blobs_dir,'.UUID_html_mapping.json'),'w'),indent=1) def get_specific_html_for_UUID(blobs_dir,UUID): try: db = dbm.open(osjoin(blobs_dir,'.UUID_html_mapping.dbm')) return json.loads(db[UUID]) except KeyError: logger.info('Cannot resolve uuid=%r in %r',UUID,blobs_dir) return '','' except: logger.exception('Cannot resolve uuid=%r in %r',UUID,blobs_dir) return '','' def dedup_html(src, options): replacements = [] dedup_root = options.get('dedup_root') dedup_url = options.get('dedup_url') if dedup_root is not None: coldoc_site_root = options['coldoc_site_root'] for k in 'js', 'styles', 'symbol-defs.svg' : k_ = osjoin(src,k) if os.path.exists(k_): dedup = ColDoc.utils.replace_with_hash_symlink(coldoc_site_root, src, dedup_root, k) if os.path.isfile(k_): replacements.append( (k, dedup_url + '/' + dedup) ) elif os.path.isdir(k_): for dirpath, dirnames, filenames in os.walk(k_): for f in filenames: a = osjoin(dirpath,f) o = a[(len(src)+1):] r = a[(len(src)+len(k)+2):] replacements.append( ( o, (dedup_url + '/' + dedup + '/' + r) ) ) return replacements def plastex_engine(blobs_dir, fake_name, save_name, environ, options, levels = False, tok = False, strip_head = True, plastex_theme=None): " compiles the `fake_name` latex, and generates the `save_name` result ; note that extensions are missing " save_abs_name = os.path.join(blobs_dir, save_name) fake_abs_name = os.path.join(blobs_dir, fake_name) # plastex_theme = options.get('plastex_theme','green') # fake_support=[] for es,ed in ColDoc.config.ColDoc_plastex_fakemain_reuse_extensions: a = osjoin(blobs_dir,'main'+es) if os.path.exists(a): logger.debug("Re-using %r as %r",a,fake_abs_name+ed) shutil.copy2(a,fake_abs_name+ed) fake_support.append((a,fake_abs_name+ed)) elif os.path.exists(save_abs_name+es): logger.debug("Re-using %r as %r",save_abs_name+es,fake_abs_name+ed) shutil.copy(save_abs_name+es,fake_abs_name+ed) fake_support.append((save_abs_name+es,fake_abs_name+ed)) # F = fake_name+'.tex' d = os.path.dirname(F) #assert os.path.isfile(F),F if d : logger.warning("The argument of `plastex` is not in the blobs directory: %r", F) # a,b = os.path.split(save_abs_name+'_html') save_name_tmp = tempfile.mkdtemp(dir=a,prefix=b) # argv = ['-d',save_name_tmp,"--renderer=HTML5", '--theme-css', plastex_theme] if not levels : argv += [ '--split-level', '-3'] if tok is False or (environ[:2] == 'E_' and tok == 'auto'): argv.append( '--no-display-toc' ) #n = osjoin(blobs_dir,save_name+'_paux') #if not os.path.isdir(n): os.mkdir(n) ## do not use ['--paux-dirs',save_name+'_paux'] until we understand what it does argv += ['--log',F] stdout_ = osjoin(blobs_dir,save_name+'_plastex.stdout') ret = ColDoc.utils.plastex_invoke(cwd_ = blobs_dir , stdout_ = stdout_, argv_ = argv, logfile = fake_name+'.log') if os.path.exists(save_abs_name+'_html') : shutil.rmtree(save_abs_name+'_html') os.rename(save_name_tmp, save_abs_name+'_html') extensions = '.log','.paux','.tex','.bbl' if ret : logger.warning('Failed: cd %r ; plastex %s',blobs_dir,' '.join(argv)) for e in extensions: if os.path.exists(save_abs_name+'_plastex'+e): os.rename(save_abs_name+'_plastex'+e,save_abs_name+'_plastex'+e+'~') if os.path.exists(fake_abs_name+e): s,d = fake_abs_name+e,save_abs_name+'_plastex'+e os.rename(s,d) if ret: logger.warning(' rename %r to %r',s,d) if os.path.isfile(osjoin(blobs_dir, save_name+'_html','index.html')): logger.info('created html version of %r ',save_abs_name) else: logger.warning('no "index.html" in %r',save_name+'_html') return False # replacements = dedup_html(osjoin(blobs_dir, save_name+'_html'), options) # replace urls in html to point to dedup-ed stuff for f in os.listdir(osjoin(blobs_dir, save_name+'_html')): f = osjoin(blobs_dir, save_name+'_html', f) if f[-5:]=='.html': L = O = open(f).read() # ok, regular expressions may be cooler for p in 'href="' , 'src="' : for e in '"', '#': for o,r in replacements: L = L.replace(p+o+e , p+r+e) if L != O: os.rename(f,f+'~') open(f,'w').write(L) # if strip_head: for f in os.listdir(osjoin(blobs_dir, save_name+'_html')): f = osjoin(blobs_dir, save_name+'_html', f) if f[-5:]=='.html': logger.debug('stripping <head> of %r ',f) os.rename(f,f+'~~') L=open(f+'~~').readlines() try: ns, ne = None,None for n,s in enumerate(L): s = s.strip() if s == '<body>': ns = n if s == '</body>': ne = n assert ns,ne L = L[ns+1:ne] F = open(f,'w') for l in L: if l[:7] != '<script': F.write(l) except: logger.exception('ARGH') return ret == 0 def pdflatex_engine(blobs_dir, fake_name, save_name, environ, options, repeat = None): " If repeat is None, it will be run twice if bib data or aux data changed" save_abs_name = os.path.join(blobs_dir, save_name) fake_abs_name = os.path.join(blobs_dir, fake_name) # 'main.aux' and 'main.bbl' are saved latex_main() for e in ColDoc.config.ColDoc_pdflatex_fakemain_reuse_extensions: a = os.path.join(blobs_dir,'main'+e) if os.path.exists(save_abs_name+e): logger.debug("Re-using %r for %r",save_abs_name+e,fake_abs_name+e) shutil.copy2(save_abs_name+e, fake_abs_name+e) elif os.path.exists(a): logger.debug("Re-using %r for %r (hoping for the best)",a,fake_abs_name+e) shutil.copy2(a,fake_abs_name+e) else: logger.debug("No %r file for this job",e) # extensions = ColDoc.config.ColDoc_pdflatex_fakemain_preserve_extensions # ## dunno what this may be useful for #for e in extensions: # if e not in ('.tex','.aux','.bbl') and os.path.exists(fake_abs_name+e): # logger.warning('Overwriting: %r',fake_abs_name+e) # engine = options.get('latex_engine','pdflatex') logger.debug('Using engine %r',engine) args = [engine,'-file-line-error','-interaction','batchmode', '-recorder','-no-shell-escape','-no-parse-first-line', ##TODO may use -output-directory directory ## TODO TEST THIS ##( r"\def\uuidbaseurl{%s}" % (options['url_UUID'],)), r"\input", ## TODO for luatex may add --nosocket --safer fake_name+'.tex'] # p = subprocess.Popen(args,cwd=blobs_dir,stdin=open(os.devnull), stdout=open(os.devnull,'w'),stderr=subprocess.STDOUT) r=p.wait() logger.debug('Engine result %r',r) # if r != 0: logger.debug('LaTeX failed %r will not run BiBTeX',r) elif environ in ( 'main_file', 'E_document') and \ os.path.isfile(fake_abs_name+'.aux') and \ '\\bibdata' in open(fake_abs_name+'.aux').read(): logger.debug('Running BiBTeX') if os.path.isfile(fake_abs_name+'.bbl'): file_md5 = hashlib.md5(open(fake_abs_name+'.bbl','rb').read()).hexdigest() else: file_md5 = None p = subprocess.Popen(['bibtex',fake_name], cwd=blobs_dir,stdin=open(os.devnull), stdout=subprocess.PIPE ,stderr=subprocess.STDOUT) a = p.stdout.read() if p.wait() != 0: logger.warning('bibtex fails, see %r'%(save_abs_name+'.blg',)) logger.warning('bibtex output: %r',a) else: if os.path.isfile(fake_abs_name+'.bbl'): if file_md5 is None or file_md5 != hashlib.md5(open(fake_abs_name+'.bbl','rb').read()).hexdigest(): if repeat is None: logger.debug('BibTeX changed the .bbl file, will rerun') repeat = True else: logger.debug('BibTeX changed the .bbl file') else: logger.debug('BibTeX did not change the .bbl file') else: logger.warning('BiBTeX did not generate %r',fake_abs_name+'.bbl') # a = 'Rerun to get cross-references right' if r == 0: if repeat is None and a in open(fake_abs_name+'.log').read(): logger.debug('%r reports %r in log, will rerun',engine,a) repeat = True elif repeat is None: logger.debug('%r does not report %r in log, will not rerun',engine,a) # if r == 0 and repeat: logger.debug('Rerunning engine %r',engine) p = subprocess.Popen(args,cwd=blobs_dir,stdin=open(os.devnull), stdout=open(os.devnull,'w'),stderr=subprocess.STDOUT) r = p.wait() logger.debug('Engine result %r',r) # res = r == 0 if not res: logger.warning('%r fails, see %r'%(engine,save_abs_name+'.log')) # for e in extensions: if os.path.exists(save_abs_name+e): os.rename(save_abs_name+e,save_abs_name+e+'~') if os.path.exists(fake_abs_name+e): if e == '.pdf': siz=os.path.getsize(fake_abs_name+e) if siz : logger.info("Created pdf %r size %d"%(save_abs_name+e,siz)) else: logger.warning("Created empty pdf %r "%(save_abs_name+e,)) a,b=fake_abs_name+e,save_abs_name+e logger.debug('Rename %r to %r',a,b) os.rename(a,b) else: if e not in ( '.pdf', '.aux' ) : logger.debug("Missing :%r"%(fake_abs_name+e,)) else: logger.warning("Missing :%r"%(fake_abs_name+e,)) if e=='.pdf': res=False return res def latex_tree(blobs_dir, uuid=None, lang=None, warn=False, options={}, verbose_name=None, email_to=None): " latex the whole tree, starting from `uuid` " log_level = logging.WARNING if warn else logging.DEBUG # if isinstance(options, (str,bytes) ): # base64 accepts both bytes and str options = pickle.loads(base64.b64decode(options)) # metadata_class = options.get('metadata_class') coldoc_dir = options.get('coldoc_dir') coldoc = options.get('coldoc') # if coldoc_dir is not None: options = prepare_options_for_latex(coldoc_dir, blobs_dir, metadata_class, coldoc, options) # if uuid is None: logger.warning('Assuming root_uuid = 001') uuid = '001' uuid_, uuid_dir, metadata = ColDoc.utils.resolve_uuid(uuid=uuid, uuid_dir=None, blobs_dir = blobs_dir, coldoc = coldoc, metadata_class=metadata_class) # ret = True if metadata.environ in environments_we_wont_latex: logger.log(log_level, 'Cannot `latex` environ %r , UUID = %r'%(metadata.environ, uuid,)) else: r = latex_uuid(blobs_dir, uuid=uuid, metadata=metadata, lang=lang, warn=warn, options=options) ret = ret and r for u in metadata.get('child_uuid'): logger.debug('moving down from node %r to node %r',uuid,u) r = latex_tree(blobs_dir, uuid=u, lang=lang, warn=warn, options=options) ret = ret and r return ret def prepare_options_for_latex(coldoc_dir, blobs_dir, metadata_class, coldoc=None, options = None): if options is None: options = {} ### get and set some options if coldoc is None: coldoc = options.get('coldoc') else: options['coldoc'] = coldoc options['coldoc_dir'] = coldoc_dir # try: blobinator_args = ColDoc.utils.get_blobinator_args(blobs_dir) options.update(blobinator_args) except: logger.exception('No blobinator_args') # a = osjoin(coldoc_dir, 'coldoc.json') if os.path.isfile( a ): coldoc_args = json.load(open(a)) options.update(coldoc_args['fields']) # coldoc_root_uuid = options.get('root_uuid') if isinstance(coldoc_root_uuid,int): coldoc_root_uuid = ColDoc.utils.int_to_uuid(coldoc_root_uuid) options['root_uuid'] = coldoc_root_uuid # root_metadata = metadata_class.load_by_uuid(uuid=coldoc_root_uuid, coldoc=coldoc, basepath=blobs_dir) for a in ('documentclass', 'documentclassoptions'): b = root_metadata.get(a) if b: options[a] = b[0] logger.debug('In root uuid %r = %r',a,b) else: logger.warning('In root uuid no value for %r',a) # logger.debug('From %r options %r',a,options) else: logger.error('No %r',a) # return options def prepare_parser(cmd_help=cmd_help): # parse arguments COLDOC_SITE_ROOT = os.environ.get('COLDOC_SITE_ROOT') parser = argparse.ArgumentParser(description='Compile coldoc material, using `latex` and `plastex` ', epilog=cmd_help, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--verbose','-v',action='count',default=0) parser.add_argument('--uuid',help='UUID to work on/start from') parser.add_argument('command', help='specific command',nargs='+') return parser def main(argv): parser = prepare_parser() parser.add_argument('--blobs-dir',type=str,\ help='directory where the blob_ized output is saved', required=True) parser.add_argument('--url-UUID',type=str,\ help='URL of the website that will show the UUIDs, used by my \\uuid macro in PDF', required=True) args = parser.parse_args(argv[1:]) # blobs_dir = args.blobs_dir assert os.path.isdir(blobs_dir), blobs_dir # args.coldoc_dir = coldoc_dir = os.path.dirname(os.path.dirname(blobs_dir)) from ColDoc.utils import FMetadata options = prepare_options_for_latex(coldoc_dir, blobs_dir, FMetadata) options['url_UUID'] = args.url_UUID # options["squash_helper"] = ColDoc.transform.squash_input_uuid options['metadata_class'] = ColDoc.utils.FMetadata return main_by_args(args,options) def main_by_args(args,options): argv = args.command blobs_dir = args.blobs_dir coldoc_dir = args.coldoc_dir logger.setLevel(logging.WARNING) if args.verbose > 1 : logger.setLevel(logging.DEBUG) elif args.verbose > 0 : logger.setLevel(logging.INFO) # if args.uuid is not None: UUID = args.uuid elif 'root_uuid' in options: UUID = options['root_uuid'] else: UUID = '001' # ret = True if argv[0] == 'blob': lang = None if len(argv)>2: lang = argv[2] ret = latex_uuid(blobs_dir,UUID,lang=lang, options=options) elif argv[0] == 'tree': ret = latex_tree(blobs_dir,UUID, options=options) elif argv[0] == 'main_private': ret = latex_main(blobs_dir, uuid=UUID, options=options, access='private') elif argv[0] == 'main_public': ret = latex_anon(coldoc_dir, uuid=UUID, options=options, access='public') elif argv[0] == 'all': ret = latex_main(blobs_dir, uuid=UUID, options=options, access='private') ret &= latex_anon(coldoc_dir, uuid=UUID, options=options, access='public') ret &= latex_tree(blobs_dir,UUID, options=options) else: sys.stderr.write('Unknown command, see --help') return False return ret if __name__ == '__main__': ret = main(sys.argv) sys.exit(0 if ret else 13)
39.010321
135
0.587559
4,420
34,017
4.350226
0.118552
0.037861
0.020595
0.01165
0.402798
0.3342
0.29041
0.257437
0.213647
0.192532
0
0.003825
0.28524
34,017
871
136
39.055109
0.786995
0.07752
0
0.298422
0
0.002869
0.164914
0.016864
0
0
0
0.002296
0.012912
1
0.021521
false
0
0.021521
0
0.077475
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f24c7bebfc50062402e4f3d020937fffe8042def
1,945
py
Python
kivyx/uix/aspectratio.py
gottadiveintopython/kivyx.uix.aspectratio
e8b049fe76c9350b8c167ff1fb32299b8feceba7
[ "MIT" ]
null
null
null
kivyx/uix/aspectratio.py
gottadiveintopython/kivyx.uix.aspectratio
e8b049fe76c9350b8c167ff1fb32299b8feceba7
[ "MIT" ]
null
null
null
kivyx/uix/aspectratio.py
gottadiveintopython/kivyx.uix.aspectratio
e8b049fe76c9350b8c167ff1fb32299b8feceba7
[ "MIT" ]
null
null
null
__all__ = ('KXAspectRatio', ) from kivy.uix.layout import Layout from kivy.properties import BoundedNumericProperty, OptionProperty HALIGN_TO_ATTR = { 'center': 'center_x', 'middle': 'center_x', 'left': 'x', 'right': 'right', } VALIGN_TO_ATTR = { 'center': 'center_y', 'middle': 'center_y', 'bottom': 'y', 'top': 'top', } class KXAspectRatio(Layout): aspect_ratio = BoundedNumericProperty(1, min=0) halign = OptionProperty( 'center', options=('center', 'middle', 'left', 'right', )) valign = OptionProperty( 'center', options=('center', 'middle', 'bottom', 'top', )) def __init__(self, **kwargs): super().__init__(**kwargs) tl = self._trigger_layout self.bind( parent=tl, children=tl, size=tl, pos=tl, aspect_ratio=tl, halign=tl, valign=tl) def add_widget(self, *args, **kwargs): if self.children: raise Exception('KXAspectRatio can only have one child') return super().add_widget(*args, **kwargs) def do_layout(self, *args): if not self.children: return c = self.children[0] c_aspect_ratio = self.aspect_ratio w = self.width h = self.height x_attr = HALIGN_TO_ATTR[self.halign] y_attr = VALIGN_TO_ATTR[self.valign] if c_aspect_ratio == 0 or w <= 0 or h <= 0: c.width = 0 c.height = 0 setattr(c, x_attr, getattr(self, x_attr)) setattr(c, y_attr, getattr(self, y_attr)) else: if (w / h) < c_aspect_ratio: c.width = w c.height = w / c_aspect_ratio c.x = self.x setattr(c, y_attr, getattr(self, y_attr)) else: c.width = h * c_aspect_ratio c.height = h setattr(c, x_attr, getattr(self, x_attr)) c.y = self.y
29.469697
68
0.5491
239
1,945
4.251046
0.267782
0.086614
0.059055
0.038386
0.226378
0.122047
0.122047
0.122047
0.064961
0
0
0.006047
0.319794
1,945
65
69
29.923077
0.761905
0
0
0.107143
0
0
0.096708
0
0
0
0
0
0
1
0.053571
false
0
0.035714
0
0.196429
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f24e4b499348b1e6839320b71759fce8e46d5cc8
4,006
py
Python
src/analyze_img.py
IW276/IW276SS21-P13
851e220c34d55caa91f0967e02dc86c34deee2fa
[ "MIT" ]
null
null
null
src/analyze_img.py
IW276/IW276SS21-P13
851e220c34d55caa91f0967e02dc86c34deee2fa
[ "MIT" ]
null
null
null
src/analyze_img.py
IW276/IW276SS21-P13
851e220c34d55caa91f0967e02dc86c34deee2fa
[ "MIT" ]
null
null
null
import cv2 import numpy as np from matplotlib import pyplot as plt brightness = {"DARK": 0, "NORMAL": 1, "LIGHT": 2} contrast = {"HIGH": 2, "NORMAL": 1, "LOW": 0} class ImageSetup: def __init__(self): self.brightness = None self.contrast = None self.gamma = 1 # grayscale values self.average = -1 self.std_deviation = -1 self.threshold = -1 # saturation values self.sat_average = -1 self.sat_std_deviation = -1 self.sat_threshold = -1 def average(img2d): rows, cols = img2d.shape m = np.mean(img2d[0:rows, 0:cols]) return m def variance_std_deviation(img2d): # variance v = np.var(img2d) # standard deviation s = np.sqrt(v) return v, s def histogram(img2d, name=None, plot=False): hist = cv2.calcHist([img2d], [0], None, [256], [0, 256]) if plot: plt.hist(img2d.ravel(), 256, [0, 256]) plt.xlabel(name) plt.show() hist_norm = hist.ravel() / hist.sum() return hist, hist_norm def threshold(img2d): # return is the threshold value followed by the result image thr, o1 = cv2.threshold(img2d, 0, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C + cv2.THRESH_OTSU) return thr class Configuration: def __init__(self, image): self.img = image self.imgGray = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) self.imgHSV = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV) self.rows, self.cols, self.cha = self.img.shape self.pixels = self.cols * self.rows self.imgSetup = ImageSetup() def get_brightness(self): m = average(self.imgGray) if m < 100: self.imgSetup.brightness = brightness["DARK"] elif 100 < m < 150: self.imgSetup.brightness = brightness["NORMAL"] else: self.imgSetup.brightness = brightness["LIGHT"] self.imgSetup.average = m def get_saturation(self): m_sat = average(self.imgHSV[:, :, 1]) s2, s = variance_std_deviation(self.imgHSV[:, :, 1]) self.imgSetup.sat_average = m_sat self.imgSetup.sat_std_deviation = s def get_contrast(self): s2, s = variance_std_deviation(self.imgGray) if s >= 70: self.imgSetup.contrast = contrast["HIGH"] elif s >= 40: self.imgSetup.contrast = contrast["NORMAL"] else: self.imgSetup.contrast = contrast["LOW"] self.imgSetup.std_deviation = s def get_thresholds(self): gray_thresh = threshold(self.imgGray) sat_thresh = threshold(self.imgHSV[:, :, 1]) self.imgSetup.threshold = gray_thresh self.imgSetup.sat_threshold = sat_thresh def print_values(self, do_print=True): if do_print: print("Average brightness: " + str(self.imgSetup.average)) print("Standard deviation: " + str(self.imgSetup.std_deviation)) print("Average saturation: " + str(self.imgSetup.sat_average)) print("Std. deviation sat: " + str(self.imgSetup.sat_std_deviation)) print("Threshold gray: " + str(self.imgSetup.threshold)) print("Threshold sat: " + str(self.imgSetup.sat_threshold)) print("Brightness: " + str(self.imgSetup.brightness)) print("Contrast: " + str(self.imgSetup.contrast)) def show(self, show=True): if show: cv2.imshow("Color", self.img) cv2.waitKey(0) cv2.imshow("Gray", self.imgGray) cv2.waitKey(0) cv2.imshow("Saturation", self.imgHSV[:, :, 1]) cv2.waitKey(0) cv2.destroyAllWindows() def evaluate(img): c = Configuration(img) c.get_brightness() c.get_contrast() histogram(c.imgGray, "gray") histogram(c.imgHSV[:, :, 1], "saturation") c.get_saturation() c.get_thresholds() c.print_values(False) c.show(False) return c.imgSetup
30.120301
92
0.595856
488
4,006
4.778689
0.213115
0.108062
0.051458
0.041166
0.126501
0.045455
0
0
0
0
0
0.02982
0.28008
4,006
132
93
30.348485
0.778779
0.030205
0
0.066667
0
0
0.057231
0
0
0
0
0
0
1
0.12381
false
0
0.028571
0
0.219048
0.104762
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2503cce75279fee15a3fc46cd4a46df58314fef
3,799
py
Python
models/game/bots/RandoMaxBot.py
zachdj/ultimate-tic-tac-toe
b8e6128d9d19628f6f889a3958d30854527a8645
[ "MIT" ]
null
null
null
models/game/bots/RandoMaxBot.py
zachdj/ultimate-tic-tac-toe
b8e6128d9d19628f6f889a3958d30854527a8645
[ "MIT" ]
null
null
null
models/game/bots/RandoMaxBot.py
zachdj/ultimate-tic-tac-toe
b8e6128d9d19628f6f889a3958d30854527a8645
[ "MIT" ]
null
null
null
import random from models.game.bots.Bot import Bot from models.game.Board import Board class RandoMaxBot(Bot): """ Semi-random bot This is a minimax bot that scores moves randomly unless the end of the game is seen within a 2-ply lookahead """ def __init__(self, number, name=None): if name is None: name = "Rando-Max Bot" Bot.__init__(self, number, name=name) self.player_type = 'randomax' random.seed() def compute_next_move(self, board, valid_moves): score, selected_move = self._max(board, valid_moves,-float('inf'), float('inf'), 2) return selected_move def _max(self, board, valid_moves, alpha, beta, max_depth): """ Private function which computes the move that a rational maximizing player would choose :param board: GlobalBoard object representing the current state :param valid_moves: list of valid moves that can be made on the board object :param alpha: the current value of alpha (the best score that MAX can guarantee so far) :param beta: the current value of beta (the best score that MIN can guarantee so far) :return: the value (score) of the best move and the move object itself """ if board.board_completed: # termination test if board.winner == Board.EMPTY or board.winner == Board.CAT: return 0, None elif board.winner == self.number: return 10000000, None else: return -10000000, None elif max_depth == 0: # scores are computed from the perspective of the 'X' player, so they need to be flipped if our bot is 'O' if self.number == Board.X: return self.compute_score(board), None else: return -self.compute_score(board), None a, b = alpha, beta value = -float('inf') best_move = None for move in valid_moves: child_board = board.clone() child_board.make_move(move) move_value, minimizing_move = self._min(child_board, child_board.get_valid_moves(move), a, b, max_depth-1) if move_value > value: value = move_value best_move = move if value >= b: return value, best_move a = max(a, move_value) return value, best_move def _min(self, board, valid_moves, alpha, beta, max_depth): # test for stopping condition if board.board_completed: if board.winner == Board.EMPTY or board.winner == Board.CAT: return 0, None elif board.winner == self.number: return 10000000, None else: return -10000000, None elif max_depth == 0: # scores are computed from the perspective of the 'X' player, so they need to be flipped if our bot is 'O' if self.number == Board.X: return self.compute_score(board), None else: return -self.compute_score(board), None a, b = alpha, beta value = float('inf') best_move = None for move in valid_moves: child_board = board.clone() child_board.make_move(move) move_value, maximizing_move = self._max(child_board, child_board.get_valid_moves(move), a, b, max_depth - 1) if move_value < value: value = move_value best_move = move if value <= a: return value, best_move b = min(b, move_value) return value, best_move def compute_score(self, board): return random.uniform(-1, 1) def setup_bot(self, game): pass
36.528846
120
0.589102
498
3,799
4.351406
0.230924
0.046147
0.035994
0.040609
0.522381
0.522381
0.522381
0.49377
0.460545
0.460545
0
0.016594
0.333772
3,799
103
121
36.883495
0.839589
0.225059
0
0.591549
0
0
0.01153
0
0
0
0
0
0
1
0.084507
false
0.014085
0.042254
0.014085
0.366197
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f25ce39acdbb3d945528b6cb2be68ac5895f77bb
1,241
py
Python
backend/server.py
mugeshk97/billing-api
3bf6899f62bee6db7870c3b6008a10c887eb3aa3
[ "MIT" ]
null
null
null
backend/server.py
mugeshk97/billing-api
3bf6899f62bee6db7870c3b6008a10c887eb3aa3
[ "MIT" ]
null
null
null
backend/server.py
mugeshk97/billing-api
3bf6899f62bee6db7870c3b6008a10c887eb3aa3
[ "MIT" ]
null
null
null
from flask import Flask, request, jsonify from connection import get_sql_connection from product import get_all_products, insert_product, delete_product import json from flask_cors import CORS app = Flask(__name__) CORS(app) cnx = get_sql_connection() @app.route('/getProducts', methods=['GET']) def get_products(): products = get_all_products(cnx) response = jsonify(products) response.headers.add('Access-Control-Allow-Origin', '*') return response @app.route('/insertProduct', methods=['POST']) def insert_prod(): request_payload = json.loads(request.form['data']) print(request_payload) product_id = insert_product(cnx, request_payload) response = jsonify( {'product_id': product_id} ) response.headers.add('Access-Control-Allow-Origin', '*') return response @app.route('/deleteProduct', methods=['POST']) def delete_prod(): request_payload = json.loads(request.form['product_id']) return_id = delete_product(cnx, request_payload['product_id']) response = jsonify( {'product_id': return_id} ) response.headers.add('Access-Control-Allow-Origin', '*') return response if __name__ == '__main__': app.run(host= '0.0.0.0', port=5050, debug= True)
29.547619
68
0.709106
157
1,241
5.343949
0.312102
0.064362
0.064362
0.085816
0.31466
0.31466
0.31466
0.224076
0.224076
0.224076
0
0.007612
0.153102
1,241
42
69
29.547619
0.790676
0
0
0.228571
0
0
0.1562
0.065217
0
0
0
0
0
1
0.085714
false
0
0.142857
0
0.314286
0.028571
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f25fca280607b95bdb378b87fdab5966ef3e46d2
555
py
Python
api/restaurant_helper_functions.py
daniellespencer/stfu-and-eat
cb82b364ba226dd61f11547720a20a132c1562f6
[ "MIT" ]
1
2020-05-15T01:36:59.000Z
2020-05-15T01:36:59.000Z
api/restaurant_helper_functions.py
daniellespencer/stfu-and-eat
cb82b364ba226dd61f11547720a20a132c1562f6
[ "MIT" ]
null
null
null
api/restaurant_helper_functions.py
daniellespencer/stfu-and-eat
cb82b364ba226dd61f11547720a20a132c1562f6
[ "MIT" ]
2
2020-05-15T01:31:37.000Z
2020-05-20T00:04:41.000Z
import random from api.config import restaurant_collection as restaurants def organize_restaurant_output(): output = [] for q in restaurants.find(): output.append({ "id" : str(q['_id']), 'name' : q['name'], 'neighborhood' : q['neighborhood'], 'cuisine' : q['cuisine'], 'address' : q['address'], 'website' : q['website'] }) return output def select_random_restaurant(options): value = random.randint(0, len(options)-1) return options[value]
26.428571
59
0.567568
58
555
5.327586
0.551724
0.07767
0
0
0
0
0
0
0
0
0
0.005089
0.291892
555
21
60
26.428571
0.78117
0
0
0
0
0
0.142086
0
0
0
0
0
0
1
0.117647
false
0
0.117647
0
0.352941
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2647ec6e2d3b985a5cc52948c24f37ae5751457
3,973
py
Python
stimuli.py
lieke2020/workmate_match
803f4e3b1fa62280cc0d6a7cd61eb80929dae918
[ "MIT" ]
null
null
null
stimuli.py
lieke2020/workmate_match
803f4e3b1fa62280cc0d6a7cd61eb80929dae918
[ "MIT" ]
null
null
null
stimuli.py
lieke2020/workmate_match
803f4e3b1fa62280cc0d6a7cd61eb80929dae918
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Dec 1 13:21:44 2021 This file holds the stimuli that are used in the world to represent cues. obs_time --> Stimulus representing time match_cifar --> Natural scenes for phase 1 learning obs_cifar --> Natural scenes for phase 2 learning match_alpha --> Alphabetic letters for phase 1 learning obs_alpha --> Alphabetic letters for phase 2 learning Detailed information on the stimuli can be found in README.txt @author: Lieke Ceton """ #%% Dependencies import numpy as np import string from random import sample import csv from sklearn.preprocessing import normalize #%% Time cell coding maxtime = 10 # Time vectors are created by convolving a response vector # with an identity matrix, yielding [maxtime] rows of time cell responses, # each peaking at a unique, consecutive time. z = [0.1, 0.25, 0.5, 1, 0.5, 0.25, 0.1] crop = int((len(z)-1)/2) # the '3'-cropping here removes edge artefacts from convolution; # Time cell 0 (at row 0) peaks at the first moment in time (column 0). tmat = np.vstack([np.convolve(z, t)[crop:maxtime + crop] for t in np.eye(maxtime)]) def obs_time(t=0): """Vector that represents time""" return tmat[t] #%% CIFAR-10 observations for both learning phases #CIFAR-10 features are extracted from a pre-trained CNN (Caley Woy, see README) #They are the activity vectors of the second fully connected layer. #load .csv file with open("CIFAR_10_kaggle_feature_2.csv", 'r') as f: csv_features = list(csv.reader(f, delimiter=",")) all_feat = np.array(csv_features[1:], dtype=np.float) #get the first row out match_dict = normalize(all_feat[:,1:-2]) #normalize feat_sample = all_feat[0:500,1:-2] #Sample the first 500 features/images cifar_dict = normalize(feat_sample) #normalise def match_cifar(): """Stimuli for phase 1 learning, random natural scenes from CIFAR-10 dataset""" a = np.random.choice(match_dict.shape[1]) return match_dict[a] def obs_cifar(obs=1): """Stimuli for phase 2 learning, a specific set of CIFAR-10 stimuli is selected""" return cifar_dict[obs] #%% Alpha observations for both learning phases #Construct stimulus dictionary stimbits = 10 #length of stimuli #Construct binary stim_repres binstr = '0{}b'.format(stimbits) binstrings = [format(i, binstr) for i in range(2**stimbits)] tobinarr = lambda s : np.array([float(c) for c in s]) Dx = np.vstack([tobinarr(i) for i in binstrings]) #--> a shuffle = sample(range(len(Dx)),len(Dx)) #shuffle the rows randomly Dx = Dx[shuffle,:] # Dx now is a matrix of 128 x 7 bits. 'stimbits' is a dict that will order the # first 52 of these in a lookup table, #why not choose 2**6 when you only use the first 52? (LJC) chars = string.ascii_lowercase + string.ascii_uppercase stimdict = dict(list(zip( chars, Dx ))) # Stimuli with these 5 letters are used in prosaccade/antisaccade, and here made # linearly separable, cf. Rombouts et al., 2015 stimdict['g'] = np.zeros(stimbits) stimdict['p'] = np.eye(stimbits)[0] stimdict['a'] = np.eye(stimbits)[1] stimdict['l'] = np.eye(stimbits)[2] stimdict['r'] = np.eye(stimbits)[3] #why? this ruins the neat dictionary that you just made.. (LJC) # digits, used in 12-AX, are added to the stimdict in a similar manner digdict = dict( [(d,Dx[i + 2**(stimbits-1) ]) for i,d in enumerate(string.digits) ]) stimdict.update(digdict) len_Dx = Dx.shape[0] def match_alpha(): """Stimuli for phase 1 learning, random vector selected from binary stimuli""" rand_int = np.random.choice(len_Dx) return Dx[rand_int,:] def obs_alpha(obs='A'): """Stimuli for phase 2 learning, all lower and uppercase letters (52 stimuli)""" # return the row of activity from the selected stimdict index as the observation return stimdict[obs]
37.838095
100
0.683614
620
3,973
4.327419
0.377419
0.023854
0.013418
0.025345
0.115542
0.022363
0
0
0
0
0
0.031409
0.206645
3,973
104
101
38.201923
0.819797
0.532343
0
0
0
0
0.02426
0.01716
0
0
0
0
0
1
0.111111
false
0
0.111111
0
0.333333
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2684fd08fdc8ebf74875458af9886f1554c5e7c
1,040
py
Python
meilisearch/tests/test_synonyms_meilisearch.py
jtmiclat/meilisearch-python
b6a48a62bb64ae58181550a0ddc793dcdc0a2b06
[ "MIT" ]
null
null
null
meilisearch/tests/test_synonyms_meilisearch.py
jtmiclat/meilisearch-python
b6a48a62bb64ae58181550a0ddc793dcdc0a2b06
[ "MIT" ]
null
null
null
meilisearch/tests/test_synonyms_meilisearch.py
jtmiclat/meilisearch-python
b6a48a62bb64ae58181550a0ddc793dcdc0a2b06
[ "MIT" ]
null
null
null
import time import meilisearch from meilisearch.tests import BASE_URL, MASTER_KEY class TestSynonyms: client = meilisearch.Client(BASE_URL, MASTER_KEY) index = None new_synonyms = { 'hp': ['harry potter'] } default_synonyms = {} def setup_class(self): self.index = self.client.create_index(uid='indexUID') def teardown_class(self): self.index.delete() def test_update_synonyms(self): response = self.index.update_synonyms(self.new_synonyms) assert isinstance(response, object) assert 'updateId' in response def test_get_synonyms(self): response = self.index.get_synonyms() assert isinstance(response, object) assert response == self.new_synonyms def test_reset_synonyms(self): response = self.index.reset_synonyms() assert isinstance(response, object) assert 'updateId' in response time.sleep(2) response = self.index.get_synonyms() assert response == self.default_synonyms
28.888889
64
0.674038
120
1,040
5.658333
0.333333
0.079529
0.100147
0.106038
0.430044
0.326951
0.182622
0.182622
0.182622
0
0
0.001259
0.236538
1,040
35
65
29.714286
0.853904
0
0
0.241379
0
0
0.036538
0
0
0
0
0
0.241379
1
0.172414
false
0
0.103448
0
0.448276
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f26f15c108eabe8ae9328cc4ea34ff13c08d0947
950
py
Python
main.py
AbhigyanRanjan0505/dvigyuoixfhybiocthgnkfi
db1b5198f1a0902aff21c74c58578dcb1feda39d
[ "MIT" ]
null
null
null
main.py
AbhigyanRanjan0505/dvigyuoixfhybiocthgnkfi
db1b5198f1a0902aff21c74c58578dcb1feda39d
[ "MIT" ]
null
null
null
main.py
AbhigyanRanjan0505/dvigyuoixfhybiocthgnkfi
db1b5198f1a0902aff21c74c58578dcb1feda39d
[ "MIT" ]
null
null
null
import plotly.figure_factory as figure_factory import statistics import random import pandas df = pandas.read_csv("data.csv") data = df["reading_time"].tolist() population_mean = statistics.mean(data) print("Population mean :", population_mean) def show_fig(mean_list): df = mean_list fig = figure_factory.create_distplot( [df], ["reading_time"], show_hist=False) fig.show() def random_set_of_mean(counter): dataset = [] for i in range(0, counter): random_index = random.randint(0, len(data)) value = data[random_index] dataset.append(value) mean = statistics.mean(dataset) return mean def setup(): mean_list = [] for i in range(0, 100): set_of_means = random_set_of_mean(30) mean_list.append(set_of_means) show_fig(mean_list) mean = statistics.mean(mean_list) print("Sampling mean :", mean) setup()
22.093023
52
0.648421
126
950
4.650794
0.365079
0.081911
0.09215
0.051195
0.040956
0
0
0
0
0
0
0.011127
0.243158
950
42
53
22.619048
0.803894
0
0
0
0
0
0.070485
0
0
0
0
0
0
1
0.1
false
0
0.133333
0
0.266667
0.066667
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2738d7e2edb6f5a98849ea7773345dc1a404833
1,409
py
Python
hseling_lib_diachrony_webvectors/hseling_lib_diachrony_webvectors/strings_reader.py
wadimiusz/hseling-repo-diachrony-webvectors
5488d74141df360a6a721637ae7c7577136172d7
[ "MIT" ]
null
null
null
hseling_lib_diachrony_webvectors/hseling_lib_diachrony_webvectors/strings_reader.py
wadimiusz/hseling-repo-diachrony-webvectors
5488d74141df360a6a721637ae7c7577136172d7
[ "MIT" ]
null
null
null
hseling_lib_diachrony_webvectors/hseling_lib_diachrony_webvectors/strings_reader.py
wadimiusz/hseling-repo-diachrony-webvectors
5488d74141df360a6a721637ae7c7577136172d7
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding:utf8 """ this module reads strings.csv, which contains all the strings, and lets the main app use it """ import sys import csv import os from flask import Markup import configparser config = configparser.RawConfigParser() path = '../hseling_api_diachrony_webvectors/hseling_api_diachrony_webvectors/webvectors.cfg' assert os.path.isfile(path), "Current path: {}".format(os.getcwd()) config.read(path) root = config.get('Files and directories', 'root') l10nfile = config.get('Files and directories', 'l10n') # open the strings database: csvfile = open("../hseling_lib_diachrony_webvectors/hseling_lib_diachrony_webvectors/" + l10nfile, 'rU') acrobat = csv.reader(csvfile, dialect='excel', delimiter=',') # initialize a dictionary for each language: language_dicts = {} langnames = config.get('Languages', 'interface_languages').split(',') header = next(acrobat) included_columns = [] for langname in langnames: language_dicts[langname] = {} included_columns.append(header.index(langname)) # read the csvfile, populate language_dicts: for row in acrobat: for i in included_columns: # range(1, len(row)): # Markup() is used to prevent autoescaping in templates if sys.version_info[0] < 3: language_dicts[header[i]][row[0]] = Markup(row[i].decode('utf-8')) else: language_dicts[header[i]][row[0]] = Markup(row[i])
32.022727
104
0.721079
187
1,409
5.315508
0.524064
0.065392
0.038229
0.05835
0.124748
0.06841
0.06841
0.06841
0.06841
0
0
0.010815
0.146913
1,409
43
105
32.767442
0.81614
0.220724
0
0
0
0
0.239852
0.140221
0
0
0
0
0.038462
1
0
false
0
0.192308
0
0.192308
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f274273a939d4c8377fbaeb7efafd00e9604432e
1,077
py
Python
day 5&6/linked list.py
yogeshkhola/100daysofDSA
93f0d30d718795e4e3eb5d8e677b87baebd0df7c
[ "MIT" ]
3
2021-03-01T17:04:33.000Z
2021-03-01T17:44:23.000Z
day 5&6/linked list.py
yogeshkhola/100daysofDSA
93f0d30d718795e4e3eb5d8e677b87baebd0df7c
[ "MIT" ]
null
null
null
day 5&6/linked list.py
yogeshkhola/100daysofDSA
93f0d30d718795e4e3eb5d8e677b87baebd0df7c
[ "MIT" ]
null
null
null
class node: def __init__(self,data): self.data=data self.next=None class LinkedList: def __init__(self): self.start=None #(self/head) def viewList(self):#this function print the whole list if self.start==None: print("list is empty") else: temp=self.start while temp!=None: print(temp.data,end=" ") temp=temp.next def deleteFirst(self): if self.start==None: print("Linked list is empty") else: # temp=self.start self.start=self.start.next def insertLast(self,value): newNode=node(value) if(self.start==None): self.start=newNode else: temp=self.start while temp.next!=None: temp=temp.next temp.next=newNode mylist=LinkedList() mylist.insertLast(10) mylist.insertLast(20) mylist.insertLast(17) mylist.insertLast(18) mylist.insertLast(60) mylist.viewList() print() mylist.deleteFirst() mylist.viewList()
21.54
58
0.571959
126
1,077
4.825397
0.285714
0.148026
0.085526
0.074013
0.215461
0.149671
0.092105
0
0
0
0
0.013587
0.31662
1,077
50
59
21.54
0.8125
0.056639
0
0.282051
0
0
0.033531
0
0
0
0
0
0
1
0.128205
false
0
0
0
0.179487
0.102564
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2765c1d1962f66a204431e4dc547e6e1d4a52be
40,603
py
Python
detex/getdata.py
d-chambers/Detex
46602eb8e05e080a23111c8f2716065a016613c2
[ "BSD-3-Clause" ]
39
2015-08-15T20:10:14.000Z
2022-03-17T00:41:57.000Z
detex/getdata.py
d-chambers/Detex
46602eb8e05e080a23111c8f2716065a016613c2
[ "BSD-3-Clause" ]
39
2015-09-28T23:50:59.000Z
2019-07-16T20:38:31.000Z
detex/getdata.py
d-chambers/Detex
46602eb8e05e080a23111c8f2716065a016613c2
[ "BSD-3-Clause" ]
8
2015-10-08T20:43:40.000Z
2020-08-05T22:47:45.000Z
# -*- coding: utf-8 -*- """ Created on Thu Nov 10 20:21:46 2015 @author: derrick """ from __future__ import print_function, absolute_import, unicode_literals, division import glob import itertools import json import os import random import numpy as np import obspy import pandas as pd from six import string_types import detex # client imports import obspy.clients.fdsn import obspy.clients.neic import obspy.clients.earthworm conDirDefault = 'ContinuousWaveForms' eveDirDefault = 'EventWaveForms' # extension key to map obspy output type to extension. Add more here formatKey = {'mseed': 'msd', 'pickle': 'pkl', 'sac': 'sac', 'Q': 'Q'} def read(path): """ function to read a file from a path. If IOError or TypeError simply try appending os.set to start """ try: st = obspy.read(path) except (IOError, TypeError): try: st = obspy.read(os.path.join(os.path.sep, path)) except (IOError, TypeError): msg = 'Cannot read %s, the file may be corrupt, skipping it' % path detex.log(__name__, msg, level='warn', pri=True) return None return st def quickFetch(fetch_arg, **kwargs): """ Instantiate a DataFetcher using as little information as possible. Parameters ---------- fetch_arg : str or DataFetcher instance fetch_arg can be one of three things: 1. An instance of DataFetcher 2. A valid DataFetcher Method other than dir 3. A path to a directory containing waveform data fetch_arg is checked in that order, so if you are trying to use a data directory make sure it does not share names with a valid DataFetcher method kwargs are passed to the DataFetcher class, see DataFetcher docs for details Returns ------- An instance of DataFetcher Notes -------- For client methods (eg 'uuss', 'iris') remove response is assumed True with the default prelim. filter. If you don't want this make a custom instance of DataFetcher. """ if isinstance(fetch_arg, DataFetcher): dat_fet = fetch_arg elif isinstance(fetch_arg, string_types): if fetch_arg in DataFetcher.supMethods: if fetch_arg == 'dir': msg = 'If using method dir you must pass a path to directory' detex.log(__name__, msg, level='error') dat_fet = DataFetcher(fetch_arg, removeResponse=True, **kwargs) else: if not os.path.exists(fetch_arg): msg = 'Directory %s does not exist' % fetch_arg detex.log(__name__, msg, level='error') dat_fet = DataFetcher('dir', directoryName=fetch_arg, **kwargs) else: msg = 'Input not understood, read docs and try again' detex.log(__name__, msg, level='error') return dat_fet def makeDataDirectories(templateKey='TemplateKey.csv', stationKey='StationKey.csv', fetch='IRIS', formatOut='mseed', templateDir=eveDirDefault, timeBeforeOrigin=1 * 60, timeAfterOrigin=4 * 60, conDir=conDirDefault, secBuf=120, conDatDuration=3600, multiPro=False, getContinuous=True, getTemplates=True, removeResponse=True, opType='VEL', prefilt=[.05, .1, 15, 20]): """ Function designed to fetch data needed for detex and store them in local directories. StationKey.csv and TemplateKey.csv indicate which events to download and for which stations. Organizes ContinuousWaveForms and EventWaveForms directories. Parameters ------------ template_key : str or pd DataFrame The path to the TemplateKey csv station_key : str or pd DataFrame The path to the station key fetch : str or FetchData instance String for method argument of FetchData class or FetchData instance formatOut : str Seismic data file format, most obspy formats acceptable, options are: 'mseed','sac','GSE2','sacxy','q','sh_asc',' slist', 'tspair','segy', 'su', 'pickle', 'h5' (h5 only if obspyh5 module installed) tempalateDir : str The name of the template directory. Using the default is recommended else the templateDir parameter will have to be set in calling most other detex functions timeBeforeOrigin: real number The time in seconds before the reported origin of each template that is downloaded. timeAfterOrigin : real number(int, float, etc.) The time in seconds to download after the origin time of each template. conDir : str The name of the continuous waveform directory. Using the default is recommended secBuf : real number (int, float, etc.) The number of seconds to download after each hour of continuous data. This might be non-zero in order to capture some detections that would normally be overlooked if data did not overlap somewhat. conDatDuration : real number (int, float, etc.) The duration of the continuous data to download in seconds. multiPro : bool If True fork several processes to get data at once, potentially much faster but a bit inconsiderate on the server hosting the data getContinuous : bool If True fetch continuous data with station and date ranges listed in the station key getTemplates : bool If True get template data with stations listed in the station key and events listed in the template key removeResponse : bool If true remove instrument response opType : str Output type after removing instrument response. Choices are: "DISP" (m), "VEL" (m/s), or "ACC" (m/s**2) prefilt : list 4 real numbers Pre-filter parameters for removing instrument response, response is flat from corners 2 to 3. """ temkey = detex.util.readKey(templateKey, 'template') stakey = detex.util.readKey(stationKey, 'station') # Check output type if formatOut not in formatKey.keys(): msg = ('%s is not an acceptable format, choices are %s' % (formatOut, formatKey.keys())) detex.log(__name__, msg, level='error') # Configure data fetcher if isinstance(fetch, detex.getdata.DataFetcher): fetcher = fetch # Make sure DataFetcher is on same page as function inputs fetcher.opType = opType fetcher.removeResponse = removeResponse fetcher.prefilt = prefilt else: fetcher = detex.getdata.DataFetcher(fetch, removeResponse=removeResponse, opType=opType, prefilt=prefilt) ## Get templates if getTemplates: msg = 'Getting template waveforms' detex.log(__name__, msg, level='info', pri=True) _getTemData(temkey, stakey, templateDir, formatOut, fetcher, timeBeforeOrigin, timeAfterOrigin) ## Get continuous data if getContinuous: msg = 'Getting continuous data' detex.log(__name__, msg, level='info', pri=True) _getConData(fetcher, stakey, conDir, secBuf, opType, formatOut, duration=conDatDuration) ## Log finish msg = "finished makeDataDirectories call" detex.log(__name__, msg, level='info', close=True, pri=True) def _getTemData(temkey, stakey, temDir, formatOut, fetcher, tb4, taft): streamGenerator = fetcher.getTemData(temkey, stakey, tb4, taft, returnName=True, temDir=temDir, skipIfExists=True) for st, name in streamGenerator: netsta = st[0].stats.network + '.' + st[0].stats.station fname = netsta + '.' + name + '.' + formatKey[formatOut] fdir = os.path.join(temDir, name) if not os.path.exists(fdir): os.makedirs(fdir) st.write(os.path.join(fdir, fname), formatOut) if not os.path.exists(os.path.join(temDir, '.index.db')): indexDirectory(temDir) def _getConData(fetcher, stakey, conDir, secBuf, opType, formatOut, duration=3600): streamGenerator = fetcher.getConData(stakey, secBuf, returnName=True, conDir=conDir, skipIfExists=True, duration=duration) for st, path, fname in streamGenerator: if st is not None: # if data were returned if not os.path.exists(path): os.makedirs(path) fname = fname + '.' + formatKey[formatOut] st.write(os.path.join(path, fname), formatOut) if not os.path.exists(os.path.join(conDir, '.index.db')): indexDirectory(conDir) class DataFetcher(object): """ \n Class to handle data acquisition Parameters ---------- method : str or int One of the approved methods for getting data as supported by detex Options are: "dir" : A data directory as created by makeDataDirectories "client" : an obspy client can be passed to get data useful if using an in-network database "iris" : an iris client is initiated, also uses IRIS for inventory "uuss" : A client attached to the university of utah seismograph stations is initiated using CWB for waveforms and IRIS is used for station inventories client : An obspy client object Client object used to get data, from obspy.clients removeResponse : bool If True remove response before returning stream. inventoryArg : None, obspy client object, or obspy Inventory object A seperate client for station inventories, only used if removeResponse == True, also supports keyword "iris" for iris client directoryName : str A path to the continuous waveforms directory or event waveforms directory. If None is passed default names are used (ContinuousWaveForms and EventWaveForms) opType : str Output type after removing instrument response. Choices are: "DISP" (m), "VEL" (m/s), or "ACC" (m/s**2) prefilt : list of real numbers Pre-filter parameters for removing instrument response. conDatDuration : int or float Duration for continuous data in seconds conBuff : int or float The amount of data, in seconds, to download at the end of the conDatDuration. Ideally should be equal to template length, important in order to avoid missing potential events at the end of a stream timeBeforeOrigin : int or float Seconds before origin of each event to fetch (used in getTemData) timeAfterOrigin : int or float Seconds after origin of each event to fetch (used in getTemData) checkData : bool If True apply some data checks before returning streams, can be useful for older data sets. fillZeros : bool If True fill data that are not available with 0s (provided some data are available) """ supMethods = ['dir', 'client', 'uuss', 'iris'] def __init__(self, method, client=None, removeResponse=True, inventoryArg=None, directoryName=None, opType='VEL', prefilt=[.05, .1, 15, 20], conDatDuration=3600, conBuff=120, timeBeforeOrigin=1 * 60, timeAfterOrigin=4 * 60, checkData=True, fillZeros=False): self.__dict__.update(locals()) # Instantiate all inputs self.inventory = _getInventory(inventoryArg) self._checkInputs() if self.removeResponse and self.inventory is None: if self.method == 'dir': msg = ('Cannot remove response without a valid inventoryArg, ' 'setting removeResponse to False') detex.log(__name__, msg, level='warning', pri=True) self.removeResponse = False def _checkInputs(self): if not isinstance(self.method, string_types): msg = 'method must be a string. options:\n %s' % self.supMethods detex.log(__name__, msg, level='error', e=TypeError) self.method = self.method.lower() # parameter to lowercase if not self.method in DataFetcher.supMethods: msg = ('method %s not supported. Options are:\n %s' % (self.method, self.supMethods)) detex.log(__name__, msg, level='error', e=ValueError) if self.method == 'dir': if self.directoryName is None: self.directoryName = conDirDefault dirPath = glob.glob(self.directoryName) if len(dirPath) < 1: msg = ('directory %s not found make sure path is correct' % self.directoryName) detex.log(__name__, msg, level='error', e=IOError) else: self.directory = dirPath[0] self._getStream = _loadDirectoryData elif self.method == "client": if self.client is None: msg = 'Method %s requires a valid obspy client' % self.method detex.log(__name__, msg, level='error', e=ValueError) self._getStream = _assignClientFunction(self.client) elif self.method == "iris": self.client = obspy.clients.fdsn.Client("IRIS") self._getStream = _assignClientFunction(self.client) elif self.method == 'uuss': # uuss setting self.client = obspy.clients.neic.Client('128.110.129.227') self._getStream = _assignClientFunction(self.client) self.inventory = obspy.clients.fdsn.Client('iris') # use iris for resps def getTemData(self, temkey, stakey, tb4=None, taft=None, returnName=True, temDir=None, skipIfExists=False, skipDict=None, returnTimes=False, phases=None): """ Take detex station keys and template keys and yield stream objects of all possible combinations Parameters ---------- temkey : pd DataFrame Detex template key stakey : pd DataFrame Detex station key tb4 : None, or real number Time before origin (or first phase pick if phases is not None) taft : None or real number Time after origin (or first phase pick if phases is not None) returnName : bool If True return name of event as found in template key returnNames : bool If True return event names and template names temDir : str or None Name of template directory, used to check if exists skipIfExists : bool If True dont return if file is in temDir skipDict : dict Dictionary of stations (keys, net.sta) and events (values) to skip returnTimes : bool If True return times of data phases : None, str, or DataFrame If not None must be a path to a phasePick file, in the same format as detex.util.pickPhases, or a path to a saved csv of the same. tb4 and taft will be referenced to the first arrival for each event and station, or the origin if none are available. Yields -------- Stream objects of possible combination if data are fetchable and event names if returnName == True or times of data if returnTimes == True """ if tb4 is None: tb4 = self.timeBeforeOrigin if taft is None: taft = self.timeAfterOrigin if skipDict is not None and len(skipDict.keys()) < 1: skipDict = None stakey = detex.util.readKey(stakey, key_type='station') temkey = detex.util.readKey(temkey, key_type='template') if phases is not None: phases = detex.util.readKey(phases, "phases") indexiter = itertools.product(stakey.index, temkey.index) # iter through each station/event pair and fetch data for stain, temin in indexiter: ser = temkey.loc[temin].combine_first(stakey.loc[stain]) netsta = ser.NETWORK + '.' + ser.STATION # Skip event/station combos in skipDict if skipDict is not None and netsta in skipDict.keys(): vals = skipDict[netsta] if ser.NAME in vals: continue # skip events that already have files if skipIfExists: pfile = glob.glob(os.path.join(temDir, ser.NAME, netsta + '*')) if len(pfile) > 0: continue if isinstance(ser.TIME, string_types) and 'T' in ser.TIME: time = ser.TIME else: time = float(ser.TIME) net = ser.NETWORK sta = ser.STATION chan = ser.CHANNELS.split('-') # if phases option is used then find first phase and use it if phases is not None: con1 = (phases.Event == ser.NAME) con2 = (phases.Station == '%s.%s' % (net, sta)) curEve = phases[con1 & con2] if len(curEve) < 1: # if event station pair not in phases msg = (('%s on %s was not in phase file, using origin') % (ser.NAME, sta)) detex.log(__name__, msg, level='info') t = obspy.UTCDateTime(time) else: utcs = [obspy.UTCDateTime(x) for x in curEve.TimeStamp] t = min(utcs) else: t = obspy.UTCDateTime(time) start = t - tb4 end = t + taft st = self.getStream(start, end, net, sta, chan, '??') if st is None: # skip if returns nothing continue if returnName: yield st, ser.NAME elif returnTimes: yield st, start, end else: yield st def getConData(self, stakey, secBuff=None, returnName=False, returnTimes=False, conDir=None, skipIfExists=False, utcstart=None, utcend=None, duration=None, randSamps=None): """ Get continuous data defined by the stations and time range in the station key Parameters ----------- stakey : str or pd.DataFrame A path to the stationkey or a loaded DF of the stationkey secBuff : int A buffer in seconds to add to end of continuous data chunk so that consecutive files overlap by secBuf returnName : bool If True return the name of the file and expected path CondDir : str Path to Continuous data directory if it exists. Used to check if a file already exists so it can be skipped if skipIfExists skipIfExists : bool If True files already exists wont be downloaded again utcstart : None, int, str or obspy.UTCDateTime instance An object readable by obspy.UTCDateTime class which is the start time of continuous data to fetch. If None use time in station key utcend : None, int or str, or obspy.UTCDateTime instance An object readable by obspy.UTCDateTime class which is the end time of continuous data to fetch. If None use time in station key duration : None, int, or float The duration of each continuous data chunk to fetch, if None use conDataDuration attribute of DataFetcher instance randSamps : None or int If not None, return random number of traces rather than whole range Yields -------- Obspy trace and other requested parameters """ stakey = detex.util.readKey(stakey, 'station') if secBuff is None: secBuff = self.conBuff if duration is None: duration = self.conDatDuration for num, ser in stakey.iterrows(): netsta = ser.NETWORK + '.' + ser.STATION if utcstart is None: ts1 = obspy.UTCDateTime(ser.STARTTIME) else: ts1 = utcstart if utcend is None: ts2 = obspy.UTCDateTime(ser.ENDTIME) else: ts2 = utcend utcs = _divideIntoChunks(ts1, ts2, duration, randSamps) for utc in utcs: if conDir is not None: path, fil = _makePathFile(conDir, netsta, utc) if skipIfExists: pfile = glob.glob(os.path.join(path, fil + '*')) if len(pfile) > 0: # if already exists then skip continue start = utc end = utc + self.conDatDuration + secBuff net = ser.NETWORK sta = ser.STATION chan = ser.CHANNELS.split('-') st = self.getStream(start, end, net, sta, chan, '*') if st is None or len(st) < 1: continue if not utcend is None: if utcend.timestamp < st[0].stats.endtime.timestamp: # trim if needed st.trim(endtime=utcend) if len(st) < 1: continue if returnName and returnTimes: path, fname = _makePathFile(conDir, netsta, utc) yield st, path, fname, start, end elif returnName: path, fname = _makePathFile(conDir, netsta, utc) yield st, path, fname elif returnTimes: yield st, start, end else: yield st def getStream(self, start, end, net, sta, chan='???', loc='??'): """ function for getting data.\n Parameters ---------- start : obspy.UTCDateTime object Start time to fetch end : obspy.UTCDateTime object End time to fetch net : str Network code, usually 2 letters sta : str Station code chan : str or list of str (should support wildcard) Channels to fetch loc : str Location code for station Returns --------- An instance of obspy.Stream populated with requested data, or None if not available. """ # make sure start and end are UTCDateTimes start = obspy.UTCDateTime(start) end = obspy.UTCDateTime(end) # check that chan input is ok if not isinstance(chan, (list, tuple)): if not isinstance(chan, string_types): msg = 'chan must be a string or list of strings' detex.log(__name__, msg, level='error') chan = [chan] # fetch stream st = self._getStream(self, start, end, net, sta, chan, loc) # perform checks if required if self.checkData: st = _dataCheck(st, start, end) # if no data return None if st is None or len(st) < 1: return None # attach response if self.removeResponse and self.inventory is not None: if not _hasResponse(st): st = _attachResponse(self, st, start, end, net, sta, loc, chan) # remove response if self.removeResponse: st = _removeInstrumentResponse(self, st) if st is None: # return None if response removal failed return None # trims and zero fills st.trim(starttime=start, endtime=end) st.merge(1) # merge and split to overwrite overlaps st = st.split() st.detrend('linear') if self.fillZeros: st.trim(starttime=start, endtime=end, pad=True, fill_value=0.0) st.merge(1, fill_value=0.0) return st ########## Functions for loading data based on selected methods ########### def _loadDirectoryData(fet, start, end, net, sta, chan, loc): """ Function to load continuous data from the detex directory structure """ # get times with slight buffer t1 = obspy.UTCDateTime(start).timestamp t2 = obspy.UTCDateTime(end).timestamp buf = 3 * fet.conDatDuration dfind = _loadIndexDb(fet.directoryName, net + '.' + sta, t1 - buf, t2 + buf) if dfind is None: t1p = obspy.UTCDateTime(t1) t2p = obspy.UTCDateTime(t2) msg = 'data from %s to %s on %s not found in %s' % (t1p, t2p, sta, fet.directoryName) detex.log(__name__, msg, level='warning', pri=False) return None # define conditions in which condata should not be loaded # con1 and con2 - No overlap (other than 10%) tra = t2 - t1 # time range con1 = ((dfind.Starttime <= t1) & (dfind.Endtime - tra * .1 < t1) & (dfind.Starttime < t2) & (dfind.Endtime < t2)) con2 = ((dfind.Starttime > t1) & (dfind.Endtime > t1) & (dfind.Starttime + tra * .1 > t2) & (dfind.Endtime >= t2)) df = dfind[~(con1 | con2)] if len(df) < 1: t1p = obspy.UTCDateTime(t1) t2p = obspy.UTCDateTime(t2) msg = 'data from %s to %s on %s not found in %s' % (t1p, t2p, sta, fet.directoryName) detex.log(__name__, msg, level='warning', pri=False) return None st = obspy.core.Stream() if len(df.Path) < 1: # if no event fits description return None for path, fname in zip(df.Path, df.FileName): fil = os.path.join(path, fname) st1 = read(fil) if not st1 is None: st += st1 # st.trim(starttime=start, endtime=end) # check if chan variable is string else iterate if isinstance(chan, string_types): stout = st.select(channel=chan) else: stout = obspy.core.Stream() for cha in chan: stout += st.select(channel=cha) loc = '*' if loc in ['???', '??'] else loc # convert ? to * stout = stout.select(location=loc) return stout def _assignClientFunction(client): """ function to take an obspy client FDSN, NEIC, EW, etc. return the correct loadFromClient function for getting data. """ if isinstance(client, obspy.clients.fdsn.Client): return _loadFromFDSN elif isinstance(client, obspy.clients.neic.Client): return _loadFromNEIC elif isinstance(client, obspy.clients.earthworm.Client): return _loadFromEarthworm else: msg = 'Client type not supported' detex.log(__name__, msg, level='error', e=TypeError) ## load from client functions, this is needed because the APIs are not the same def _loadFromNEIC(fet, start, end, net, sta, chan, loc): """ Use obspy.neic.Client to fetch waveforms """ client = fet.client # str reps of utc objects for error messages startstr = str(start) endstr = str(end) st = obspy.Stream() for cha in chan: try: # try neic client st += client.get_waveforms(net, sta, loc, cha, start, end) except: msg = ('Could not fetch data on %s from %s to %s' % (net + '.' + sta, startstr, endstr)) detex.log(__name__, msg, level='warning', pri=False) st = None return st def _loadFromEarthworm(fet, start, end, net, sta, chan, loc): client = fet.client startstr = str(start) endstr = str(end) st = obspy.Stream() if '*' in loc or '?' in loc: # adjust for earthworm loc codes loc = '--' for cha in chan: try: # try neic client st += client.get_waveforms(net, sta, loc, cha, start, end) except: msg = ('Could not fetch data on %s from %s to %s' % (net + '.' + sta, startstr, endstr)) detex.log(__name__, msg, level='warning', pri=False) st = None return st def _loadFromFDSN(fet, start, end, net, sta, chan, loc): """ Use obspy.clients.fdsn.Client to fetch waveforms """ client = fet.client # str reps of utc objects for error messages startstr = str(start) endstr = str(end) # convert channels to correct format (list seperated by ,) if not isinstance(chan, string_types): chan = ','.join(chan) else: if '-' in chan: chan = ','.join(chan.split('-')) # try to get waveforms, else return None try: st = client.get_waveforms(net, sta, loc, chan, start, end, attach_response=fet.removeResponse) except: msg = ('Could not fetch data on %s from %s to %s' % (net + '.' + sta, startstr, endstr)) detex.log(__name__, msg, level='warning', pri=False) st = None return st ########## MISC functions ############# def _attachResponse(fet, st, start, end, net, sta, loc, chan): """ Function to attach response from inventory or client """ if not fet.removeResponse or fet.inventory is None: return st if isinstance(fet.inventory, obspy.core.inventory.Inventory): st.attach_response(fet.inventory) else: inv = obspy.core.inventory.Inventory([], 'detex') for cha in chan: inv += fet.inventory.get_stations(starttime=start, endtime=end, network=net, station=sta, loc=loc, channel=cha, level="response") st.attach_response(inv) return st def _getInventory(invArg): """ Take a string, Obspy client, or inventory object and return inventory object used to attach responses to stream objects for response removal """ if isinstance(invArg, string_types): if invArg.lower() == 'iris': invArg = obspy.clients.fdsn.Client('IRIS') elif not os.path.exists(invArg): msg = ('if inventoryArg is str then it must be a client name, ie ' 'IRIS, or a path to a station xml') detex.log(__name__, msg, level='error') else: return obspy.read_inventory(invArg) elif isinstance(invArg, obspy.station.inventory.Inventory): return invArg elif isinstance(invArg, obspy.clients.fdsn.Client): return invArg elif invArg is None: return None def _dataCheck(st, start, end): # if none or empty return None if st is None or len(st) < 1: return None netsta = st[0].stats.network + '.' + st[0].stats.station time = str(st[0].stats.starttime).split('.')[0] # check if data range is way off what was requested utcmin = min([x.stats.starttime for x in st]) utcmax = max([x.stats.endtime for x in st]) if (end - start) - (utcmax - utcmin) > 60 * 10: # give 10 mine tolerance msg = '%s starting on %s is shorter than expected' % (netsta, time) detex.log(__name__, msg, pri=True) # Check sample rates if any([tr.stats.sampling_rate % 1 != 0 for tr in st]): for tr in st: tr.stats.sampling_rate = np.round(tr.stats.sampling_rate) msg = ('Found non-int sampling_rates, rounded to nearest \ int on %s around %s' % (netsta, time)) detex.log(__name__, msg, level='warning') if any([not np.any(x.data) for x in st]): msg = ('At least one channel is all 0s on %s around %s, skipping' % (netsta, time)) detex.log(__name__, msg, level='warn', pri=True) return None return st def _hasResponse(st): """ Test if all channels have responses of a stream, return bool """ return all([hasattr(tr.stats, 'response') for tr in st]) def _removeInstrumentResponse(fet, st): if not fet.removeResponse: # pass stream back if no response removal return st st.detrend('linear') # detrend st = _fftprep(st) try: st.remove_response(output=fet.opType, pre_filt=fet.prefilt) except: utc1 = str(st[0].stats.starttime).split('.')[0] utc2 = str(st[0].stats.endtime).split('.')[0] msg = 'RemoveResponse Failed for %s,%s, from %s to %s, skipping' % ( st[0].stats.network, st[0].stats.station, utc1, utc2) detex.log(__name__, msg, level='warning', pri=True) st = None return st def _fftprep(st): data = st[0].data "data is numpy vector, makes sure it is not of odd length or fft drags" if len(data) % 2 != 0 and len(data) % 100 > 50: data = np.insert(data, 0, data[0]) st[0].data = data st[0].stats.starttime = st[0].stats.starttime - st[0].stats.delta elif len(data) % 2 != 0 and len(data) % 100 < 50: data = data[1:] st[0].data = data st[0].stats.starttime = st[0].stats.starttime + st[0].stats.delta return st def _divideIntoChunks(utc1, utc2, duration, randSamps): """ Function to take two utc date time objects and create a generator to yield all time in between by intercals of duration. If randSamps is not None it will return a random subsample, still divisible by randSamps to make loading files easier. The randSamps parameter can at most rep. Inputs can be any obspy readable format """ utc1 = obspy.UTCDateTime(utc1) utc2 = obspy.UTCDateTime(utc2) # convert to time stamps (epoch time) ts1 = utc1.timestamp - utc1.timestamp % duration ts2 = utc2.timestamp - utc2.timestamp % duration if randSamps is None: t = ts1 while t <= ts2: yield obspy.UTCDateTime(t) # yield a value t += duration # add an hour else: utcList = np.arange(utc1.timestamp, utc2.timestamp, duration) if randSamps > len(utcList) / 4: msg = ('Population too small for %d random samples, taking %d' % ( randSamps, len(utcList))) detex.log(__name__, msg, level='info') randSamps = len(utcList) ranutc = random.sample(utcList, randSamps) rsamps = [obspy.UTCDateTime(x) for x in ranutc] for samp in rsamps: yield samp def _makePathFile(conDir, netsta, utc): """ Make the expected filename to see if continuous data chunk exists """ utc = obspy.UTCDateTime(utc) year = '%04d' % utc.year jd = '%03d' % utc.julday hr = '%02d' % utc.hour mi = '%02d' % utc.minute se = '%02d' % utc.second path = os.path.join(conDir, netsta, year, jd) fname = netsta + '.' + year + '-' + jd + 'T' + '-'.join([hr, mi, se]) return path, fname ###### Index directory functions ########## def indexDirectory(dirPath): """ Create an index (.index.db) for a directory with stored waveform files which also contains quality info of each file Parameters __________ dirPath : str The path to the directory containing waveform data (any structure) """ columns = ['Path', 'FileName', 'Starttime', 'Endtime', 'Gaps', 'Nc', 'Nt', 'Duration', 'Station'] df = pd.DataFrame(columns=columns) # DataFrame for indexing msg = 'indexing, or updating index for %s' % dirPath detex.log(__name__, msg, level='info', pri=True) # Create a list of possible path permutations to save space in database pathList = [] # A list of lists with different path permutations for dirpath, dirname, filenames in os.walk(dirPath): dirList = os.path.abspath(dirpath).split(os.path.sep) # Expand pathList if needed while len(dirList) > len(pathList): pathList.append([]) # loop and put info in pathList that isnt already there for ind, value in enumerate(dirList): if not isinstance(value, list): value = [[value]] for val in value: for va in val: if va not in pathList[ind]: pathList[ind].append(va) # Loop over file names perform quality checks for fname in filenames: if fname[0] == '.': continue fpath = os.path.join(*dirList) fullpath = os.path.join(fpath, fname) qualDict = _checkQuality(fullpath) if qualDict is None: # If file is not obspy readable msg = 'obspy failed to read %s , skipping' % fullpath detex.log(__name__, msg, level='warning', pri=True) continue # skip to next file pathInts = [pathList[num].index(x) for num, x in enumerate(dirList)] df.loc[len(df), 'Path'] = json.dumps(pathInts) for key, value in qualDict.iteritems(): df.loc[len(df) - 1, key] = value df.loc[len(df) - 1, 'FileName'] = fname # Create path index key if len(pathList) < 1: msg = 'No obspy readable files found in %s' % dirPath detex.log(__name__, msg, level='error') dfInd = _createIndexDF(pathList) detex.util.saveSQLite(df, os.path.join(dirPath, '.index.db'), 'ind') detex.util.saveSQLite(dfInd, os.path.join(dirPath, '.index.db'), 'indkey') def _createIndexDF(pathList): indLength = len(pathList) colLength = max([len(x) for x in pathList]) ind = [x for x in range(indLength)] cols = ['col_' + str(x) for x in range(colLength)] df = pd.DataFrame(index=ind, columns=cols) df.fillna(value='', inplace=True) for ind1, pl in enumerate(pathList): for ind2, item in enumerate(pl): df.loc[ind1, 'col_' + str(ind2)] = item return df def _checkQuality(stPath): """ load a path to an obspy trace and check quality """ st = read(stPath) if st is None: return None lengthStream = len(st) gaps = st.get_gaps() gapsum = np.sum([x[-2] for x in gaps]) starttime = min([x.stats.starttime.timestamp for x in st]) endtime = max([x.stats.endtime.timestamp for x in st]) duration = endtime - starttime nc = len(list(set([x.stats.channel for x in st]))) netsta = st[0].stats.network + '.' + st[0].stats.station outDict = {'Gaps': gapsum, 'Starttime': starttime, 'Endtime': endtime, 'Duration': duration, 'Nc': nc, 'Nt': lengthStream, 'Station': netsta} return outDict def _loadIndexDb(dirPath, station, t1, t2): indexFile = glob.glob(os.path.join(dirPath, '.index.db')) if len(indexFile) < 1: msg = '%s is not currently indexed, indexing now' % dirPath detex.log(__name__, msg, level='info', pri=True) indexDirectory(dirPath) indexFile = glob.glob(os.path.join(dirPath, '.index.db')) sql = (('SELECT %s FROM %s WHERE Starttime>=%f AND ' + 'Endtime<=%f AND Station="%s"') % ('*', 'ind', t1, t2, station)) df = detex.util.loadSQLite(indexFile[0], 'ind', sql=sql, silent=False) if df is None or len(df) < 1: # if not in database return None dfin = detex.util.loadSQLite(indexFile[0], 'indkey', convertNumeric=False) dfin.columns = [int(x.split('_')[1]) for x in dfin.columns] dfin.index = [int(x) for x in dfin.index] # reconstruct path df['Path'] = [_associatePathList(x, dfin) for x in df['Path']] df.sort_values(by='FileName', inplace=True) df.reset_index(drop=True, inplace=True) return df def _associatePathList(pathList, dfin): pl = json.loads(pathList) pat = [] for num, p in enumerate(pl): pat.append(dfin.loc[num, p]) return os.path.join(*pat) getAllData = makeDataDirectories
38.929051
102
0.582174
4,924
40,603
4.749594
0.152924
0.010604
0.015906
0.019883
0.263565
0.213537
0.177107
0.159661
0.13127
0.09672
0
0.009421
0.325493
40,603
1,042
103
38.966411
0.844525
0.292146
0
0.280788
0
0
0.078739
0
0
0
0
0
0
1
0.045977
false
0.001642
0.022989
0
0.131363
0.001642
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2766a9a2df58d6c9fe0fc41dab441157d2a7a7d
4,850
py
Python
HouseHunter/core.py
JGBMichalski/House-Hunter
7ad1e866907545b8e2302c1a775cadbd8f807ad9
[ "MIT" ]
null
null
null
HouseHunter/core.py
JGBMichalski/House-Hunter
7ad1e866907545b8e2302c1a775cadbd8f807ad9
[ "MIT" ]
null
null
null
HouseHunter/core.py
JGBMichalski/House-Hunter
7ad1e866907545b8e2302c1a775cadbd8f807ad9
[ "MIT" ]
null
null
null
from tarfile import SUPPORTED_TYPES import requests import re from bs4 import BeautifulSoup import json import HouseHunter.globals as Globals from HouseHunter.ad import * from pathlib import Path class Core(): def __init__(self, filename="ads.json"): self.filepath = Path().absolute().joinpath(filename) if filename else None self.all_ads = {} self.new_ads = {} self.third_party_ads = [] self.load_ads() # Reads given file and creates a dict of ads in file def load_ads(self): # If filepath is None, just skip local file if self.filepath: # If the file doesn't exist create it if not self.filepath.exists(): ads_file = self.filepath.open(mode='w') ads_file.write("{}") ads_file.close() return with self.filepath.open(mode="r") as ads_file: self.all_ads = json.load(ads_file) # Save ads to file def save_ads(self): # If filepath is None, just skip local file if self.filepath: with self.filepath.open(mode="w") as ads_file: json.dump(self.all_ads, ads_file) def validate_origin(self, url): for origin in Globals.SUPPORTED_ORIGINS: if origin in url: return Globals.SUPPORTED_ORIGINS.index(origin) return -1 # Pulls page data from a given url and finds all ads on each page def scrape_url_for_ads(self, url): self.new_ads = {} email_title = None origin = self.validate_origin(url) if origin < 0: print("Site not supported: {}".format(url)) return self.new_ads, email_title while url: # Get the html data from the URL page = requests.get(url) soup = BeautifulSoup(page.content, "html.parser") # If the email title doesnt exist pull it from the html data if email_title is None: email_title = self.get_email_title(origin, soup) # Find ads on the page self.find_ads(soup, origin) # Set url for next page of ads # Depending on supported origins, this may not apply to all url = soup.find("a", string="Next") if not url: url = soup.find("a", href=True, rel="next") if url: url = Globals.SUPPORTED_ORIGINS[origin] + url['href'] return self.new_ads, email_title def find_ads(self, soup, origin): # Finds all ad trees in page html. ad_regex = re.compile('.*{}.*'.format(Globals.AD_ROOT_CLASS_NAMES[origin][Globals.PRIMARY])) ads = soup.find_all(Globals.AD_ROOT_ELEMENT_TYPE[origin], {"class": ad_regex}) # If no ads use different class name if not ads: ad_regex = re.compile('.*{}.*'.format(Globals.AD_ROOT_CLASS_NAMES[origin][Globals.SECONDARY])) ads = soup.find_all(Globals.AD_ROOT_ELEMENT_TYPE[origin], {"class": ad_regex}) # Create a dictionary of all ads with ad id being the key for ad in ads: if origin == 0: current_ad = WFPAd(origin, ad) elif origin == 1: current_ad = RewAd(origin, ad) else: return # Skip third-party ads and ads already found if (current_ad.id not in self.all_ads): self.new_ads[current_ad.id] = current_ad.info self.all_ads[current_ad.id] = current_ad.info def get_email_title(self, origin, soup): if origin != 0: # Used for origins that do not give any details about the search options return Globals.SUPPORTED_FULL_NAMES[origin] else: # Depending on supported origins, this may not apply to all email_title_location = soup.find('div', {"class": "results-info"}).find('h1') if email_title_location: # Depending on supported origins, this may not apply to all return Globals.SUPPORTED_FULL_NAMES[origin] + " - " + self.format_title(email_title_location.text.split(' in ')[1].strip('"')) else: return Globals.SUPPORTED_FULL_NAMES[origin] # Makes the first letter of every word upper-case def format_title(self, title): new_title = [] title = title.split() for word in title: new_word = '' new_word += word[0].upper() if len(word) > 1: new_word += word[1:] new_title.append(new_word) return ' '.join(new_title) # Returns a given list of words to lower-case words def words_to_lower(self, words): return [word.lower() for word in words]
34.15493
142
0.583711
639
4,850
4.283255
0.250391
0.04019
0.018268
0.021922
0.299963
0.267081
0.194008
0.174278
0.174278
0.174278
0
0.003361
0.325155
4,850
141
143
34.397163
0.832875
0.185979
0
0.168539
0
0
0.028775
0
0
0
0
0
0
1
0.101124
false
0
0.089888
0.011236
0.325843
0.011236
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f27acd0b94f784d85a24a1358e2c015c3198e304
4,138
py
Python
keras_med_io/utils/intensity_io.py
jchen42703/keras_med_io
2113de64a448c90b66993d6ed4fdbba7971f3417
[ "MIT" ]
null
null
null
keras_med_io/utils/intensity_io.py
jchen42703/keras_med_io
2113de64a448c90b66993d6ed4fdbba7971f3417
[ "MIT" ]
6
2019-03-24T02:39:43.000Z
2019-04-10T01:15:14.000Z
keras_med_io/utils/intensity_io.py
jchen42703/keras_med_io
2113de64a448c90b66993d6ed4fdbba7971f3417
[ "MIT" ]
null
null
null
# coding: utf-8 # funcions for quick testing import numpy as np # helper functions def normalization(arr, normalize_mode, norm_range = [0,1]): """ Helper function: Normalizes the image based on the specified mode and range Args: arr: numpy array normalize_mode: either "whiten", "normalize_clip", or "normalize" representing the type of normalization to use norm_range: (Optional) Specifies the range for the numpy array values Returns: A normalized array based on the specifications """ # reiniating the batch_size dimension if normalize_mode == "whiten": return whiten(arr) elif normalize_mode == "normalize_clip": return normalize_clip(arr, norm_range = norm_range) elif normalize_mode == "normalize": return minmax_normalize(arr, norm_range = norm_range) else: return NotImplementedError("Please use the supported modes.") def normalize_clip(arr, norm_range = [0,1]): """ Args: arr: numpy array norm_range: list of 2 integers specifying normalizing range based on https://stats.stackexchange.com/questions/178626/how-to-normalize-data-between-1-and-1 Returns: Whitened and normalized array with outliers clipped in the specified range """ # whitens -> clips -> scales to [0,1] # whiten norm_img = np.clip(whiten(arr), -5, 5) norm_img = minmax_normalize(arr, norm_range) return norm_img def whiten(arr): """ Mean-Var Normalization (Z-score norm) * mean of 0 and standard deviation of 1 Args: arr: numpy array Returns: A numpy array with a mean of 0 and a standard deviation of 1 """ shape = arr.shape arr = arr.flatten() norm_img = (arr-np.mean(arr)) / np.std(arr) return norm_img.reshape(shape) def minmax_normalize(arr, norm_range = [0,1]): """ Args: arr: numpy array norm_range: list of 2 integers specifying normalizing range based on https://stats.stackexchange.com/questions/178626/how-to-normalize-data-between-1-and-1 Returns: Normalized array with outliers clipped in the specified range """ norm_img = ((norm_range[1]-norm_range[0]) * (arr - np.amin(arr)) / (np.amax(arr) - np.amin(arr))) + norm_range[0] return norm_img def clip_upper_lower_percentile(image, mask=None, percentile_lower=0.2, percentile_upper=99.8): """ Clipping values for positive class areas. Args: image: mask: percentile_lower: percentile_upper: Return: Image with clipped pixel intensities """ # Copyright 2017 Division of Medical Image Computing, German Cancer Research Center (DKFZ) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =================================================================================================== # Changes: Added the ability to have the function clip at only the necessary percentiles with no mask and removed the # automatic generation of a mask # finding the percentile values cut_off_lower = np.percentile(image[mask != 0].ravel(), percentile_lower) cut_off_upper = np.percentile(image[mask != 0].ravel(), percentile_upper) # clipping based on percentiles res = np.copy(image) if mask is not None: res[(res < cut_off_lower) & (mask !=0)] = cut_off_lower res[(res > cut_off_upper) & (mask !=0)] = cut_off_upper elif mask is None: res[(res < cut_off_lower)] = cut_off_lower res[(res > cut_off_upper)] = cut_off_upper return res
39.037736
121
0.656597
557
4,138
4.764811
0.321364
0.047476
0.027129
0.025622
0.283723
0.229842
0.214017
0.186134
0.165034
0.125094
0
0.016703
0.233204
4,138
105
122
39.409524
0.819729
0.556307
0
0.060606
0
0
0.036923
0
0
0
0
0
0
1
0.151515
false
0
0.030303
0
0.424242
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f27c23356c06fcdc25ca581c0cf5398df4251dbf
8,654
py
Python
source/notebooks/sagemaker_predictive_maintenance/autoencoder_entry_point/autoencoder_entry_point.py
brightsparc/predictive-maintenance-using-machine-learning
fae69698750185bb58a3fa67ff8887f435f46458
[ "Apache-2.0" ]
null
null
null
source/notebooks/sagemaker_predictive_maintenance/autoencoder_entry_point/autoencoder_entry_point.py
brightsparc/predictive-maintenance-using-machine-learning
fae69698750185bb58a3fa67ff8887f435f46458
[ "Apache-2.0" ]
null
null
null
source/notebooks/sagemaker_predictive_maintenance/autoencoder_entry_point/autoencoder_entry_point.py
brightsparc/predictive-maintenance-using-machine-learning
fae69698750185bb58a3fa67ff8887f435f46458
[ "Apache-2.0" ]
null
null
null
# Autoencoder based on: https://towardsdatascience.com/predictive-maintenance-of-turbofan-engine-64911e39c367 import argparse import pandas as pd import numpy as np import itertools import logging import random import os from scipy.spatial.distance import pdist, squareform from sklearn.metrics import confusion_matrix, classification_report from sklearn.preprocessing import MinMaxScaler, StandardScaler import tensorflow as tf from tensorflow.keras.models import * from tensorflow.keras.layers import * from tensorflow.keras.optimizers import * from tensorflow.keras.utils import * from tensorflow.keras.callbacks import * def get_logger(name): logger = logging.getLogger(name) log_format = '%(asctime)s %(levelname)s %(name)s: %(message)s' logging.basicConfig(format=log_format, level=logging.INFO) return logger def parse_args(): parser = argparse.ArgumentParser() # model_dir is always passed in from SageMaker. By default this is a S3 path under the default bucket. parser.add_argument('--model_dir', type=str) parser.add_argument('--sm-model-dir', type=str, default=os.environ.get('SM_MODEL_DIR')) parser.add_argument('--training_dir', type=str, default=os.environ['SM_CHANNEL_TRAIN']) parser.add_argument('--num_datasets', type=int, default=1) parser.add_argument('--batch_size', type=int, default=512) parser.add_argument('--epochs', type=int, default=25) parser.add_argument('--sequence_length', type=int, default=50) # AE parser.add_argument('--validation_split', type=float, default=0.2) # AE parser.add_argument('--patience', type=int, default=6) # AE return parser.parse_args() def read_train_data(training_dir, num_datasets): train_dfs = [pd.read_csv(os.path.join(training_dir, 'train-{}.csv'.format(i))) for i in range(num_datasets)] return train_dfs def read_test_data(training_dir, num_datasets): test_dfs = [pd.read_csv(os.path.join(training_dir, 'test-{}.csv'.format(i))) for i in range(num_datasets)] return test_dfs def gen_sequence(id_df, seq_length, seq_cols): data_matrix = id_df[seq_cols].values num_elements = data_matrix.shape[0] # Iterate over two lists in parallel. # For example id1 have 192 rows and sequence_length is equal to 50 # so zip iterate over two following list of numbers (0,142),(50,192) # 0 50 (start stop) -> from row 0 to row 50 # 1 51 (start stop) -> from row 1 to row 51 # 2 52 (start stop) -> from row 2 to row 52 # ... # 141 191 (start stop) -> from row 141 to 191 for start, stop in zip(range(0, num_elements-seq_length), range(seq_length, num_elements)): yield data_matrix[start:stop, :] def gen_labels(id_df, seq_length, label): data_matrix = id_df[label].values num_elements = data_matrix.shape[0] # I have to remove the first seq_length labels # because for one id the first sequence of seq_length size have as target # the last label (the previus ones are discarded). # All the next id's sequences will have associated step by step one label as target. return data_matrix[seq_length:num_elements, :] def rec_plot(s, eps=0.10, steps=10): d = pdist(s[:,None]) d = np.floor(d/eps) d[d>steps] = steps Z = squareform(d) return Z def get_dataset(train_df, test_df, sequence_length): # NOTE: Skipping processing besides labels which are included in this page # see: https://github.com/awslabs/predictive-maintenance-using-machine-learning/blob/master/source/notebooks/sagemaker_predictive_maintenance/preprocess.py ### ADD NEW LABEL TRAIN ### w1 = 45 w0 = 15 train_df['label1'] = np.where(train_df['RUL'] <= w1, 1, 0 ) train_df['label2'] = train_df['label1'] train_df.loc[train_df['RUL'] <= w0, 'label2'] = 2 ### ADD NEW LABEL TEST ### test_df['label1'] = np.where(test_df['RUL'] <= w1, 1, 0 ) test_df['label2'] = test_df['label1'] test_df.loc[test_df['RUL'] <= w0, 'label2'] = 2 ### DROP NA DATA ### train_df = train_df.dropna(axis=1) test_df = test_df.dropna(axis=1) ### SEQUENCE COL: COLUMNS TO CONSIDER ### sequence_cols = [] for col in train_df.columns: if col[0] == 's': sequence_cols.append(col) #sequence_cols.append('cycle_norm') logging.info('Sequence Cols: {}'.format(sequence_cols)) ### GENERATE X TRAIN TEST ### x_train, x_test = [], [] for engine_id in train_df.id.unique(): for sequence in gen_sequence(train_df[train_df.id==engine_id], sequence_length, sequence_cols): x_train.append(sequence) for sequence in gen_sequence(test_df[test_df.id==engine_id], sequence_length, sequence_cols): x_test.append(sequence) x_train = np.asarray(x_train) x_test = np.asarray(x_test) logging.info("X_Train shape: {}".format(x_train.shape)) logging.info("X_Test shape: {}".format(x_test.shape)) ### GENERATE Y TRAIN TEST ### y_train, y_test = [], [] for engine_id in train_df.id.unique(): for label in gen_labels(train_df[train_df.id==engine_id], sequence_length, ['label2'] ): y_train.append(label) for label in gen_labels(test_df[test_df.id==engine_id], sequence_length, ['label2']): y_test.append(label) y_train = np.asarray(y_train).reshape(-1,1) y_test = np.asarray(y_test).reshape(-1,1) ### ENCODE LABEL ### y_train = to_categorical(y_train) y_test = to_categorical(y_test) logging.info("y_train shape: {}".format(y_train.shape)) logging.info("y_test shape: {}".format(y_test.shape)) ### TRANSFORM X TRAIN TEST IN IMAGES ### x_train_img = np.apply_along_axis(rec_plot, 1, x_train).astype('float16') logging.info("x_train_image shape: {}".format(x_train_img.shape)) x_test_img = np.apply_along_axis(rec_plot, 1, x_test).astype('float16') logging.info("x_test_image shape: {}".format(x_test_img.shape)) return x_train_img, y_train, x_test_img, y_test def fit_model(x_train_img, y_train, batch_size=512, epochs=25, validation_split=0.2, patience=6): input_shape = x_train_img.shape[1:] logging.info("Input shape: {}".format(input_shape)) model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) logging.info(model.summary()) ### FIT ### tf.random.set_seed(33) np.random.seed(33) random.seed(33) session_conf = tf.compat.v1.ConfigProto( intra_op_parallelism_threads=1, inter_op_parallelism_threads=1 ) sess = tf.compat.v1.Session( graph=tf.compat.v1.get_default_graph(), config=session_conf ) tf.compat.v1.keras.backend.set_session(sess) es = EarlyStopping(monitor='val_accuracy', mode='auto', restore_best_weights=True, verbose=1, patience=patience) model.fit(x_train_img, y_train, batch_size=batch_size, epochs=epochs, callbacks=[es], validation_split=validation_split, verbose=2) ### EVAL ### logging.info('Evaluate: {}'.format(model.evaluate(x_test_img, y_test, verbose=2))) logging.info(classification_report(np.where(y_test != 0)[1], model.predict_classes(x_test_img))) return model if __name__ == '__main__': logging = get_logger(__name__) logging.info('numpy version:{} Tensorflow version::{}'.format(np.__version__, tf.__version__)) args = parse_args() # Read the first dataset train_df = read_train_data(args.training_dir, args.num_datasets)[0] test_df = read_test_data(args.training_dir, args.num_datasets)[0] # Get the training dataset as an image x_train_img, y_train, x_test_img, y_test = get_dataset(train_df, test_df, args.sequence_length) model = fit_model(x_train_img, y_train, batch_size=args.batch_size, epochs=args.epochs, validation_split=args.validation_split, patience=args.patience) logging.info('saving model to: {}...'.format(args.model_dir)) model.save(os.path.join(args.sm_model_dir, '000000001'))
39.336364
159
0.686388
1,281
8,654
4.417642
0.234192
0.022265
0.027037
0.008835
0.238381
0.188373
0.171055
0.155151
0.131825
0.06821
0
0.026646
0.180379
8,654
220
160
39.336364
0.771183
0.152993
0
0.068027
0
0
0.084851
0.003311
0
0
0
0
0
1
0.061224
false
0
0.108844
0
0.22449
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f27c2659a6f08c68bf5a68b6f0434f1302972e63
437
py
Python
util/dump_cmudict_json.py
raygard/readability-rg
3e0820ee5def6ffccfdc1114e511bdf137ff9b04
[ "MIT" ]
null
null
null
util/dump_cmudict_json.py
raygard/readability-rg
3e0820ee5def6ffccfdc1114e511bdf137ff9b04
[ "MIT" ]
null
null
null
util/dump_cmudict_json.py
raygard/readability-rg
3e0820ee5def6ffccfdc1114e511bdf137ff9b04
[ "MIT" ]
null
null
null
#! /usr/bin/env python # vim: set fileencoding=utf-8 import sys import json def main(): args = sys.argv[1:] fn = args[0] with open(fn) as fp: d = json.load(fp) # Using sorted() to get same results in Python 2 and 3. for k, v in sorted(d.items()): assert isinstance(v, list) assert 0 < len(v) < 4 # print(k, v) print('%-40s %s' % (k, ' '.join('%d' % n for n in v))) main()
19.863636
62
0.533181
73
437
3.191781
0.671233
0.017167
0
0
0
0
0
0
0
0
0
0.029605
0.304348
437
21
63
20.809524
0.736842
0.263158
0
0
0
0
0.034591
0
0
0
0
0
0.166667
1
0.083333
false
0
0.166667
0
0.25
0.083333
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f27e5faf956aa7b884e2d5afa37ca81bb25dcb92
1,328
py
Python
src/EvalShift.py
nekonyanneko/GA
328f37c421a8bd4857a0804b130c23bd7b98de19
[ "MIT" ]
null
null
null
src/EvalShift.py
nekonyanneko/GA
328f37c421a8bd4857a0804b130c23bd7b98de19
[ "MIT" ]
null
null
null
src/EvalShift.py
nekonyanneko/GA
328f37c421a8bd4857a0804b130c23bd7b98de19
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import Shift as shi import Enum as enu def evalShift(individual): """ This method is grobal method. This method is evaluation. If you need new evaluation method, you must define it as follows. RETURN: evaluation values """ shift = shi.Shift(individual) # Get indiviaual of shift shift.employees = enu.EMPLOYEES # Get employees list # 想定人数とアサイン人数の差 people_count_sub_sum = sum(shift.abs_people_between_need_and_actual()) / enu.EVA_1 # 応募していない時間帯へのアサイン数 not_applicated_count = shift.not_applicated_assign() / enu.EVA_2 # アサイン数が応募数の半分以下の従業員数 few_work_user = len(shift.few_work_user()) / enu.EVA_3 # 管理者が1人もいないコマ数 no_manager_box = len(shift.no_manager_box()) / enu.EVA_4 # a,bの全部にアサインされている three_box_per_day = len(shift.three_box_per_day()) / enu.EVA_5 # 出勤日数(出勤日数は人によって異なるためget_work_day_num()の中で計算済み) work_day = shift.get_work_day_num() return ( not_applicated_count, people_count_sub_sum, few_work_user, no_manager_box, three_box_per_day, work_day[0], work_day[1], work_day[2], work_day[3], work_day[4], work_day[5], work_day[6], work_day[7], work_day[8], work_day[9], work_day[10] )
24.145455
83
0.652108
183
1,328
4.398907
0.404372
0.121739
0.040994
0.052174
0
0
0
0
0
0
0
0.019192
0.254518
1,328
54
84
24.592593
0.793939
0.267319
0
0
0
0
0
0
0
0
0
0
0
1
0.034483
false
0
0.068966
0
0.137931
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f280852bfea33f9eda7c3cbe87f494f3dbe4c0a3
238
py
Python
Bot.py
pythonNoobas/Python228
7c266acad5bb5ae45df10ac3fdea209831399729
[ "MIT" ]
null
null
null
Bot.py
pythonNoobas/Python228
7c266acad5bb5ae45df10ac3fdea209831399729
[ "MIT" ]
null
null
null
Bot.py
pythonNoobas/Python228
7c266acad5bb5ae45df10ac3fdea209831399729
[ "MIT" ]
null
null
null
import telebot bot = telebot.TeleBot("879497357:AAHxUAZR2ZMy7q1dsC12NoFOmvBnKo9a3FA") @bot.message_handler(content_types=['text']) def echo_all(message): bot.send_message(message.chat.id, message.text) bot.polling( none_stop = True )
23.8
70
0.794118
30
238
6.133333
0.666667
0
0
0
0
0
0
0
0
0
0
0.073059
0.079832
238
10
71
23.8
0.767123
0
0
0
0
0
0.205021
0.188285
0
0
0
0
0
1
0.166667
false
0
0.166667
0
0.333333
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2808bb95000137789190b399e2a920a24f1f97a
2,980
py
Python
generator/address.py
leg020/python-training
f595b8b836ff60c68bdff9d881ca50c026762457
[ "Apache-2.0" ]
null
null
null
generator/address.py
leg020/python-training
f595b8b836ff60c68bdff9d881ca50c026762457
[ "Apache-2.0" ]
null
null
null
generator/address.py
leg020/python-training
f595b8b836ff60c68bdff9d881ca50c026762457
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from model.address import Address import random import string import os.path import json import getopt import sys import jsonpickle try: opts, args = getopt.getopt(sys.argv[1:], 'n:f:', ['number of address', 'file']) except getopt.GetoptError as err: getopt.usage() sys.exit(2) n = 5 f = 'data/address.json' for o, a in opts: if o == '-n': n = int(a) elif o == '-f': f = a def random_string(prefix, maxlen): symbols = string.ascii_letters + string.digits + string.punctuation + " "*10 return prefix + "".join([random.choice(symbols) for i in range(random.randrange(maxlen))]) testdata = [Address(firstname="", middlename="", lastname="", nickname="", photo="", title="", company="", address_home="", home="", mobile="", work="", fax="", email="", email2="", email3="", homepage="", bday="", bmonth="-", byear="", aday="", amonth="-", ayear="", address2="", phone2="", notes="")] + \ [Address(firstname=random_string("firstname", 10), middlename=random_string('middlename', 10), lastname=random_string('lastname', 10), nickname=random_string('nickname', 10), photo="C:\\fakepath\\title.gif", title=random_string('title', 10), company=random_string('company', 10), address_home=random_string('address_home', 10), home=random_string('8', 10), mobile=random_string('8', 10), work=random_string('8', 10), fax=random_string('8', 10), email=random_string('8', 10), email2=random_string('8', 10), email3=random_string('8', 10), homepage=random_string('8', 10), bday=str(random.randrange(1, 32)), bmonth="September", byear=random_string('8', 10), aday=str(random.randrange(1, 32)), amonth="May", ayear=random_string('8', 10), address2=random_string('8', 10), phone2=random_string('8', 10), notes=random_string('8', 10)) for i in range(n)] file = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', f) with open(file, 'w') as out: jsonpickle.set_encoder_options('json', indent=2) out.write(jsonpickle.encode(testdata))
33.483146
94
0.451342
283
2,980
4.64311
0.353357
0.191781
0.128615
0.148402
0.031963
0
0
0
0
0
0
0.041903
0.407383
2,980
89
95
33.483146
0.702152
0.007047
0
0
0
0
0.055105
0.007776
0
0
0
0
0
1
0.012821
false
0
0.102564
0
0.128205
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f283d91585cbb97de4ca77780a488265da69f263
613
py
Python
scripts/test.py
darkmatter2222/Agar.AI
a757544581239a7b4c2b00bb7befa9b649d73f7f
[ "MIT" ]
1
2020-01-02T13:49:51.000Z
2020-01-02T13:49:51.000Z
scripts/test.py
darkmatter2222/Agar.AI
a757544581239a7b4c2b00bb7befa9b649d73f7f
[ "MIT" ]
null
null
null
scripts/test.py
darkmatter2222/Agar.AI
a757544581239a7b4c2b00bb7befa9b649d73f7f
[ "MIT" ]
1
2020-01-24T19:17:38.000Z
2020-01-24T19:17:38.000Z
import scripts.screen_interface as si import scripts.game_interface as gi import ctypes import os import keyboard import uuid GI = gi.GameInterface() # find center of screen user32 = ctypes.windll.user32 screenSize = user32.GetSystemMetrics(0), user32.GetSystemMetrics(1) centerPoint = tuple(i/2 for i in screenSize) print('Screen Size X:%d y:%d' % screenSize) print('Targeting Center X:%d y:%d' % centerPoint) GI = gi.GameInterface() SI = si.ScreenInterface() GI.center_x = centerPoint[0] GI.center_y = centerPoint[1] GI.range_classifications = 10 while True: angle = GI.get_mouse_class() print(angle)
25.541667
67
0.761827
91
613
5.054945
0.483516
0.056522
0.073913
0.017391
0
0
0
0
0
0
0
0.028195
0.132137
613
24
68
25.541667
0.836466
0.034258
0
0.1
0
0
0.079526
0
0
0
0
0
0
1
0
false
0
0.3
0
0.3
0.15
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f284677f3d515ed6519b9b9782d95ab9e355ded5
4,052
py
Python
Controller/control/WorkerControl.py
th-nuernberg/ml-cloud
6d7527cbf6cceb7062e74dbc43d51998381aa6c8
[ "MIT" ]
null
null
null
Controller/control/WorkerControl.py
th-nuernberg/ml-cloud
6d7527cbf6cceb7062e74dbc43d51998381aa6c8
[ "MIT" ]
7
2020-07-19T03:29:21.000Z
2022-03-02T06:46:12.000Z
Controller/control/WorkerControl.py
th-nuernberg/ml-cloud
6d7527cbf6cceb7062e74dbc43d51998381aa6c8
[ "MIT" ]
null
null
null
import json import queue from control.WorkerQueue import WorkerQueue as WQ from data.StorageIO import StorageIO ''' The WorkerControl coordinates workers and assigns jobs. Worker register themself at startup. The controller queues workers as well as jobs in two seperate queues. As soon as a worker and a job are available, they are taken from the queues and the job_id is send to the worker via MQTT. After the worker finishes its job, it will be put back into the queue ''' class WorkerControl: config_queue = queue.Queue(-1) # infinite size COMMAND_START = "start" COMMAND_STOP = "stop" commandIO = None storageIO: StorageIO = None worker_list = {} # "worker_id" : "job_id" worker_job_mapping = {} worker_queue = WQ() def get_worker_info(self): return self.worker_list # Function called by external Thread !!! def busy_changed_callback(self, worker_id, busy_message): try: if len(busy_message) == 0: print("Worker LOST: " + worker_id) self.worker_queue.remove_worker(worker_id) self.worker_list.pop(worker_id, None) if not worker_id in self.worker_job_mapping: print("Unknown worker reported busy change! This should not happen") else: self.update_status(worker_id, "lost") else: message = json.loads(busy_message) is_busy = message["busy"] # either False or the job_id self.worker_list[worker_id] = is_busy if is_busy == False: if "job_id" in message: self.update_status(worker_id, message["status"]) if worker_id in self.worker_job_mapping: del self.worker_job_mapping[worker_id] self.worker_queue.add_to_queue(worker_id) else: job_id = message["job_id"] self.worker_queue.remove_worker(worker_id) self.worker_job_mapping[worker_id] = job_id self.update_status(worker_id, message["status"]) print("Worker is busy: " + worker_id) except Exception as e: print("An error occurred in MQTT callback: " + str(e)) def update_status(self, worker_id: str, status: str): if not worker_id in self.worker_job_mapping: print("ERROR. Tried to set status for unset worker!") else: self.storageIO.update_job_status(self.worker_job_mapping[worker_id], status) def __init__(self, commandIO, storageIO: StorageIO): self.commandIO = commandIO self.storageIO = storageIO self.commandIO.on_busy_changed(self.busy_changed_callback) def modify_job_state(self, job_list, command: str): for job in job_list: config = {"job_id": job} if command == self.COMMAND_START: self.create_new_job(config) else: pass # Function called by external Thread !!! def create_new_job(self, job_config: dict): try: print("-> Job ready (ID=" + job_config["job_id"] + ")") self.config_queue.put(job_config, timeout=1) except: return False return True def run(self): while (True): jsonConfig = self.config_queue.get() job_id = jsonConfig["job_id"] print("<- Job selected (ID=" + job_id + ")") ready_worker = self.worker_queue.get_next_worker() print("Starting new job (id: " + job_id + ")") self.commandIO.start_new_job(ready_worker, json.dumps(jsonConfig)) if ready_worker in self.worker_job_mapping: print("Removing orphaned job from worker job mapping") del self.worker_job_mapping[ready_worker] self.worker_job_mapping[ready_worker] = job_id self.update_status(ready_worker, "assigned")
38.226415
112
0.607601
505
4,052
4.641584
0.261386
0.064846
0.075085
0.076792
0.255973
0.225683
0.145051
0.107509
0.074232
0.074232
0
0.001073
0.30997
4,052
105
113
38.590476
0.837268
0.034798
0
0.164557
0
0
0.096583
0
0
0
0
0
0
1
0.088608
false
0.012658
0.050633
0.012658
0.291139
0.113924
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f28467f33870630c6d980108ee2deecf6e265916
986
py
Python
spammer/groupdmspam.py
00-00-00-11/Raid-Toolbox
4d24841de5ef112dc15b858f62607e0d6b5277cd
[ "0BSD" ]
null
null
null
spammer/groupdmspam.py
00-00-00-11/Raid-Toolbox
4d24841de5ef112dc15b858f62607e0d6b5277cd
[ "0BSD" ]
null
null
null
spammer/groupdmspam.py
00-00-00-11/Raid-Toolbox
4d24841de5ef112dc15b858f62607e0d6b5277cd
[ "0BSD" ]
1
2021-05-15T11:32:24.000Z
2021-05-15T11:32:24.000Z
import discord import sys import random import aiohttp import logging token = sys.argv[1] group = sys.argv[2] tokenno = sys.argv[3] msgtxt = sys.argv[4] useproxies = sys.argv[5] logging.basicConfig(filename='RTB.log', filemode='w', format='Token {}'.format(str(tokenno))+' - %(levelname)s - %(message)s',level=logging.CRITICAL) if useproxies == 'True': proxy_list = open("proxies.txt").read().splitlines() proxy = random.choice(proxy_list) con = aiohttp.ProxyConnector(proxy="http://"+proxy) client = discord.Client(connector=con) else: client = discord.Client() @client.event async def on_ready(): groupdm = client.get_channel(int(group)) while not client.is_closed(): try: await groupdm.send(msgtxt) except Exception: pass try: client.run(token, bot=False) except Exception as c: logging.critical('Token {} Unable to login: {}'.format(str(tokenno),str(c))) print (c)
28.171429
150
0.649087
127
986
5
0.582677
0.055118
0.050394
0
0
0
0
0
0
0
0
0.006369
0.203854
986
34
151
29
0.802548
0
0
0.064516
0
0
0.10084
0
0
0
0
0
0
1
0
false
0.032258
0.16129
0
0.16129
0.032258
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f28613b99f347cb3a0fc049c18db1898247d805e
522
py
Python
t2t_bert/distributed_encoder/gpt_encoder.py
yyht/bert
480c909e0835a455606e829310ff949c9dd23549
[ "Apache-2.0" ]
34
2018-12-19T01:00:57.000Z
2021-03-26T09:36:37.000Z
t2t_bert/distributed_encoder/gpt_encoder.py
yyht/bert
480c909e0835a455606e829310ff949c9dd23549
[ "Apache-2.0" ]
11
2018-12-25T03:37:59.000Z
2021-08-25T14:43:58.000Z
t2t_bert/distributed_encoder/gpt_encoder.py
yyht/bert
480c909e0835a455606e829310ff949c9dd23549
[ "Apache-2.0" ]
9
2018-12-27T08:00:44.000Z
2020-06-08T03:05:14.000Z
from model.gpt import gpt import tensorflow as tf import numpy as np def gpt_encoder(model_config, features, labels, mode, target, reuse=tf.AUTO_REUSE): input_ids = features["input_ids"] past = features.get('past', None) model = gpt.GPT(model_config) if model_config.get("scope", None): scope = model_config['scope'] else: scope = 'model' model_config['scope'] = scope model.build_model(hparams=model_config, X=input_ids, past=past, scope=scope, reuse=reuse) return model
20.88
48
0.695402
75
522
4.68
0.4
0.188034
0.068376
0
0
0
0
0
0
0
0
0
0.189655
522
24
49
21.75
0.829787
0
0
0
0
0
0.06334
0
0
0
0
0
0
1
0.052632
false
0
0.157895
0
0.263158
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f28ae939117634bfbb4da17376ebc5f47320b58f
879
py
Python
quick_sort.py
MichaelLenghel/Sorting-Algorithms
b0aba03a7e5d95b4ca4038e8b53a9d544adeefb1
[ "MIT" ]
null
null
null
quick_sort.py
MichaelLenghel/Sorting-Algorithms
b0aba03a7e5d95b4ca4038e8b53a9d544adeefb1
[ "MIT" ]
null
null
null
quick_sort.py
MichaelLenghel/Sorting-Algorithms
b0aba03a7e5d95b4ca4038e8b53a9d544adeefb1
[ "MIT" ]
null
null
null
def partition(a, start, end): pivot = a[start] left = start + 1 right = end met = False # Iterate until i reaches j in the middle while not met: while left <= right and a[left] <= pivot: left = left + 1 while right >= left and a[right] >= pivot: right = right - 1 if left >= right: met = True else: a[left], a[right] = a[right], a[left] # Swap pivot with the position of j a[start], a[right] = a[right], a[start] return right def quick_sort(li, l, r): if l < r: split = partition(li, l, r) quick_sort(li, l, split - 1) quick_sort(li, split + 1, r) if __name__ == '__main__': li = [65, 72, 23, 36, 99, 20, 1, 44] # [8, 2, 5, 13, 4, 19, 12, 6, 3, 11, 10, 7, 9] print("Unsorted list: ", li) quick_sort(li, 0, len(li) - 1) print("Sorted list: ", li)
22.538462
49
0.531286
143
879
3.181818
0.447552
0.065934
0.061538
0.052747
0.057143
0
0
0
0
0
0
0.06689
0.319681
879
39
50
22.538462
0.69398
0.134243
0
0
0
0
0.05
0
0
0
0
0
0
1
0.076923
false
0
0
0
0.115385
0.076923
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f28b677805cf2bdfc02ec0d719ce0fad31f82786
5,787
py
Python
astacus/coordinator/plugins/clickhouse/parts.py
aiven/astacus
2d64e1f33e01d50a41127f41d9da3d1ab0ce0387
[ "Apache-2.0" ]
19
2020-06-22T12:17:59.000Z
2022-02-18T00:12:17.000Z
astacus/coordinator/plugins/clickhouse/parts.py
aiven/astacus
2d64e1f33e01d50a41127f41d9da3d1ab0ce0387
[ "Apache-2.0" ]
7
2020-06-24T05:16:20.000Z
2022-02-28T07:35:31.000Z
astacus/coordinator/plugins/clickhouse/parts.py
aiven/astacus
2d64e1f33e01d50a41127f41d9da3d1ab0ce0387
[ "Apache-2.0" ]
2
2020-09-05T21:23:08.000Z
2022-02-17T15:02:37.000Z
""" Copyright (c) 2021 Aiven Ltd See LICENSE for details Algorithms to help with redistributing parts across servers for tables using the Replicated family of table engines. This does not support shards, but this is the right place to add support for them. """ from astacus.common.ipc import SnapshotFile from astacus.coordinator.plugins.clickhouse.escaping import escape_for_file_name from pathlib import Path from typing import Dict, Iterable, List, Optional, Set, Tuple import dataclasses import re import uuid @dataclasses.dataclass class PartFile: snapshot_file: SnapshotFile servers: Set[int] @dataclasses.dataclass class Part: files: Dict[Path, PartFile] total_size: int @dataclasses.dataclass(frozen=True) class PartKey: table_uuid: uuid.UUID part_name: str def group_files_into_parts(snapshot_files: List[List[SnapshotFile]], table_uuids: Set[uuid.UUID]) -> Tuple[List[Part], List[List[SnapshotFile]]]: """ Regroup all files that form a MergeTree table parts together in a `Part`. Only parts from the provided list of `table_uuids` are regrouped. Returns the list of `Part` and a separate list of list of `SnapshotFile` that were not selected to make a `Part`. The input and output list of lists will have the same length: the number of server in the cluster (the first list is for the first server, etc.) """ other_files: List[List[SnapshotFile]] = [[] for _ in snapshot_files] keyed_parts: Dict[PartKey, Part] = {} for server_index, server_files in enumerate(snapshot_files): for snapshot_file in server_files: if not add_file_to_parts(snapshot_file, server_index, table_uuids, keyed_parts): other_files[server_index].append(snapshot_file) return list(keyed_parts.values()), other_files def add_file_to_parts( snapshot_file: SnapshotFile, server_index: int, table_uuids: Set[uuid.UUID], parts: Dict[PartKey, Part] ) -> bool: """ If the `snapshot_file` is a file from a part of one of the tables listed in `table_uuids`, add it to the corresponding Part in `parts`. A file is from a part if its path starts with "store/3_first_char_of_table_uuid/table_uuid/detached/part_name". If a file already exists in a part, the `server_index` is added to the `server` set of the `PartFile` for that file. Raises a `ValueError` if a different file with the same name already exists in a part: a `PartFile` must be the identical on all servers where it is present. Returns `True` if and only if the file was added to a `Part`. """ path_parts = snapshot_file.relative_path.parts has_enough_depth = len(path_parts) >= 6 if not has_enough_depth: return False has_store_and_detached = path_parts[0] == "store" and path_parts[3] == "detached" has_uuid_prefix = path_parts[1] == path_parts[2][:3] has_valid_uuid = re.match(r"^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$", path_parts[2]) if not (has_store_and_detached and has_uuid_prefix and has_valid_uuid): return False table_uuid = uuid.UUID(path_parts[2]) if table_uuid not in table_uuids: return False part_key = PartKey(table_uuid=table_uuid, part_name=path_parts[4]) part = parts.setdefault(part_key, Part(files={}, total_size=0)) part_file = part.files.get(snapshot_file.relative_path) if part_file is None: part.files[snapshot_file.relative_path] = PartFile(snapshot_file=snapshot_file, servers={server_index}) part.total_size += snapshot_file.file_size elif part_file.snapshot_file.equals_excluding_mtime(snapshot_file): part_file.servers.add(server_index) else: raise ValueError( f"Inconsistent part file {snapshot_file.relative_path} of part {part_key} " f"between servers {part_file.servers} and server {server_index}:\n" f" {part_file.snapshot_file}\n" f" {snapshot_file}" ) return True def check_parts_replication(parts: Iterable[Part]): """ Checks that within a single part, all files are present on the same set of servers. """ for part in parts: part_servers: Optional[Set[int]] = None for file_path, file in part.files.items(): if part_servers is None: part_servers = file.servers elif part_servers != file.servers: raise ValueError( f"Inconsistent part, not all files are identically replicated: " f"some files are on servers {part_servers} while {file_path} is on servers {file.servers}" ) def distribute_parts_to_servers(parts: List[Part], server_files: List[List[SnapshotFile]]): """ Distributes each part to only one of the multiple servers where the part was during the backup. Parts are distributed to each server such as the total download size for each server is roughly equal (using a greedy algorithm). """ total_file_sizes = [0 for _ in server_files] for part in sorted(parts, key=lambda p: p.total_size, reverse=True): server_index = None for file in part.files.values(): if server_index is None: server_index = min(file.servers, key=total_file_sizes.__getitem__) total_file_sizes[server_index] += file.snapshot_file.file_size server_files[server_index].append(file.snapshot_file) def get_frozen_parts_pattern(freeze_name: str) -> str: """ Returns the glob pattern inside ClickHouse data dir where frozen table parts are stored. """ escaped_freeze_name = escape_for_file_name(freeze_name) return f"shadow/{escaped_freeze_name}/store/**/*"
39.101351
111
0.697598
850
5,787
4.558824
0.248235
0.058839
0.024774
0.024774
0.056
0.018323
0.004903
0.004903
0.004903
0.004903
0
0.007061
0.216865
5,787
147
112
39.367347
0.84797
0.284258
0
0.085366
0
0.012195
0.11214
0.039299
0
0
0
0
0
1
0.060976
false
0
0.085366
0
0.329268
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f28ccbdb8a0ea7d42a8a232e4a98e01aac77cc9d
1,301
py
Python
tests/test_init.py
mds2/Rocket
53313677768159d13e6c2b7c69ad69ca59bb8c79
[ "MIT" ]
16
2015-12-16T10:50:42.000Z
2020-06-04T10:39:20.000Z
tests/test_init.py
mds2/Rocket
53313677768159d13e6c2b7c69ad69ca59bb8c79
[ "MIT" ]
6
2017-11-01T14:51:52.000Z
2019-01-01T22:12:27.000Z
tests/test_init.py
mds2/Rocket
53313677768159d13e6c2b7c69ad69ca59bb8c79
[ "MIT" ]
13
2016-04-22T20:14:39.000Z
2021-12-21T22:52:02.000Z
# -*- coding: utf-8 -*- # This file is part of the Rocket Web Server # Copyright (c) 2012 Timothy Farrell # # See the included LICENSE.txt file for licensing details. # Import System Modules import sys import unittest # Import Custom Modules import rocket # Define Constants PY3K = sys.version_info[0] > 2 # Define Tests class RocketInitTest(unittest.TestCase): def testMembers(self): members = ["VERSION", "SERVER_NAME", "SERVER_SOFTWARE", "HTTP_SERVER_SOFTWARE", "BUF_SIZE", "IS_JYTHON", "IGNORE_ERRORS_ON_CLOSE", "DEFAULT_LISTEN_QUEUE_SIZE", "DEFAULT_MIN_THREADS", "DEFAULT_MAX_THREADS", "DEFAULTS", "PY3K", "u", "b", "Rocket", "CherryPyWSGIServer"] for m in members: self.assertTrue(hasattr(rocket, m), msg="rocket module does not have %s" % m) def testUnicode(self): if PY3K: self.skipTest("Not a valid test in Python 3") self.assertEqual(rocket.u('abc'), eval("u'abc'")) self.assertEqual(type(rocket.u('abc')), type(eval("u'abc'"))) def testBytes(self): if PY3K: self.skipTest("Not a valid test in Python 3") self.assertEqual(rocket.b('abc'), 'abc') self.assertEqual(type(rocket.b('abc')), type('abc')) if __name__ == '__main__': unittest.main()
32.525
275
0.647963
170
1,301
4.811765
0.523529
0.07335
0.02445
0.03423
0.227384
0.158924
0.158924
0.158924
0.158924
0.158924
0
0.012683
0.212145
1,301
39
276
33.358974
0.785366
0.176787
0
0.181818
0
0
0.298775
0.044298
0
0
0
0
0.227273
1
0.136364
false
0
0.136364
0
0.318182
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2925fa462ff21785df92756f554dc30e7733df7
1,450
py
Python
app/cipher_caesar.py
igorsilva3/cipher-of-caesar
2024dae7eb795f273785e9622d9e20a49cea089d
[ "MIT" ]
2
2020-09-30T00:04:59.000Z
2020-10-02T14:33:56.000Z
app/cipher_caesar.py
igorsilva3/cipher-of-caesar
2024dae7eb795f273785e9622d9e20a49cea089d
[ "MIT" ]
null
null
null
app/cipher_caesar.py
igorsilva3/cipher-of-caesar
2024dae7eb795f273785e9622d9e20a49cea089d
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import string class Caesar(object): def __init__(self): self.ALPHABET = string.ascii_letters def character_type(self, character): """ Returns the alphabet box """ if character.isupper(): return string.ascii_uppercase return string.ascii_lowercase def encrypt(self, text: str, key: int) -> str: """ Returns the encrypted text """ ENCRYPT_TEXT = "" for letter in text: if letter in self.ALPHABET: alphabet = self.character_type(letter) index = alphabet.index(letter) + key ENCRYPT_TEXT += alphabet[index % len(alphabet)] if letter not in self.ALPHABET: ENCRYPT_TEXT += letter return ENCRYPT_TEXT def decrypt(self, cipher: str, key: int) -> str: """ Returns the decrypted text """ DECRYPT_TEXT = "" for letter in cipher: if letter in self.ALPHABET: alphabet = self.character_type(letter) index = alphabet.index(letter) - key DECRYPT_TEXT += alphabet[index % len(alphabet)] if letter not in self.ALPHABET: DECRYPT_TEXT += letter return DECRYPT_TEXT
29
63
0.512414
142
1,450
5.105634
0.302817
0.082759
0.077241
0.033103
0.427586
0.427586
0.366897
0.366897
0.366897
0.366897
0
0.001157
0.404138
1,450
50
64
29
0.837963
0.085517
0
0.214286
0
0
0
0
0
0
0
0
0
1
0.142857
false
0
0.035714
0
0.357143
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f292e080e8bc6567932c91ed5f7d509146d3ac76
473
py
Python
programming-logic/teste.py
raulrosapacheco/python3-udemy
b84e6f82417aecd0e2a28c3fb3cb222e057a660b
[ "MIT" ]
null
null
null
programming-logic/teste.py
raulrosapacheco/python3-udemy
b84e6f82417aecd0e2a28c3fb3cb222e057a660b
[ "MIT" ]
null
null
null
programming-logic/teste.py
raulrosapacheco/python3-udemy
b84e6f82417aecd0e2a28c3fb3cb222e057a660b
[ "MIT" ]
null
null
null
""" Split: dividir string Join: juntar uma lista (str) Enumerate: enumerar elementos da lista (iteráveis) """ string ='O Brasil é o pais do futebol, o Brasil é penta.' lista_1 = string.split(' ') lista_2 = string.split(',') print(lista_1) print(lista_2) palavra = '' contagem = 0 for valor in lista_1: print(f'A palavra {valor} apareceu {lista_1.count(valor)}x na frase') qtd_vezes = lista_1.count(valor) if qtd_vezes > contagem: contagem = qtd_vezes
23.65
73
0.69556
74
473
4.310811
0.527027
0.094044
0.050157
0.100313
0
0
0
0
0
0
0
0.020672
0.181818
473
20
74
23.65
0.803618
0.213531
0
0
0
0
0.29589
0.063014
0
0
0
0
0
1
0
false
0
0
0
0
0.25
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f296278ff7fbbd618f4bc706e8d6af3757d8034e
2,547
py
Python
grizzly_cli/argparse/__init__.py
mgor/grizzly-cli
00da1a5a822baefedf61497120fd52dbb5203f12
[ "MIT" ]
null
null
null
grizzly_cli/argparse/__init__.py
mgor/grizzly-cli
00da1a5a822baefedf61497120fd52dbb5203f12
[ "MIT" ]
null
null
null
grizzly_cli/argparse/__init__.py
mgor/grizzly-cli
00da1a5a822baefedf61497120fd52dbb5203f12
[ "MIT" ]
1
2021-11-02T09:36:21.000Z
2021-11-02T09:36:21.000Z
import sys import re from typing import Any, Optional, IO, Sequence from argparse import ArgumentParser as CoreArgumentParser, Namespace, _SubParsersAction from .markdown import MarkdownFormatter, MarkdownHelpAction from .bashcompletion import BashCompletionAction, hook as bashcompletion_hook ArgumentSubParser = _SubParsersAction class ArgumentParser(CoreArgumentParser): def __init__(self, markdown_help: bool = False, bash_completion: bool = False, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.markdown_help = markdown_help self.bash_completion = bash_completion if self.markdown_help: self.add_argument('--md-help', action=MarkdownHelpAction) if self.bash_completion: self.add_argument('--bash-completion', action=BashCompletionAction) self._optionals.title = 'optional arguments' def error_no_help(self, message: str) -> None: sys.stderr.write('{}: error: {}\n'.format(self.prog, message)) sys.exit(2) def print_help(self, file: Optional[IO[str]] = None) -> None: '''Hook to make help more command line friendly, if there is markdown markers in the text. ''' if not self.markdown_help: super().print_help(file) return if self.formatter_class is not MarkdownFormatter: original_description = self.description original_actions = self._actions # code block "markers" are not really nice to have in cli help if self.description is not None: self.description = '\n'.join([line for line in self.description.split('\n') if '```' not in line]) self.description = self.description.replace('\n\n', '\n') for action in self._actions: if action.help is not None: # remove any markdown link markers action.help = re.sub(r'\[([^\]]*)\]\([^\)]*\)', r'\1', action.help) super().print_help(file) if self.formatter_class is not MarkdownFormatter: self.description = original_description self._actions = original_actions def parse_args(self, args: Optional[Sequence[str]] = None, namespace: Optional[Namespace] = None) -> Namespace: # type: ignore '''Hook to add `--bash-complete` to all parsers, if enabled for parser. ''' if self.bash_completion: bashcompletion_hook(self) return super().parse_args(args, namespace)
38.014925
131
0.645465
292
2,547
5.489726
0.335616
0.065502
0.039925
0.024953
0.07985
0.052402
0.052402
0
0
0
0
0.001046
0.249313
2,547
66
132
38.590909
0.837343
0.110718
0
0.146341
0
0
0.042629
0.009769
0
0
0
0
0
1
0.097561
false
0
0.146341
0
0.317073
0.073171
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f29854376d62be05bf8d63dd4375c7cfd29ed77c
6,192
py
Python
ipa_util/validate.py
koolspin/vipa
f5b79a6ab4ce60975ff5ee6f173b97eebaf99b14
[ "MIT" ]
null
null
null
ipa_util/validate.py
koolspin/vipa
f5b79a6ab4ce60975ff5ee6f173b97eebaf99b14
[ "MIT" ]
null
null
null
ipa_util/validate.py
koolspin/vipa
f5b79a6ab4ce60975ff5ee6f173b97eebaf99b14
[ "MIT" ]
null
null
null
import plistlib from pathlib import Path from datetime import datetime, timezone, timedelta class Validate: """ Validate an unpacked .ipa file in various ways The following rules are enforced. All are treated as errors, except as noted: req-001: The root must contain a sub-directory called 'Payload' req-002: Payload must contain a single .app sub-directory req-003: The .app root must contain an Info.plist file req-004: The application-identifier prefix from the provisioning profile Entitlements section must match one of the values in the ApplicationIdentifierPrefix array req-005: WARNING: Should warn if the provisioning profile has expired req-006: The app id from the Entitlements section must match the app id from Info.plist, taking wildcards into account. req-007: Executable files should be in the correct format for iOS devices (armv7, armv7s, arm64, etc) """ def __init__(self, dest_path) -> None: """ __init__ :param dest_path: The path to the unpacked .ipa file (location of the Payload folder) """ super().__init__() self._root_path = Path(dest_path) self._payload_path = None self._app_dir = None self._plist_file = None self._bundle_id = None self._executable_file = None @property def app_dir(self): return self._app_dir @property def executable_name(self): return self._executable_file @property def executable_path(self): return self._app_dir / self._executable_file def validate_structure(self): """ Validates the basic structure of an .ipa file :return: """ # req-001 self._payload_path = self._root_path / 'Payload' if not self._payload_path.is_dir(): raise Exception("Root Payload path not found") # req-002 app_dirs = sorted(self._payload_path.glob('*.app')) if len(app_dirs) == 0: raise Exception("No .app directories found within Payload") if len(app_dirs) > 1: raise Exception("Multiple .app directories found within Payload") for dir1 in app_dirs: if not dir1.is_dir(): raise Exception("{0} is not a directory".format(dir1)) # req-003 self._app_dir = dir1 print('Found app: {0}'.format(dir1)) self._plist_file = self._app_dir / 'Info.plist' if not self._plist_file.is_file(): raise Exception("Info.plist file was not found in the app bundle") def extract_plist(self): """ Extracts information from the Info.plist file :return: Dictionary representation of Info.plist contents """ with self._plist_file.open('rb') as plist_fp: p_dict = plistlib.load(plist_fp) self._bundle_id = p_dict.get('CFBundleIdentifier') self._executable_file = p_dict.get('CFBundleExecutable') return p_dict def extract_provisioning_plist(self, embedded_prov_plist_path): """ Extracts information from the Info.plist file :param embedded_prov_plist_path: Full path to the plist file which is embedded in the provisioning profile :return: Dictionary representation of embedded.mobileprovision contents """ with embedded_prov_plist_path.open('rb') as plist_fp: p_dict = plistlib.load(plist_fp) return p_dict def validate_provisioning_plist(self, plist_dict): """ Validate the embedded provisioning plist which was extracted in a previous step. :param plist_dict: Dictionary representation of the embedded.mobileprovision file :return: None """ app_id_prefix_array = plist_dict['ApplicationIdentifierPrefix'] entitlements_dict = plist_dict['Entitlements'] app_identifier_raw = entitlements_dict.get('application-identifier') ix = app_identifier_raw.find('.') if ix >= 0: app_identifier_prefix = app_identifier_raw[:ix] app_id = app_identifier_raw[ix+1:] else: app_identifier_prefix = app_identifier_raw app_id = '' get_task_allow = entitlements_dict.get('get-task-allow') keychain_groups = entitlements_dict.get('keychain-access-groups') # req-004 if app_identifier_prefix not in app_id_prefix_array: raise Exception('The entitlements application-identifier {0} does not match any of the given app id prefixes'.format(app_identifier_prefix)) # req-005 exp_date = plist_dict['ExpirationDate'] now = datetime.now() if exp_date < now: print('The embedded provisioning profile has expired on {0}'.format(exp_date)) # req-006 self._validate_app_id(self._bundle_id, app_id) def _validate_app_id(self, app_id_from_info_plist, app_id_from_provisioning_file): """ Validate the app ids from the Info.plist and provisioning profile to see if they match, taking wildcards into account. Examples: com.acme.app1, com.acme.app1 => match com.acme.app1, com.acme.app2 => fail com.acme.app1, com.acme.* => match com.acme.app1, * => match :param app_id_from_info_plist: Full appid from the Info.plist file, ex: com.acme.app1 :param app_id_from_provisioning_file: App id (possibly wildcard) from the provisioning profile :return: None """ has_wildcard = False ix = app_id_from_provisioning_file.find('*') if ix >= 0: has_wildcard = True match_app_id = app_id_from_provisioning_file[:ix] else: match_app_id = app_id_from_provisioning_file if has_wildcard: wc_len = len(match_app_id) match = (app_id_from_info_plist[:ix] == match_app_id) else: match = (app_id_from_info_plist == match_app_id) if not match: raise Exception('Bundle ID does not match app ID from provisioning profile: {0}'.format(app_id_from_provisioning_file))
41.837838
152
0.653424
805
6,192
4.782609
0.22236
0.035065
0.03039
0.038182
0.175065
0.088831
0.058701
0.038442
0.02026
0.02026
0
0.014346
0.268249
6,192
147
153
42.122449
0.835356
0.314599
0
0.144578
0
0
0.14664
0.023676
0
0
0
0
0
1
0.108434
false
0
0.036145
0.036145
0.216867
0.024096
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f29a992ba965f8e9cb047c742d3ca46176d0fa03
3,012
py
Python
netests/comparators/facts_compare.py
Netests/netests
1a48bda461761c4ec854d6fa0c38629049009a4a
[ "MIT" ]
14
2020-06-08T07:34:59.000Z
2022-03-14T08:52:03.000Z
netests/comparators/facts_compare.py
Netests/netests
1a48bda461761c4ec854d6fa0c38629049009a4a
[ "MIT" ]
null
null
null
netests/comparators/facts_compare.py
Netests/netests
1a48bda461761c4ec854d6fa0c38629049009a4a
[ "MIT" ]
3
2020-06-19T03:57:05.000Z
2020-06-22T22:46:42.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from nornir.core.task import Task from netests import log from netests.tools.file import open_file from netests.protocols.facts import Facts from netests.select_vars import select_host_vars from netests.comparators.log_compare import log_compare, log_no_yaml_data from netests.constants import NOT_SET, FACTS_WORKS_KEY, FACTS_DATA_HOST_KEY from netests.exceptions.netests_exceptions import ( NetestsOverideTruthVarsKeyUnsupported ) def _compare_transit_facts(task, options={}): task.host[FACTS_WORKS_KEY] = _compare_facts( host_keys=task.host.keys(), hostname=task.host.name, groups=task.host.groups, facts_host_data=task.host.get(FACTS_DATA_HOST_KEY, None), test=False, options=options, task=task ) return task.host[FACTS_WORKS_KEY] def _compare_facts( host_keys, hostname: str, groups: list, facts_host_data: Facts, test=False, options={}, task=Task ) -> bool: if ( 'own_vars' in options.keys() and options.get('own_vars') is not None and 'enable' in options.get('own_vars').keys() and options.get('own_vars').get('enable') is True ): raise NetestsOverideTruthVarsKeyUnsupported() else: if test: facts_yaml_data = open_file( path="tests/features/src/facts_tests.yml" ).get(hostname) else: facts_yaml_data = select_host_vars( hostname=hostname, groups=groups, protocol="facts" ) log.debug( "FACTS_DATA_HOST_KEY in host_keys=" f"{FACTS_DATA_HOST_KEY in host_keys}\n" "facts_yaml_data is not None=" f"{facts_yaml_data is not None}" ) if ( FACTS_DATA_HOST_KEY in host_keys and facts_yaml_data is not None ): verity_facts = Facts( hostname=hostname, domain=facts_yaml_data.get('domain', NOT_SET), version=facts_yaml_data.get('version', NOT_SET), build=facts_yaml_data.get('build', NOT_SET), serial=facts_yaml_data.get('serial', NOT_SET), base_mac=facts_yaml_data.get('serial', NOT_SET), memory=facts_yaml_data.get('memory', NOT_SET), vendor=facts_yaml_data.get('vendor', NOT_SET), model=facts_yaml_data.get('model', NOT_SET), interfaces_lst=facts_yaml_data.get('interfaces', list()), options=facts_host_data.options ) log_compare(verity_facts, facts_host_data, hostname, groups) return verity_facts == facts_host_data else: log_no_yaml_data( "facts", FACTS_DATA_HOST_KEY, "FACTS_DATA_HOST_KEY", hostname, groups ) return True
31.705263
75
0.60259
363
3,012
4.688705
0.217631
0.075206
0.106933
0.084606
0.220917
0.145711
0.078731
0
0
0
0
0.000958
0.306773
3,012
94
76
32.042553
0.814176
0.014276
0
0.134146
0
0
0.097742
0.011459
0
0
0
0
0
1
0.02439
false
0
0.097561
0
0.158537
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f29b2579ee8dd83fbc2ef37d5767b8505b228c21
1,579
py
Python
graph.py
shinmura0/tkinter_kouza
1617a01591bf3cee808c4b3e62dc785cc76381f2
[ "MIT" ]
null
null
null
graph.py
shinmura0/tkinter_kouza
1617a01591bf3cee808c4b3e62dc785cc76381f2
[ "MIT" ]
null
null
null
graph.py
shinmura0/tkinter_kouza
1617a01591bf3cee808c4b3e62dc785cc76381f2
[ "MIT" ]
null
null
null
#おまじない from tkinter import Tk, Button, X, Frame, GROOVE, W, E, Label, Entry, END import numpy as np import os from matplotlib import pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg # プロットする関数 def graph(data): # 大きさ(6,3)のグラフを生成する fig = plt.Figure(figsize=(6,3)) ax1 = fig.add_subplot(111) # もらったデータをプロットする。 ax1.plot(data) # グラフの描画 canvas = FigureCanvasTkAgg(fig, frame_3) canvas.draw() canvas.get_tk_widget().grid(row=1, column=0) return fig # 入力フォームの保存 def plot(): # 入力フォームを読み込む a = box1.get() b = box2.get() c = box3.get() # 表形式に変換 result = [] result.append(int(a)) result.append(int(b)) result.append(int(c)) # 描画関数にデータを渡す graph(result) #おまじない ↓ここから本文 if __name__ == '__main__': # tkinter定義 root = Tk() # ボタン1 frame_1 = Frame(root, bd=4, relief=GROOVE) #ボタン1の定義 frame_1.grid(row=0, column=0) #ボタン1の位置 btn1 = Button(frame_1, text='描画', command=plot, font=("",20)) #ボタン1が押されたときの処理 btn1.pack(fill=X) #ボタン1設置 # グラフ frame_3 = Frame(root, bd=4, relief=GROOVE) #ボタン1の定義 frame_3.grid(row=1, column=0) canvas = FigureCanvasTkAgg(graph([]), frame_3) # 入力フォーム box1 = Entry(width=3) #入力フォームの定義 box1.place(x=20, y=5) #入力フォームの位置 box2 = Entry(width=3) #入力フォームの定義 box2.place(x=50, y=5) #入力フォームの位置 box3 = Entry(width=3) #入力フォームの定義 box3.place(x=80, y=5) #入力フォームの位置 # tkinter作動 root.mainloop()
24.292308
82
0.60038
210
1,579
4.428571
0.480952
0.025806
0.048387
0.064516
0.109677
0.077419
0.077419
0.077419
0
0
0
0.04766
0.269158
1,579
65
83
24.292308
0.757366
0.151995
0
0
0
0
0.008
0
0
0
0
0
0
1
0.052632
false
0
0.131579
0
0.210526
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2a0401693fdb2fa350f876989f4e1cc6a3ea3c3
698
py
Python
im3agents/tests/test_farmers.py
IMMM-SFA/im3agents
544e89803379a44108227e9cd83ce09f6974fe2d
[ "BSD-2-Clause" ]
null
null
null
im3agents/tests/test_farmers.py
IMMM-SFA/im3agents
544e89803379a44108227e9cd83ce09f6974fe2d
[ "BSD-2-Clause" ]
4
2020-05-27T18:50:29.000Z
2020-09-24T14:27:00.000Z
im3agents/tests/test_farmers.py
IMMM-SFA/im3agents
544e89803379a44108227e9cd83ce09f6974fe2d
[ "BSD-2-Clause" ]
null
null
null
"""Farmer class tests. :author: Someone :email: [email protected] License: BSD 2-Clause, see LICENSE and DISCLAIMER files """ import unittest from im3agents import FarmerOne class TestFarmers(unittest.TestCase): def test_farmerone(self): error_min_age = FarmerOne(age=-1) error_max_age = FarmerOne(age=151) valid = FarmerOne(age=32) # expect value errors for exceeding min and max with self.assertRaises(ValueError): error_min_age.age with self.assertRaises(ValueError): error_max_age.age # expect valid age self.assertEqual(valid.age, 32) if __name__ == '__main__': unittest.main()
19.388889
56
0.659026
85
698
5.211765
0.541176
0.081264
0.049661
0.13544
0.158014
0
0
0
0
0
0
0.019194
0.253582
698
35
57
19.942857
0.831094
0.270774
0
0.142857
0
0
0.016
0
0
0
0
0
0.214286
1
0.071429
false
0
0.142857
0
0.285714
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2a1157fdb66b63890403106ad4f269358b5419e
1,744
py
Python
day-24/part-1/th-ch.py
evqna/adventofcode-2020
526bb9c87057d02bda4de9647932a0e25bdb3a5b
[ "MIT" ]
12
2020-11-30T19:22:18.000Z
2021-06-21T05:55:58.000Z
day-24/part-1/th-ch.py
evqna/adventofcode-2020
526bb9c87057d02bda4de9647932a0e25bdb3a5b
[ "MIT" ]
13
2020-11-30T17:27:22.000Z
2020-12-22T17:43:13.000Z
day-24/part-1/th-ch.py
evqna/adventofcode-2020
526bb9c87057d02bda4de9647932a0e25bdb3a5b
[ "MIT" ]
3
2020-12-01T08:49:40.000Z
2022-03-26T21:47:38.000Z
from tool.runners.python import SubmissionPy WHITE = 0 BLACK = 1 DIRECTIONS = { "e": (-1, 0), # (x, y) with axes right/bottom "se": (-0.5, 1), "sw": (0.5, 1), "w": (1, 0), "nw": (0.5, -1), "ne": (-0.5, -1), } class ThChSubmission(SubmissionPy): def run(self, s): flipped_tiles = {} for line in s.split("\n"): i = 0 x, y = (0, 0) # ref while i < len(line): if line[i] == "s" or line[i] == "n": direction = line[i : i + 2] i += 2 else: direction = line[i] i += 1 dx, dy = DIRECTIONS[direction] x += dx y += dy flipped_tiles[(x, y)] = (flipped_tiles.get((x, y), WHITE) + 1) % 2 return sum(tile == BLACK for tile in flipped_tiles.values()) def test_th_ch(): """ Run `python -m pytest ./day-24/part-1/th-ch.py` to test the submission. """ assert ( ThChSubmission().run( """ seeswwswswwnenewsewsw neeenesenwnwwswnenewnwwsewnenwseswesw seswneswswsenwwnwse nwnwneseeswswnenewneswwnewseswneseene swweswneswnenwsewnwneneseenw eesenwseswswnenwswnwnwsewwnwsene sewnenenenesenwsewnenwwwse wenwwweseeeweswwwnwwe wsweesenenewnwwnwsenewsenwwsesesenwne neeswseenwwswnwswswnw nenwswwsewswnenenewsenwsenwnesesenew enewnwewneswsewnwswenweswnenwsenwsw sweneswneswneneenwnewenewwneswswnese swwesenesewenwneswnwwneseswwne enesenwswwswneneswsenwnewswseenwsese wnwnesenesenenwwnenwsewesewsesesew nenewswnwewswnenesenwnesewesw eneswnwswnwsenenwnwnwwseeswneewsenese neswnwewnwnwseenwseesewsenwsweewe wseweeenwnesenwwwswnew """.strip() ) == 10 )
25.275362
78
0.614106
160
1,744
6.65625
0.55
0.007512
0.011268
0.028169
0
0
0
0
0
0
0
0.024623
0.278096
1,744
68
79
25.647059
0.821287
0.06078
0
0
0
0
0.014184
0
0
0
0
0
0.027778
1
0.055556
false
0
0.027778
0
0.138889
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2a14427a74c318066628e0e58bdecded62e08df
259
py
Python
Python/tais_formula.py
mimseyedi/Kattis
a99ea2112544e89cc466feb7d81ffe6eb017f7e2
[ "MIT" ]
null
null
null
Python/tais_formula.py
mimseyedi/Kattis
a99ea2112544e89cc466feb7d81ffe6eb017f7e2
[ "MIT" ]
null
null
null
Python/tais_formula.py
mimseyedi/Kattis
a99ea2112544e89cc466feb7d81ffe6eb017f7e2
[ "MIT" ]
null
null
null
n = int(input()) l1 = list() l2 = list() for _ in range(n): t, v = input().split() l1.append(int(t)) l2.append(float(v)) result = 0 for i in range(len(l1) - 1): result += ((l2[i] + l2[i + 1]) / 2) * (l1[i + 1] - l1[i]) print(result / 1000)
17.266667
61
0.505792
47
259
2.765957
0.468085
0.107692
0
0
0
0
0
0
0
0
0
0.092784
0.250965
259
14
62
18.5
0.57732
0
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0
0
0
0.090909
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2a1e765b746fab626eeae28ec0da8d5f9142f43
643
py
Python
modules/constant.py
aubravo/Clasificacion-de-actividad-volcanica
0f7be0d77509fa13948a0f714103ce6e6d8cb2ae
[ "MIT" ]
1
2021-10-20T02:42:20.000Z
2021-10-20T02:42:20.000Z
modules/constant.py
aubravo/ActividadVolcanica
0f7be0d77509fa13948a0f714103ce6e6d8cb2ae
[ "MIT" ]
null
null
null
modules/constant.py
aubravo/ActividadVolcanica
0f7be0d77509fa13948a0f714103ce6e6d8cb2ae
[ "MIT" ]
null
null
null
"""---------------------------------------------------------------------------- This is the core of the parsing stage: *re_find comments will search for everything between the $$ and EOL *re_findDataLabels will search for everything between the start of a tag (##) and the start of the next tag ignoring the contents of next tag, while grouping into tag name and tag contents ----------------------------------------------------------------------------""" re_findComments = r'\$\$[\s\S]*?(?=\n)' re_findBlocks = r'(##TITLE\=[\W\w]*?##END=)' re_findDataLabels = r'##([\w\W]*?)=([\w\W]*?(?=\n##[\w\W]))' FILE = True DIR = False
45.928571
79
0.494557
79
643
3.962025
0.506329
0.031949
0.083067
0.146965
0.210863
0.210863
0
0
0
0
0
0
0.133748
643
13
80
49.461538
0.561939
0.724728
0
0
0
0
0.467836
0.362573
0
0
0
0
0
1
0
false
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2a3e15dbd9f5aecf7c8735a8a4cd1ee5164b116
5,879
py
Python
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/modules/network/f5/test_bigip_message_routing_transport_config.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/modules/network/f5/test_bigip_message_routing_transport_config.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/modules/network/f5/test_bigip_message_routing_transport_config.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright: (c) 2019, F5 Networks Inc. # GNU General Public License v3.0 (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os import json import pytest import sys if sys.version_info < (2, 7): pytestmark = pytest.mark.skip("F5 Ansible modules require Python >= 2.7") from ansible.module_utils.basic import AnsibleModule from ansible_collections.f5networks.f5_modules.plugins.modules.bigip_message_routing_transport_config import ( ApiParameters, ModuleParameters, ModuleManager, GenericModuleManager, ArgumentSpec ) from ansible_collections.f5networks.f5_modules.tests.unit.compat import unittest from ansible_collections.f5networks.f5_modules.tests.unit.compat.mock import Mock, patch from ansible_collections.f5networks.f5_modules.tests.unit.modules.utils import set_module_args fixture_path = os.path.join(os.path.dirname(__file__), 'fixtures') fixture_data = {} def load_fixture(name): path = os.path.join(fixture_path, name) if path in fixture_data: return fixture_data[path] with open(path) as f: data = f.read() try: data = json.loads(data) except Exception: pass fixture_data[path] = data return data class TestParameters(unittest.TestCase): def test_module_parameters(self): args = dict( name='foo', partition='foobar', description='my description', profiles=['genericmsg', 'foo_udp'], src_addr_translation=dict( type='snat', pool='some_pool1' ), src_port=1023, rules=['rule1', 'rule2'], ) p = ModuleParameters(params=args) assert p.name == 'foo' assert p.partition == 'foobar' assert p.description == 'my description' assert p.profiles == ['/foobar/genericmsg', '/foobar/foo_udp'] assert p.snat_type == 'snat' assert p.snat_pool == '/foobar/some_pool1' assert p.src_port == 1023 assert p.rules == ['/foobar/rule1', '/foobar/rule2'] def test_api_parameters(self): args = load_fixture('load_generic_transport_config.json') p = ApiParameters(params=args) assert p.name == 'gen1' assert p.partition == 'Common' assert p.profiles == ['/Common/diametersession', '/Common/tcp'] assert p.snat_type == 'snat' assert p.src_port == 0 assert p.snat_pool == '/Common/test_snat' assert p.rules == ['/Common/test'] class TestManager(unittest.TestCase): def setUp(self): self.spec = ArgumentSpec() self.p2 = patch('ansible_collections.f5networks.f5_modules.plugins.modules.bigip_message_routing_transport_config.tmos_version') self.p3 = patch('ansible_collections.f5networks.f5_modules.plugins.modules.bigip_message_routing_transport_config.send_teem') self.m2 = self.p2.start() self.m2.return_value = '14.1.0' self.m3 = self.p3.start() self.m3.return_value = True def tearDown(self): self.p2.stop() self.p3.stop() def test_create_generic_transport(self, *args): set_module_args(dict( name='foo', partition='foobar', description='my description', profiles=['genericmsg', 'foo_udp'], src_addr_translation=dict( type='snat', pool='some_pool1' ), src_port=1023, rules=['rule1', 'rule2'], provider=dict( server='localhost', password='password', user='admin' ) )) module = AnsibleModule( argument_spec=self.spec.argument_spec, supports_check_mode=self.spec.supports_check_mode ) # Override methods in the specific type of manager gm = GenericModuleManager(module=module) gm.exists = Mock(return_value=False) gm.create_on_device = Mock(return_value=True) mm = ModuleManager(module=module) mm.version_less_than_14 = Mock(return_value=False) mm.get_manager = Mock(return_value=gm) results = mm.exec_module() assert results['changed'] is True assert results['description'] == 'my description' assert results['src_addr_translation'] == dict(type='snat', pool='/foobar/some_pool1') assert results['src_port'] == 1023 assert results['rules'] == ['/foobar/rule1', '/foobar/rule2'] assert results['profiles'] == ['/foobar/genericmsg', '/foobar/foo_udp'] def test_update_generic_transport(self, *args): set_module_args(dict( name='gen1', src_port=1024, rules=['/Common/barfoo'], provider=dict( server='localhost', password='password', user='admin' ) )) current = ApiParameters(params=load_fixture('load_generic_transport_config.json')) module = AnsibleModule( argument_spec=self.spec.argument_spec, supports_check_mode=self.spec.supports_check_mode, ) # Override methods in the specific type of manager gm = GenericModuleManager(module=module) gm.exists = Mock(return_value=True) gm.update_on_device = Mock(return_value=True) gm.read_current_from_device = Mock(return_value=current) mm = ModuleManager(module=module) mm.version_less_than_14 = Mock(return_value=False) mm.get_manager = Mock(return_value=gm) results = mm.exec_module() assert results['changed'] is True assert results['src_port'] == 1024 assert results['rules'] == ['/Common/barfoo']
33.403409
136
0.628678
675
5,879
5.26963
0.272593
0.029519
0.037953
0.050604
0.57436
0.545122
0.494518
0.447287
0.403992
0.350576
0
0.019266
0.258377
5,879
175
137
33.594286
0.79656
0.042014
0
0.367647
0
0
0.159289
0.0544
0
0
0
0
0.176471
1
0.051471
false
0.022059
0.073529
0
0.154412
0.007353
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2a4c80d5b858823c4ef9a8432cc56f697eb6900
3,618
py
Python
tests/test_builder_path_parameter.py
tabebqena/flask-open-spec
ee1fd9cd349e46e1d8295fc2799898731392af6a
[ "MIT" ]
null
null
null
tests/test_builder_path_parameter.py
tabebqena/flask-open-spec
ee1fd9cd349e46e1d8295fc2799898731392af6a
[ "MIT" ]
null
null
null
tests/test_builder_path_parameter.py
tabebqena/flask-open-spec
ee1fd9cd349e46e1d8295fc2799898731392af6a
[ "MIT" ]
null
null
null
from ..open_oas.builder.builder import OasBuilder from unittest import TestCase from ..tests.schemas.schemas import PaginationSchema from ..open_oas.decorators import Deferred, path_parameter class TestPathParameter(TestCase): def run_tests(self, builder: OasBuilder): data = builder.get_data() parameters = ( data.get("paths", {}).get("/gists", {}) # .get("get", {}) .get("parameters", []) ) self.assertNotEqual(parameters, []) for param in parameters: self.assertEqual( param.get("schema", {}).get("$ref", {}), "#/components/schemas/Pagination", ) def test_data(self): data = { "paths": { "/gists": { "parameters": [ { "schema": PaginationSchema, "in": "query", "name": "offsetParam", "required": False, }, { "schema": PaginationSchema, "in": "query", "name": "limitParam", "required": False, }, ], "get": { "summary": "Gets a list of users.", "responses": {"200": {"description": "OK"}}, }, } }, } builder = OasBuilder(data) # pprint(builder.get_data()) self.run_tests(builder) def test_data_dict_schema(self): data = { "paths": { "/gists": { "parameters": [ { "schema": {"type": "object"}, "in": "query", "name": "offsetParam", "required": False, }, { "schema": {"type": "object"}, "in": "query", "name": "limitParam", "required": False, }, ], "get": { "summary": "Gets a list of users.", "responses": {"200": {"description": "OK"}}, }, } }, } builder = OasBuilder(data) # pprint(builder.get_data()) # self.run_tests(builder) parameters = ( builder.get_data() .get("paths", {}) .get("/gists", {}) # .get("get", {}) .get("parameters", []) ) self.assertEqual( parameters, data.get("paths", {}).get("/gists", {}) # .get("get", {}) .get("parameters", []), ) def test_decorator(self): path_parameter( ["/gists"], "query", name="offsetParam", schema=PaginationSchema, description="", ) path_parameter( ["/gists"], "query", name="limitParam", schema=PaginationSchema, description="", ) builder = OasBuilder() # pprint(builder.get_data()) self.run_tests(builder) def tearDown(self) -> None: Deferred._deferred = [] return super().tearDown()
30.661017
68
0.369541
226
3,618
5.827434
0.265487
0.027335
0.053151
0.034169
0.558846
0.493546
0.426727
0.364465
0.364465
0.330296
0
0.003297
0.49696
3,618
117
69
30.923077
0.72033
0.042012
0
0.534653
0
0
0.133892
0.008965
0
0
0
0
0.029703
1
0.049505
false
0
0.039604
0
0.108911
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2a7f8c88dbf4887b1d166b409dc1bae27f7d5b9
815
py
Python
tests/test_templates.py
knipknap/django_searchable
6fd9f8aa766477e8648fdbed720e966af1b216b7
[ "MIT" ]
62
2018-11-05T09:06:39.000Z
2022-02-18T15:33:06.000Z
tests/test_templates.py
knipknap/django_searchable
6fd9f8aa766477e8648fdbed720e966af1b216b7
[ "MIT" ]
4
2018-11-05T07:57:27.000Z
2021-05-30T00:37:35.000Z
tests/test_templates.py
knipknap/django_searchable
6fd9f8aa766477e8648fdbed720e966af1b216b7
[ "MIT" ]
8
2018-11-08T16:10:04.000Z
2022-01-27T09:31:53.000Z
from django.test import TestCase from django.test.client import RequestFactory from django.template import Template, Context from django.template.loader import render_to_string from .models import Author, Book expected_headers = ''' <tr> <th>Name</th><th>The title</th><th>Comment</th><th>Stars</th><th>AuthorID</th> </tr> '''.strip() class HeadersTest(TestCase): def setUp(self): self.maxDiff = None self.context = {'object_list': Book.objects.all} author = Author.objects.create(name='MyAuthor', rating=2) for i in range(11): Book.objects.create(author=author, title='B'+str(i), rating=10) def testHeaders1(self): result = render_to_string('django_find/headers.html', self.context) self.assertEqual(result.strip(), expected_headers, result)
32.6
78
0.69816
111
815
5.054054
0.495496
0.071301
0.049911
0
0
0
0
0
0
0
0
0.008798
0.16319
815
24
79
33.958333
0.813783
0
0
0
0
0.05
0.165848
0.099509
0
0
0
0
0.05
1
0.1
false
0
0.25
0
0.4
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2a86a4dc06766b095f7432edceef5b58b99f8ac
103,875
py
Python
diabolo_play/scripts/interactive_play.py
omron-sinicx/diabolo
a0258fdf634d27c7cf185b2e40c6b12699417d36
[ "BSD-3-Clause" ]
11
2021-10-15T15:51:24.000Z
2021-12-26T16:43:17.000Z
diabolo_play/scripts/interactive_play.py
omron-sinicx/diabolo
a0258fdf634d27c7cf185b2e40c6b12699417d36
[ "BSD-3-Clause" ]
null
null
null
diabolo_play/scripts/interactive_play.py
omron-sinicx/diabolo
a0258fdf634d27c7cf185b2e40c6b12699417d36
[ "BSD-3-Clause" ]
1
2022-02-01T01:58:37.000Z
2022-02-01T01:58:37.000Z
#!/usr/bin/env python import sys import copy import rospy import tf_conversions import tf.transformations as transform import tf from math import pi import math import thread import os import random import geometry_msgs.msg from geometry_msgs.msg import Pose, PoseArray from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint import moveit_msgs.msg import shape_msgs.msg import visualization_msgs.msg import diabolo_gazebo.msg from diabolo_play.srv import SetInitialStickPositionsRequest, SetInitialStickPositions from diabolo_play.srv import CreateSticksTrajectoryRequest, CreateSticksTrajectory from diabolo_play.srv import CreateRobotTrajectory, CreateRobotTrajectoryRequest from moveit_msgs.srv import GetPlanningScene, GetPlanningSceneRequest import pandas as pd import numpy as np from gazebo_msgs.srv import ( DeleteModel, DeleteModelRequest, SpawnModel, SpawnModelRequest, ) from diabolo_play.msg import DiaboloMotionSplineSeeds from diabolo_play.srv import GetDiaboloState, GetDiaboloStateRequest from std_msgs.msg import String from std_srvs.srv import Empty, EmptyRequest import rospkg from diabolo_gazebo.msg import DiaboloState from scipy import interpolate import matplotlib.pyplot as plt from diabolo_play.motion_knot_points import KnotPointsServer import yaml import pickle class PlayerClass: def __init__(self): rospy.init_node("diabolo_player", anonymous=True) self._rospack = rospkg.RosPack() self.diabolo_urdf_pack = self._rospack.get_path("diabolo_gazebo") self.diabolo_urdf_file_path = os.path.join( self.diabolo_urdf_pack, "urdf", "diabolo.urdf" ) self._package_directory = self._rospack.get_path("diabolo_play") self.tf_listener = tf.TransformListener() self.tf_broadcaster = tf.TransformBroadcaster() self.marker_count = 0 self.marker_pub = rospy.Publisher( "visualization_markers", visualization_msgs.msg.Marker, queue_size=100 ) self.marker_array_pub = rospy.Publisher( "visualization_marker_array", visualization_msgs.msg.MarkerArray, queue_size=100, latch=True, ) self.pub_stick_poses = rospy.Publisher( "/diabolo_stick_poses", geometry_msgs.msg.PoseArray, queue_size=50, latch=True, ) self.pub_diabolo_position = rospy.Publisher( "/experiment_diabolo_position", geometry_msgs.msg.Pose, queue_size=50 ) self.diabolo_state_pub = rospy.Publisher( "/experiment_diabolo_state", DiaboloState, queue_size=1 ) self.a_bot_command_pub = rospy.Publisher( "/a_bot/scaled_pos_joint_traj_controller/command", JointTrajectory, queue_size=1, ) self.b_bot_command_pub = rospy.Publisher( "/b_bot/scaled_pos_joint_traj_controller/command", JointTrajectory, queue_size=1, ) self.set_robots_initial_position_service = rospy.ServiceProxy( "/initialize_robots_from_stick_positions", SetInitialStickPositions ) self.command_robot_trajectory_service = rospy.ServiceProxy( "/command_robot_traj_from_stick_traj", CreateRobotTrajectory ) self.a_bot_display_traj_pub = rospy.Publisher( "/display_a_bot_bioik_trajectory", moveit_msgs.msg.DisplayTrajectory, queue_size=1, ) self.b_bot_display_traj_pub = rospy.Publisher( "/display_b_bot_bioik_trajectory", moveit_msgs.msg.DisplayTrajectory, queue_size=1, ) self.pause_gazebo_service = rospy.ServiceProxy("/gazebo/pause_physics", Empty) self.unpause_gazebo_service = rospy.ServiceProxy( "/gazebo/unpause_physics", Empty ) self.get_diabolo_state_service = rospy.ServiceProxy( "/get_observed_diabolo_state", GetDiaboloState ) self.generate_trajectory_service = rospy.ServiceProxy( "/generate_stick_trajectory", CreateSticksTrajectory ) self.get_planning_scene_service = rospy.ServiceProxy( "/get_planning_scene", GetPlanningScene ) self.latest_diabolo_state = None self.create_markers() self.sim_recorder = None # This will be filled with a DiaboloSimRecorder type if running automated trials self.current_rot_velocity = 0.0 # TODO: Calculate rotational velocity from experiment data and store here self.left_traj_plan_marker = None self.right_traj_plan_marker = None # self.timer = rospy.Timer(rospy.Duration(0.01), self.get_observed_diabolo_state , oneshot=False) # If this is true, the intermediate frames are displayed. Useful if the calibration seems off, or the rotations are not correct. self.pub_rate = 50.0 rospy.set_param("/stick_pose_publish_rate", self.pub_rate) # This parameter is set by the gazebo launch file if robots are being spawned in gazebo # If the parameter is true, the program will wait for the service to initialize robot positions self.constrain_to_plane = True # If true, ignore motion x coordinates self.DEFAULT_X_COORD = ( 0.55 # Set robots to this coordinate if motion constrained to plane ) self.filename = "" # This is a dictionary of the functions gotten by spline interpolation from the data self.motion_functions = {} # This is the name of the current motion being executed. # The function(s) to be used can be extracted using this by appending # "_sl" (for left stick) # "_sr" (for right stick) # and using it as the key for the self.motion_functions dictionary self.current_motion = "" self.frame_rate = 120.0 self.last_stick_positions = {} self.read_transformed_motion_data( folder=("experiments/output/2020-09-14_motion_extraction/") ) self.initialize_motion_functions() self.get_stick_tips_from_tf() self.create_knot_server() self.stop_motion_flag = True self.tilt_offset = 0.0 self.changed_tilt_offset_flag = False print("Started experiment playback class") def get_stick_tips_from_tf(self): # Get initial stick positions from tf. # If not available, assume robots are at 'diabolo_ready' position a_t = geometry_msgs.msg.Point() b_t = geometry_msgs.msg.Point() try: self.tf_listener.waitForTransform( "/world", "/a_bot_diabolo_stick_tip", rospy.Time(), rospy.Duration(1.0) ) print("Got stick tip positions from tf") (a_trans, a_rot) = self.tf_listener.lookupTransform( "/world", "/a_bot_diabolo_stick_tip", rospy.Time(0) ) (b_trans, b_rot) = self.tf_listener.lookupTransform( "/world", "/b_bot_diabolo_stick_tip", rospy.Time(0) ) a_t.x = a_trans[0] a_t.y = a_trans[1] a_t.z = a_trans[2] b_t.x = b_trans[0] b_t.y = b_trans[1] b_t.z = b_trans[2] except: print("Transforms not available") print("Initializing with initial position for this robot") pose_left = self.motion_functions[self.current_motion + "_sl"][ "initial_pose" ] pose_right = self.motion_functions[self.current_motion + "_sr"][ "initial_pose" ] a_t = pose_right.position b_t = pose_left.position self.last_stick_positions = {"pos_left": b_t, "pos_right": a_t} def create_knot_server(self): """ Create a knot server with the number of points given by the number knots in the current motion """ interactive_knot_points = len( self.motion_functions[self.current_motion + "_sl"]["time_seed"] ) if ( self.motion_functions[self.current_motion + "_sl"]["motion_type"] == "periodic" ): interactive_knot_points -= 1 pos_left = self.last_stick_positions["pos_left"] pos_right = self.last_stick_positions["pos_right"] left_seed_positions = [] right_seed_positions = [] left_seed_positions.append(pos_left) right_seed_positions.append(pos_right) left_dict = self.motion_functions[self.current_motion + "_sl"] right_dict = self.motion_functions[self.current_motion + "_sr"] for i in range(interactive_knot_points): # Fill the seed position arrays with the initial seeds if available left_seed = geometry_msgs.msg.Point( left_dict["x_knot_seed"][i], left_dict["y_knot_seed"][i], left_dict["z_knot_seed"][i], ) right_seed = geometry_msgs.msg.Point( right_dict["x_knot_seed"][i], right_dict["y_knot_seed"][i], right_dict["z_knot_seed"][i], ) left_seed_positions.append(left_seed) right_seed_positions.append(right_seed) self.knot_point_server = KnotPointsServer( interactive_knot_points, [left_seed_positions, right_seed_positions] ) def get_observed_diabolo_state(self, timer): # Store the real pose/simulated pose of the diabolo to use for prediction try: req = GetDiaboloStateRequest() req.header.stamp = rospy.Time.now() resp = self.get_diabolo_state_service(req) if resp.success: self.latest_diabolo_state = resp.state # else: # self.latest_diabolo_pose = None # self.latest_diabolo_trans_vel = None except: self.latest_diabolo_state = None def _make_marker_from_mesh( self, mesh_filename="package://diabolo_play/meshes/diabolo_shell.stl", namespace="diabolo", scale=(1, 1, 1), color=(1, 1, 1), alpha=1.0, ): """ Based on the 'makeMesh()' function from 'moveit_commander/planning_scene_interface.py' pose is a PoseStamped object. """ marker = visualization_msgs.msg.Marker() marker.header.frame_id = "world" marker.header.stamp = rospy.Time.now() marker.ns = namespace marker.id = self.marker_count self.marker_count = self.marker_count + 1 marker.type = visualization_msgs.msg.Marker.MESH_RESOURCE marker.action = visualization_msgs.msg.Marker.ADD marker.pose.orientation.w = 1.0 marker.scale.x = scale[0] marker.scale.y = scale[1] marker.scale.z = scale[2] marker.color.a = alpha marker.color.r = color[0] marker.color.g = color[1] marker.color.b = color[2] marker.mesh_resource = mesh_filename return marker def create_markers(self): # Create marker objects from the meshes self.diabolo_shell_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_shell.stl", color=(1, 0, 0), scale=[0.001, 0.001, 0.001], namespace="", ) self.diabolo_fixator_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_fixators.stl", color=(0.1, 0.1, 0.1), scale=[0.001, 0.001, 0.001], namespace="", ) self.diabolo_axis_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_axis.stl", color=(0.7, 0.7, 0.7), scale=[0.001, 0.001, 0.001], namespace="", ) self.stick_left_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_stick.stl", color=(153 / 255.0, 75 / 255.0, 0.1), scale=[0.001, 0.001, 0.001], namespace="", ) self.stick_right_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_stick.stl", color=(153 / 255.0, 75 / 255.0, 0.1), scale=[0.001, 0.001, 0.001], namespace="", ) self.holder_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_mount.stl", color=(1, 1, 200 / 255.0), scale=[0.001, 0.001, 0.001], namespace="", ) # Add the string self.line_segments_marker = self._make_marker_from_mesh( "", color=(204 / 255.0, 100 / 255.0, 0), namespace="" ) self.line_segments_marker.type = visualization_msgs.msg.Marker.LINE_STRIP self.line_segments_marker.points.append( geometry_msgs.msg.Point(1, 1, 1) ) # The left stick tip self.line_segments_marker.points.append( geometry_msgs.msg.Point(0, 0, 0) ) # The diabolo center self.line_segments_marker.points.append( geometry_msgs.msg.Point(-1, -1, 1) ) # The right stick tip self.line_segments_marker.scale.x = 0.005 # line width self.sphere_marker_1 = self._make_marker_from_mesh( "", color=(0.0, 0.0, 1.0), scale=[0.08, 0.08, 0.08], namespace="" ) self.sphere_marker_1.type = visualization_msgs.msg.Marker.SPHERE self.sphere_marker_2 = self._make_marker_from_mesh( "", color=(0.0, 0.0, 1.0), scale=[0.08, 0.08, 0.08], namespace="" ) self.sphere_marker_2.type = visualization_msgs.msg.Marker.SPHERE def update_and_publish_markers(self, poses): """ poses needs to be a dict containing "diabolo", "stick_left", "stick_right" poses as geometry_msgs.msg.Pose """ self.sphere_marker_1.pose = poses["stick_left"] self.sphere_marker_2.pose = poses["stick_right"] # Flip orientations for correct display of the sticks marker_array = [self.sphere_marker_1, self.sphere_marker_2] self.marker_array_pub.publish(marker_array) def read_transformed_motion_data( self, folder="experiments/output/2020-09-14_motion_extraction/" ): # This is a different function because the header is formatted differently in the transformed CSV file linear_accel_file = "linear_accel_stick_motion.csv" circular_accel_right_file = "circular_accel_right_stick_motion.csv" circular_accel_left_file = "circular_accel_left_stick_motion.csv" self.motion_data_dict = {} # Get linear acceleration stick positions motion_df = pd.read_csv( os.path.join(self._package_directory, folder, linear_accel_file), header=[0, 1, 2], ) self.motion_data_dict["lin_accel_sl"] = motion_df["stick_left"] self.motion_data_dict["lin_accel_sr"] = motion_df["stick_right"] # Get circular acceleration stick positions motion_df = pd.read_csv( os.path.join(self._package_directory, folder, circular_accel_right_file), header=[0, 1, 2], ) self.motion_data_dict["circ_accel_sr"] = motion_df["stick_right"] self.motion_data_dict["circ_accel_sl"] = motion_df["stick_left"] def force_add_motion_function_(self): """ This is a helper function to add and overwrite motion functions in the database. """ self.current_motion = "lin_accel" self.motion_functions["circ_accel_sr"]["time_seed"] = ( 0.35, 0.65, 0.95, 1.25, 1.55, 1.85, ) self.motion_functions["circ_accel_sr"]["motion_type"] = "periodic" self.motion_functions["circ_accel_sl"]["time_seed"] = ( 0.35, 0.65, 0.95, 1.25, 1.55, 1.85, ) self.motion_functions["circ_accel_sl"]["motion_type"] = "periodic" ### For horizontal impulse left_pose = Pose() right_pose = Pose() left_pose.position.x = self.DEFAULT_X_COORD right_pose.position.x = self.DEFAULT_X_COORD left_pose.position.y = 0.05 right_pose.position.y = -0.05 left_pose.position.z = 1.25 right_pose.position.z = 1.25 self.motion_functions["horizontal_impulse_short_left_sl"] = { "x_knot_seed": (0.0, 0.0), "y_knot_seed": (-0.23, -0.1), "z_knot_seed": (0.0, 0.0), "time_seed": (0.6, 1.0, 1.7), "initial_pose": copy.deepcopy(left_pose), "motion_type": "periodic", } self.motion_functions["horizontal_impulse_short_left_sr"] = { "x_knot_seed": (0.0, 0.0), "y_knot_seed": (-0.23, -0.1), "z_knot_seed": (0.0, 0.0), "time_seed": (0.8, 1.0, 1.7), "initial_pose": copy.deepcopy(right_pose), "motion_type": "periodic", } ### For lin_accel self.motion_functions["lin_accel_sr"]["time_seed"] = (0.25, 0.5, 0.9, 1.2) self.motion_functions["lin_accel_sr"]["motion_type"] = "periodic" self.motion_functions["lin_accel_sl"]["time_seed"] = (0.25, 0.5, 0.9, 1.2) self.motion_functions["lin_accel_sl"]["motion_type"] = "periodic" self.motion_functions["lin_accel_sr"]["x_knot_seed"] = (0.0, 0.0, 0.0) self.motion_functions["lin_accel_sr"]["y_knot_seed"] = (0.05, 0.0, 0.05) self.motion_functions["lin_accel_sr"]["z_knot_seed"] = (0.2, 0.4, 0.2) self.motion_functions["lin_accel_sl"]["x_knot_seed"] = (0.0, 0.0, 0.0) self.motion_functions["lin_accel_sl"]["y_knot_seed"] = (-0.05, 0.0, -0.05) self.motion_functions["lin_accel_sl"]["z_knot_seed"] = (-0.15, -0.3, -0.15) self.motion_functions["lin_accel_sl"][ "initial_pose" ].position.x = self.DEFAULT_X_COORD self.motion_functions["lin_accel_sl"]["initial_pose"].position.y = 0.1 self.motion_functions["lin_accel_sl"]["initial_pose"].position.z = 1.47 self.motion_functions["lin_accel_sr"][ "initial_pose" ].position.x = self.DEFAULT_X_COORD self.motion_functions["lin_accel_sr"]["initial_pose"].position.y = -0.1 self.motion_functions["lin_accel_sr"]["initial_pose"].position.z = 1.07 ### For vertical throw left_pose = Pose() right_pose = Pose() left_pose.position.x = self.DEFAULT_X_COORD right_pose.position.x = self.DEFAULT_X_COORD left_pose.position.y = 0.05 right_pose.position.y = -0.05 left_pose.position.z = 1.25 right_pose.position.z = 1.25 ### throw_1.bag and throw_1b.bag settings # self.motion_functions["vertical_throw_sl"] = {"x_knot_seed":(0.0, 0.0, 0.0), \ # "y_knot_seed":(0.2, 0.65, 0.728), \ # "time_seed": (0.4, 0.8, 0.96), \ # self.motion_functions["vertical_throw_sr"] = {"x_knot_seed":(0.0, 0.0, 0.0), \ # "y_knot_seed":(-0.2, -0.65, -0.728), \ # "time_seed": (0.4, 0.8, 0.96), \ ### throw_2.bag settings # self.motion_functions["vertical_throw_sl"] = {"x_knot_seed":(0.0, 0.0, 0.0), \ # "y_knot_seed":(0.2, 0.65, 0.729), \ # "z_knot_seed":(0.0, 0.0, 0.0), \ # "time_seed": (0.4, 0.8, 0.94), \ # self.motion_functions["vertical_throw_sr"] = {"x_knot_seed":(0.0, 0.0, 0.0), \ # "y_knot_seed":(-0.2, -0.65, -0.729), \ # "z_knot_seed":(0.0, 0.0, 0.0), \ # "time_seed": (0.4, 0.8, 0.94), \ self.motion_functions["vertical_throw_sl"] = { "x_knot_seed": (0.0, 0.0, 0.0), "y_knot_seed": (0.2, 0.65, 0.731), "z_knot_seed": (0.0, 0.0, 0.0), "time_seed": (0.4, 0.8, 0.92), "flight_time": 0.5, "initial_pose": copy.deepcopy(left_pose), "motion_type": "oneshot", } self.motion_functions["vertical_throw_sr"] = { "x_knot_seed": (0.0, 0.0, 0.0), "y_knot_seed": (-0.2, -0.65, -0.731), "z_knot_seed": (0.0, 0.0, 0.0), "time_seed": (0.4, 0.8, 0.92), "flight_time": 0.5, "initial_pose": copy.deepcopy(right_pose), "motion_type": "oneshot", } def add_motion_function(self, name, num_knot_points=5): # TODO: Create a new motion and add it to self.motion_list and self.motion_functions under that key # TODO: Use self.motion_functions.keys instead of maintaining self.motion_list left_pose = Pose() right_pose = Pose() left_pose.position.x = self.DEFAULT_X_COORD right_pose.position.x = self.DEFAULT_X_COORD left_pose.position.y = 0.05 right_pose.position.y = -0.05 left_pose.position.z = 1.25 right_pose.position.z = 1.25 self.motion_functions[name + "_sl"] = { "x_knot_seed": [0.0] * num_knot_points, "y_knot_seed": range(0.1, (num_knot_points + 1) * 0.1, 0.1), "z_knot_seed": range(0.05, (num_knot_points + 1) * 0.05, 0.05), "time_seed": range(0.5, (num_knot_points + 1) * 0.5, 0.5), "initial_pose": copy.deepcopy(left_pose), "motion_type": "periodic", } self.motion_functions[name + "_sr"] = { "x_knot_seed": [0.0] * num_knot_points, "y_knot_seed": range(0.1, (num_knot_points + 1) * 0.1, 0.1), "z_knot_seed": range(0.05, (num_knot_points + 1) * 0.05, 0.05), "time_seed": range(0.5, (num_knot_points + 1) * 0.5, 0.5), "initial_pose": copy.deepcopy(right_pose), "motion_type": "periodic", } def initialize_motion_functions( self, use_saved_values=True, filename="default.pkl" ): # First add the period motions, for which there is motion capture data self.motion_functions = {} path = os.path.join(self._package_directory, "config", filename) if os.path.exists(path) and use_saved_values: print("Using stored motion function values") with open(path, "r") as f: self.motion_functions = pickle.load(f) else: print("Using hardcoded values") self.motion_list = [] # Make the last position in the data the same as the first postion, to make the motion cyclic for key in self.motion_data_dict: pos_data = np.array(self.motion_data_dict[key]["Position"]) delta_x = pos_data[-1] - pos_data[0] total_steps = pos_data.shape[0] for i in range(total_steps): pos_data[i] = pos_data[i] - delta_x * ( float(i) / float(total_steps - 1) ) # Using two "cycles" of the data for interpolation to ensure I get the correct slope at the end points # That is why pos_data is made by appending two of the data arrays pos_data = np.append(pos_data, pos_data).reshape( pos_data.shape[0] * 2, -1 ) time_steps = np.arange(pos_data.shape[0]) / self.frame_rate # Create spline functions by interpolating between the data positions, ignoring the nan values good_indices = np.where(np.isfinite(pos_data))[0].reshape(-1, 3)[ :, 0 ] # Indices where array is finite # Store the functions returning spline functions, time period of this motion and the initial position of the motion self.motion_functions[key] = { "X": interpolate.InterpolatedUnivariateSpline( time_steps[good_indices], pos_data[good_indices, 0] ), "Y": interpolate.InterpolatedUnivariateSpline( time_steps[good_indices], pos_data[good_indices, 1] ), "Z": interpolate.InterpolatedUnivariateSpline( time_steps[good_indices], pos_data[good_indices, 2] ), "period": pos_data.shape[0] / (2.0 * self.frame_rate), } self.motion_functions[key]["initial_pose"] = self.stick_pose_at_time( function=self.motion_functions[key], time=0 ) self.motion_list.append(key) # There are 6 knot points for circular accel and linear accel, but the last point is the same as the initial position # Therefore, the number of interactive markers should be len(time_seed)-1 for circular motions self.motion_functions["circ_accel_sr"]["time_seed"] = ( 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, ) self.motion_functions["circ_accel_sr"]["motion_type"] = "periodic" self.motion_functions["circ_accel_sl"]["time_seed"] = ( 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, ) self.motion_functions["circ_accel_sl"]["motion_type"] = "periodic" self.motion_functions["circ_accel_sr"]["x_knot_seed"] = ( 0.0, 0.0, 0.0, 0.0, 0.0, ) self.motion_functions["circ_accel_sr"]["y_knot_seed"] = ( -0.042, -0.24, -0.41, -0.371, -0.163, ) self.motion_functions["circ_accel_sr"]["z_knot_seed"] = ( 0.20, 0.30, 0.2, 0.0, -0.076, ) self.motion_functions["circ_accel_sl"]["x_knot_seed"] = ( 0.0, 0.0, 0.0, 0.0, 0.0, ) self.motion_functions["circ_accel_sl"]["y_knot_seed"] = ( -0.061, 0.0592, 0.2619, 0.3100, 0.1410, ) self.motion_functions["circ_accel_sl"]["z_knot_seed"] = ( 0.1801, 0.3820, 0.344, 0.15914, 0.03543, ) self.motion_functions["lin_accel_sr"]["time_seed"] = (0.3, 0.6, 0.9, 1.2) self.motion_functions["lin_accel_sr"]["motion_type"] = "periodic" self.motion_functions["lin_accel_sl"]["time_seed"] = (0.3, 0.6, 0.9, 1.2) self.motion_functions["lin_accel_sl"]["motion_type"] = "periodic" self.motion_functions["lin_accel_sr"]["x_knot_seed"] = (0.0, 0.0, 0.0) self.motion_functions["lin_accel_sr"]["y_knot_seed"] = (-0.05, 0.0, -0.05) self.motion_functions["lin_accel_sr"]["z_knot_seed"] = (0.1, 0.2, 0.1) self.motion_functions["lin_accel_sl"]["x_knot_seed"] = (0.0, 0.0, 0.0) self.motion_functions["lin_accel_sl"]["y_knot_seed"] = (0.05, 0.0, 0.05) self.motion_functions["lin_accel_sl"]["z_knot_seed"] = (-0.1, -0.2, -0.1) self.motion_functions["lin_accel_sl"][ "initial_pose" ].position.x = self.DEFAULT_X_COORD self.motion_functions["lin_accel_sl"]["initial_pose"].position.y = 0.1 self.motion_functions["lin_accel_sl"]["initial_pose"].position.z = 1.42 self.motion_functions["lin_accel_sr"][ "initial_pose" ].position.x = self.DEFAULT_X_COORD self.motion_functions["lin_accel_sr"]["initial_pose"].position.y = -0.1 self.motion_functions["lin_accel_sr"]["initial_pose"].position.z = 1.12 left_pose = Pose() right_pose = Pose() left_pose.position.x = self.DEFAULT_X_COORD left_pose.position.y = 0.21 left_pose.position.z = 1.27 right_pose.position.x = self.DEFAULT_X_COORD right_pose.position.y = -0.28 right_pose.position.z = 1.27 # Now store the initial position for throwing motions # self.motion_functions["circ_accel_sr"]["initial_pose"] = circ_accel_initial_pose_right left_pose = Pose() right_pose = Pose() left_pose.position.x = self.DEFAULT_X_COORD right_pose.position.x = self.DEFAULT_X_COORD left_pose.position.y = 0.05 right_pose.position.y = -0.05 left_pose.position.z = 1.25 right_pose.position.z = 1.25 self.motion_functions["vertical_throw_sl"] = { "x_knot_seed": (0.0, 0.0, 0.0), "y_knot_seed": (0.1, 0.74, 0.748), "z_knot_seed": (0.0, 0.0, 0.0), "time_seed": (0.2, 0.55, 0.6), "flight_time": 0.5, "initial_pose": copy.deepcopy(left_pose), "motion_type": "oneshot", } self.motion_functions["vertical_throw_sr"] = { "x_knot_seed": (0.0, 0.0, 0.0), "y_knot_seed": (-0.1, -0.74, -0.748), "z_knot_seed": (0.0, 0.0, 0.0), "time_seed": (0.2, 0.55, 0.6), "flight_time": 0.5, "initial_pose": copy.deepcopy(right_pose), "motion_type": "oneshot", } left_pose.position.y = 0.15 right_pose.position.y = -0.15 left_pose.position.z = 1.20 right_pose.position.z = 1.30 self.motion_functions["right_throw_sl"] = { "x_knot_seed": (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), "y_knot_seed": (-0.1, 0.33, 0.46), "z_knot_seed": (0.2, 0.42, 0.439), "time_seed": (0.1, 0.2, 0.3, 0.4, 0.5, 0.6), "flight_time": 0.5, "initial_pose": copy.deepcopy(left_pose), "motion_type": "oneshot", } self.motion_functions["right_throw_sr"] = { "x_knot_seed": (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), "y_knot_seed": (0.1, -0.33, -0.46), "z_knot_seed": (-0.2, -0.42, -0.439), "time_seed": (0.1, 0.2, 0.3, 0.4, 0.5, 0.6), "flight_time": 0.5, "initial_pose": copy.deepcopy(right_pose), "motion_type": "oneshot", } self.motion_functions["left_throw_sl"] = { "x_knot_seed": (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), "y_knot_seed": (-0.1, 0.2, 0.304652, 0.4, 0.5, 0.6, 0.7, 0.8), "z_knot_seed": (0.1, -0.22814, -0.38441, -0.4, -0.5, -0.6, -0.7, -0.8), "time_seed": (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8), "flight_time": 0.5, "initial_pose": copy.deepcopy(left_pose), "motion_type": "oneshot", } self.motion_functions["left_throw_sr"] = { "x_knot_seed": (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), "y_knot_seed": (0.1, -0.22814, -0.38441, -0.4, -0.5, -0.6, -0.7, -0.8), "z_knot_seed": (0.1, 0.2, 0.304652, 0.4, 0.5, 0.6, 0.7, 0.8), "time_seed": (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8), "flight_time": 0.5, "initial_pose": copy.deepcopy(right_pose), "motion_type": "oneshot", } self.motion_list.append("vertical_throw") self.motion_list.append("right_throw") self.motion_list.append("left_throw") self.motion_list = [ m.replace("_sr", "").replace("_sl", "") for m in self.motion_list ] self.motion_list = list(set(self.motion_list)) # print("Available motions are: " + str(self.motion_list)) self.motion_list = [] for key in self.motion_data_dict: self.motion_list.append(key) self.motion_list.append("vertical_throw") self.motion_list.append("right_throw") self.motion_list.append("left_throw") self.motion_list = [ m.replace("_sr", "").replace("_sl", "") for m in self.motion_list ] self.motion_list = list(set(self.motion_list)) left_pose = Pose() right_pose = Pose() left_pose.position.x = self.DEFAULT_X_COORD right_pose.position.x = self.DEFAULT_X_COORD left_pose.position.y = 0.05 right_pose.position.y = -0.05 left_pose.position.z = 1.25 right_pose.position.z = 1.25 self.motion_functions["horizontal_impulse_sl"] = { "x_knot_seed": (0.0, 0.0, 0.0, 0.0), "y_knot_seed": (0.23, 0.12, -0.12, 0.23), "z_knot_seed": (0.0, 0.0, 0.0, 0.0), "time_seed": (0.9, 1.4, 2.0, 2.8, 3.5), "initial_pose": copy.deepcopy(left_pose), "motion_type": "periodic", } self.motion_functions["horizontal_impulse_sr"] = { "x_knot_seed": (0.0, 0.0, 0.0, 0.0), "y_knot_seed": (0.23, 0.12, -0.12, 0.23), "z_knot_seed": (0.0, 0.0, 0.0, 0.0), "time_seed": (0.9, 1.4, 2.0, 2.8, 3.5), "initial_pose": copy.deepcopy(right_pose), "motion_type": "periodic", } self.motion_functions["vertical_throw_sr"]["y_knot_seed"] = ( -0.1, -0.725, -0.735, ) self.motion_functions["vertical_throw_sl"]["y_knot_seed"] = (0.1, 0.725, 0.735) left_pose.position.z = 1.35 right_pose.position.z = 1.35 self.motion_functions["left_throw_sl"]["initial_pose"] = left_pose self.motion_functions["left_throw_sr"]["initial_pose"] = right_pose self.current_motion = "circ_accel" def get_traj_for_transition_to_motion(self, desired_motion): """ Return stick poses between the current position and start point of the desired motion Parameters: desired_motion: A string naming the motion desired. This must one of the accepted names contained in the self.motion_list list If current motion is the same as desired motion, returns without doing anything """ # if(self.current_motion == desired_motion): # print("Already executing this. Returning")0.9, 1.2, 1.6 # Get start position of desired motion for each arm sr_target_pose = self.motion_functions[desired_motion + "_sl"]["initial_pose"] sl_target_pose = self.motion_functions[desired_motion + "_sr"]["initial_pose"] # Get direction of travel for both sticks as as vector sr_target_pose_vec = np.array( ( sr_target_pose.position.x, sr_target_pose.position.y, sr_target_pose.position.z, ) ) sl_target_pose_vec = np.array( ( sl_target_pose.position.x, sl_target_pose.position.y, sl_target_pose.position.z, ) ) sr_current_pose_vec = np.array( ( self.last_stick_positions["pos_right"].x, self.last_stick_positions["pos_right"].y, self.last_stick_positions["pos_right"].z, ) ) sl_current_pose_vec = np.array( ( self.last_stick_positions["pos_left"].x, self.last_stick_positions["pos_left"].y, self.last_stick_positions["pos_left"].z, ) ) # Get directions of travel for both arms left_dir = sl_target_pose_vec - sl_current_pose_vec right_dir = sr_target_pose_vec - sr_current_pose_vec if np.linalg.norm(left_dir) < 0.01 or np.linalg.norm(right_dir) < 0.01: self.initialize_robot_positions() return False, False time_to_target = 0.8 # Set a constant time to get to the target steps = int(time_to_target * self.pub_rate) # the number of steps to target left_step_length = np.linalg.norm(left_dir) / steps right_step_length = np.linalg.norm(right_dir) / steps print( "Step lengths are : \n Left: " + str(left_step_length) + "\n Right: " + str(right_step_length) ) # Get normal of direction vectors if left_step_length != 0.0: left_dir = left_dir / np.linalg.norm(left_dir) if right_step_length != 0.0: right_dir = right_dir / np.linalg.norm(right_dir) left_stick_pose_array = PoseArray() right_stick_pose_array = PoseArray() for i in range(0, steps + 1): pose_l = Pose() pose_r = Pose() # Get next waypoint by adding normal direction vector * step length to current position sr_current_pose_vec = sr_current_pose_vec + right_dir * right_step_length sl_current_pose_vec = sl_current_pose_vec + left_dir * left_step_length pose_r.position.x = sr_current_pose_vec[0] pose_r.position.y = sr_current_pose_vec[1] pose_r.position.z = sr_current_pose_vec[2] pose_l.position.x = sl_current_pose_vec[0] pose_l.position.y = sl_current_pose_vec[1] pose_l.position.z = sl_current_pose_vec[2] left_stick_pose_array.poses.append(copy.deepcopy(pose_l)) right_stick_pose_array.poses.append(copy.deepcopy(pose_r)) # The last pose published should be the target pose self.current_motion = desired_motion return left_stick_pose_array, right_stick_pose_array # self.start_publish() def stick_pose_at_time(self, function, time, rate=1.0): """ Parameters: function: The motion function(s) to use. Expects a dictionary containing a function object for each X, Y and Z coordinates at time t as well as the time period of the function rate: Rate of rotation. Greater than one for faster motion time: The time at which to calculate the coordinates """ t = (rate * time) % function["period"] # Time pose = Pose() if self.constrain_to_plane: pose.position.x = self.DEFAULT_X_COORD else: pose.position.x = function["X"](t) + 0.3 pose.position.y = function["Y"](t) + 0.2 pose.position.z = function["Z"](t) - 0.1 return pose def initialize_robot_positions(self): print("Waiting for robot arm initialization service") try: rospy.wait_for_service( "/initialize_robots_from_stick_positions", timeout=1.0 ) pose_left = self.motion_functions[self.current_motion + "_sl"][ "initial_pose" ] pose_right = self.motion_functions[self.current_motion + "_sr"][ "initial_pose" ] req = SetInitialStickPositionsRequest() req.left_stick_position = pose_left.position req.right_stick_position = pose_right.position self.set_robots_initial_position_service(req) self.last_stick_positions = { "pos_left": pose_left.position, "pos_right": pose_right.position, } except rospy.ROSException: print( "Service not found. Did you start the stick position to joint converter node?" ) self.create_knot_server() def start_publish(self, loop=False, speed_factor=1.0): print("Starting publish") # self.check_amplitude() thread.start_new_thread(self._run_publish, (loop, speed_factor)) def stop_publish(self): self.exit_publish_flag = True def _run_publish(self, loop=False, speed_factor=1.0): "This function is meant to be called in a separate thread by play_experiment" print("Starting publish 2") self.exit_publish_flag = False self.pause_publish_flag = False r = rospy.Rate(self.pub_rate) initial_time = rospy.get_time() motion = self.current_motion while True: time = rospy.get_time() - initial_time # Adding an empty pose as the robot controller requires a pose array msg pose_array = PoseArray() pose_l = self.stick_pose_at_time( function=self.motion_functions[motion + "_sl"], time=time, rate=speed_factor, ) pose_r = self.stick_pose_at_time( function=self.motion_functions[motion + "_sr"], time=time, rate=speed_factor, ) pose_array.poses.append(pose_l) pose_array.poses.append(pose_r) self.pub_stick_poses.publish(pose_array) self.last_stick_positions = { "pos_left": pose_l.position, "pos_right": pose_r.position, } self.update_and_publish_markers( {"stick_left": pose_l, "stick_right": pose_r} ) if self.pause_publish_flag: rospy.loginfo("Publishing stick poses is paused!") while self.pause_publish_flag: rospy.sleep(0.2) rospy.loginfo("Publishing stick poses is resumed!") if self.exit_publish_flag or rospy.is_shutdown(): print("Done with thread while loop") break r.sleep() rospy.loginfo("Stopping...") return # Takes diabolo sim parameters as argument. # parameters[0] = /pv_pre_cap_scaling_factor # parameters[1] = /pv_cap_scaling_factor # parameters[2] = /pv_post_cap_scaling_factor # parameters[3] = /constrained_velocity_scaling_factor def initialize_sim_diabolo(self, parameters=(1.0, 1.0, 1.0, 1.0)): # Set the pull velocity parameters rospy.set_param("/pv_pre_cap_scaling_factor", parameters[0]) rospy.set_param("/pv_cap_scaling_factor", parameters[1]) rospy.set_param("/pv_post_cap_scaling_factor", parameters[2]) rospy.set_param("/constrained_velocity_scaling_factor", parameters[3]) # Delete existing diabolo if present delete_model = rospy.ServiceProxy("/gazebo/delete_model", DeleteModel) rospy.wait_for_service("/gazebo/delete_model") req = DeleteModelRequest() req.model_name = "diabolo" try: if not delete_model(req): print("There was no diabolo spawned") except: raise # Set initial postions as parameters on the parameter server pose_left = self.motion_functions[self.current_motion + "_sl"]["initial_pose"] pose_right = self.motion_functions[self.current_motion + "_sr"]["initial_pose"] left_pos = pose_left.position right_pos = pose_right.position rospy.set_param( "/right_stick_initial_position", [ float(self.last_stick_positions["pos_right"].x), float(self.last_stick_positions["pos_right"].y), float(self.last_stick_positions["pos_right"].z), ], ) rospy.set_param( "/left_stick_initial_position", [ float(self.last_stick_positions["pos_left"].x), float(self.last_stick_positions["pos_left"].y), float(self.last_stick_positions["pos_left"].z), ], ) # The initial rotational velocity of the diabolo rospy.set_param("/diabolo_initial_rot_velocity", 25.0) print("Done setting params") self._spawn_diabolo_in_gazebo() return True def _spawn_diabolo_in_gazebo(self): # Create service proxy spawn_model = rospy.ServiceProxy("/gazebo/spawn_urdf_model", SpawnModel) rospy.wait_for_service("/gazebo/spawn_urdf_model") # Load URDF with open(self.diabolo_urdf_file_path, "r") as f: poses = dict() model_xml = f.read() # Spawn model req = SpawnModelRequest() req.model_name = "diabolo" # req.initial_pose = diabolo_pose pose = Pose() pose.position.x = 0.7 pose.position.y = 0.0 pose.position.z = 0.7 req.initial_pose.position = pose.position req.model_xml = model_xml req.robot_namespace = "/" req.reference_frame = "world" if spawn_model(req).success: print("Spawning diabolo in gazebo") rospy.sleep(0.2) def execute_periodic_trajectory_( self, a_bot_trajectory, b_bot_trajectory, speed_factor=0.5, confirm_execution=True, start_time=None, ): req = GetPlanningSceneRequest() req.components.components = req.components.ROBOT_STATE planning_scene = self.get_planning_scene_service(req) try: display_a_bot_traj = moveit_msgs.msg.DisplayTrajectory() display_b_bot_traj = moveit_msgs.msg.DisplayTrajectory() a_bot_robot_traj = moveit_msgs.msg.RobotTrajectory() b_bot_robot_traj = moveit_msgs.msg.RobotTrajectory() a_bot_robot_traj.joint_trajectory = a_bot_trajectory b_bot_robot_traj.joint_trajectory = b_bot_trajectory display_a_bot_traj.trajectory.append(a_bot_robot_traj) display_b_bot_traj.trajectory.append(b_bot_robot_traj) display_a_bot_traj.trajectory_start = planning_scene.scene.robot_state display_b_bot_traj.trajectory_start = planning_scene.scene.robot_state self.a_bot_display_traj_pub.publish(display_a_bot_traj) self.b_bot_display_traj_pub.publish(display_b_bot_traj) time_to_start = start_time if not time_to_start: time_to_start = rospy.Time.now() if confirm_execution: print("Execute this trajectory? y/n") e = raw_input() if e == "y": time_to_start = rospy.Time.now() + rospy.Duration(0.1) a_bot_trajectory.header.stamp = time_to_start b_bot_trajectory.header.stamp = time_to_start self.a_bot_command_pub.publish(a_bot_trajectory) self.b_bot_command_pub.publish(b_bot_trajectory) else: # print("Auto execution selected. Executing") a_bot_trajectory.header.stamp = time_to_start b_bot_trajectory.header.stamp = time_to_start # if(time_to_start.to_sec() > rospy.Time.now().to_sec()): # print("Time in header = " + str(time_to_start.to_sec())) # print("Published time = " + str(rospy.Time.now().to_sec())) # else: # rospy.logerr("Time in header = " + str(time_to_start.to_sec())) # rospy.logerr("Published time = " + str(rospy.Time.now().to_sec())) self.a_bot_command_pub.publish(a_bot_trajectory) self.b_bot_command_pub.publish(b_bot_trajectory) return time_to_start + a_bot_trajectory.points[-1].time_from_start except: raise def execute_throw_trajectory_( self, a_bot_trajectory, b_bot_trajectory, time_of_flight=0.5, speed_factor=1.0, reverse=False, confirm_execution=True, start_time=None, ): a_bot_whole_trajectory = copy.deepcopy(a_bot_trajectory) b_bot_whole_trajectory = copy.deepcopy(b_bot_trajectory) last_time = rospy.Duration(0) old_last_time = rospy.Duration(0) new_a_bot_trajectory = copy.deepcopy(a_bot_whole_trajectory) for i in range(len(a_bot_whole_trajectory.points)): if not i == 0: step_length = ( a_bot_whole_trajectory.points[i].time_from_start - a_bot_whole_trajectory.points[i - 1].time_from_start ) else: step_length = a_bot_whole_trajectory.points[i].time_from_start new_step_length = step_length / speed_factor new_a_bot_trajectory.points[i].time_from_start = new_step_length + last_time last_time = new_step_length + last_time last_time = rospy.Duration(0) old_last_time = rospy.Duration(0) new_b_bot_trajectory = copy.deepcopy(b_bot_whole_trajectory) for i in range(len(b_bot_whole_trajectory.points)): if not i == 0: step_length = ( b_bot_whole_trajectory.points[i].time_from_start - b_bot_whole_trajectory.points[i - 1].time_from_start ) else: step_length = b_bot_whole_trajectory.points[i].time_from_start new_step_length = step_length / speed_factor new_b_bot_trajectory.points[i].time_from_start = new_step_length + last_time last_time = new_step_length + last_time time_to_start = start_time req = GetPlanningSceneRequest() req.components.components = req.components.ROBOT_STATE planning_scene = self.get_planning_scene_service(req) a_bot_display_traj = moveit_msgs.msg.DisplayTrajectory() b_bot_display_traj = moveit_msgs.msg.DisplayTrajectory() a_bot_robot_traj = moveit_msgs.msg.RobotTrajectory() a_bot_robot_traj.joint_trajectory = copy.deepcopy(new_a_bot_trajectory) b_bot_robot_traj = moveit_msgs.msg.RobotTrajectory() b_bot_robot_traj.joint_trajectory = copy.deepcopy(new_b_bot_trajectory) a_bot_display_traj.trajectory.append(a_bot_robot_traj) b_bot_display_traj.trajectory.append(b_bot_robot_traj) a_bot_display_traj.trajectory_start = planning_scene.scene.robot_state b_bot_display_traj.trajectory_start = planning_scene.scene.robot_state self.a_bot_display_traj_pub.publish(a_bot_display_traj) self.b_bot_display_traj_pub.publish(b_bot_display_traj) if confirm_execution: print("Execute this trajectory? y/n") e = raw_input() if e == "y": now = rospy.Time.now() + rospy.Duration(1.0) new_a_bot_trajectory.header.stamp = now new_b_bot_trajectory.header.stamp = now self.a_bot_command_pub.publish(new_a_bot_trajectory) self.b_bot_command_pub.publish(new_b_bot_trajectory) else: print("Auto execution selected. Executing") new_a_bot_trajectory.header.stamp = time_to_start new_b_bot_trajectory.header.stamp = time_to_start self.a_bot_command_pub.publish(new_a_bot_trajectory) self.b_bot_command_pub.publish(new_b_bot_trajectory) return time_to_start + new_a_bot_trajectory.points[-1].time_from_start # if(reverse): # self.last_stick_positions["pos_left"] = left_stick_traj.poses[0].position # self.last_stick_positions["pos_right"] = right_stick_traj.poses[0].position # Increase the time from start for all the # rospy.sleep(time_of_flight) # TEMP: Reverse motion nack to starting point of the trajectory # req = CreateRobotTrajectoryRequest() # number_of_poses = len(left_stick_traj.poses) # resp = self.command_robot_trajectory_service(req) # if(resp.success): # print("Reverse trajectory executed!") def make_prediction_request_msg_( self, planned_left_poses=None, planned_right_poses=None ): # Goal positions and velocities are arrays of the appropriate type req = CreateSticksTrajectoryRequest() ################### Set current Sim Config req.current_sim_config.pv_pre_cap_scale = 0.13 req.current_sim_config.pv_post_cap_scale = 0.13 req.current_sim_config.pv_cap_scale = 0.07 req.current_sim_config.velocity_diffusion_factor = 0.9999 if ( self.motion_functions[self.current_motion + "_sl"]["motion_type"] == "oneshot" ): req.motion_flag = CreateSticksTrajectoryRequest.THROW elif ( self.motion_functions[self.current_motion + "_sl"]["motion_type"] == "periodic" ): req.motion_flag = CreateSticksTrajectoryRequest.LOOP # Diabolo constant parameters req.current_sim_config.mass = 0.2 req.current_sim_config.axle_radius = 0.0065 req.current_sim_config.string_length = 1.58 if planned_left_poses and planned_right_poses: req.planned_left_stick_poses = copy.deepcopy(planned_left_poses) req.planned_right_stick_poses = copy.deepcopy(planned_right_poses) return req def run_oneshot_motion( self, interactive=True, confirm_execution=True, preparatory_motion="horizontal_impulse", ): planned_left_poses = None planned_right_poses = None # The trajectory begins one second from now trajectory_start_time = rospy.Time.now() + rospy.Duration(1.0) prediction_time = 0 diab_state_req = GetDiaboloStateRequest() diab_state_req.header.stamp = rospy.Time.now() diabolo_state_resp = copy.deepcopy( self.get_diabolo_state_service(diab_state_req) ) self.latest_diabolo_state = copy.deepcopy(diabolo_state_resp.state) # Get diabolo orientation here, to handle pitch and yaw dp = self.latest_diabolo_state.pose.orientation self.get_stick_tips_from_tf() left_stick_start_pos = self.last_stick_positions["pos_left"] right_stick_start_pos = self.last_stick_positions["pos_right"] # Execute a pre-defined motion (e.g. to give a horizontal impulse for sideways throws) if self.current_motion == "left_throw" or self.current_motion == "right_throw": motion = copy.deepcopy(self.current_motion) self.current_motion = do_preparatory_motion prediction_start_time = rospy.Time.now() ( a_bot_trajectory, b_bot_trajectory, left_stick_poses, right_stick_poses, ) = self.call_prediction_service( interactive=False, planned_left_poses=planned_left_poses, planned_right_poses=planned_right_poses, left_stick_start_pos=left_stick_start_pos, right_stick_start_pos=right_stick_start_pos, plan=False, ) trajectory_end_time = self.execute_periodic_trajectory_( a_bot_trajectory, b_bot_trajectory, 1.0, True, start_time=trajectory_start_time, ) safe_prediction_time = rospy.Duration(0.5) sleep_time = (trajectory_end_time - rospy.Time.now()) - safe_prediction_time rospy.sleep(sleep_time) diab_state_req = GetDiaboloStateRequest() diab_state_req.header.stamp = rospy.Time.now() diabolo_state_resp = copy.deepcopy( self.get_diabolo_state_service(diab_state_req) ) self.latest_diabolo_state = copy.deepcopy(diabolo_state_resp.state) trajectory_start_time = trajectory_end_time self.current_motion = motion ( a_bot_trajectory, b_bot_trajectory, left_stick_poses, right_stick_poses, ) = self.call_prediction_service( interactive=True, planned_left_poses=planned_left_poses, planned_right_poses=planned_right_poses, left_stick_start_pos=left_stick_start_pos, right_stick_start_pos=right_stick_start_pos, plan=False, ) if a_bot_trajectory: trajectory_end_time = self.execute_throw_trajectory_( a_bot_trajectory, b_bot_trajectory, 1.0, 1.0, True, False, start_time=trajectory_start_time, ) # Create reverse trajectory # TODO: Add the initial point to the reversed trajectory. The calculated trajectory does not have the first point. # There is probably also not much point keeping the last point of the old trajectory (That is the current position) reverse_a_bot_trajectory = JointTrajectory() reverse_b_bot_trajectory = JointTrajectory() # print(len(a_bot_trajectory.points)) reverse_a_bot_trajectory.joint_names = a_bot_trajectory.joint_names reverse_b_bot_trajectory.joint_names = b_bot_trajectory.joint_names for i in range(len(a_bot_trajectory.points)): # print("Now adding " + str(a_bot_trajectory.points[i].time_from_start.to_sec()) + " time from start reverse traj") reverse_a_bot_trajectory.points.append( copy.deepcopy( a_bot_trajectory.points[len(a_bot_trajectory.points) - 1 - i] ) ) reverse_a_bot_trajectory.points[ i ].time_from_start = a_bot_trajectory.points[i].time_from_start for i in range(len(b_bot_trajectory.points)): reverse_b_bot_trajectory.points.append( copy.deepcopy( b_bot_trajectory.points[len(b_bot_trajectory.points) - 1 - i] ) ) reverse_b_bot_trajectory.points[ i ].time_from_start = b_bot_trajectory.points[i].time_from_start # rospy.logwarn("Forward trajectory") # print(a_bot_trajectory) # rospy.logwarn("Reverse trajectory") # print(reverse_a_bot_trajectory) print("Reverse trajectory? y/n?") e = raw_input() if e == "y": trajectory_start_time = rospy.Time.now() + rospy.Duration(0.01) trajectory_end_time = self.execute_throw_trajectory_( reverse_a_bot_trajectory, reverse_b_bot_trajectory, 1.0, 0.8, False, False, start_time=trajectory_start_time, ) else: rospy.logerr("Could not find a trajectory") def start_periodic_motion( self, interactive=True, confirm_execution=True, preparatory_motion="horizontal_impulse", ): self.stop_motion_flag = False thread.start_new_thread( self.run_periodic_motion, (interactive, confirm_execution, preparatory_motion), ) def stop_periodic_motion(self): self.stop_motion_flag = True def run_periodic_motion( self, interactive=False, confirm_execution=True, preparatory_motion="horizontal_impulse", ): #### IMPORTANT: This assumes that the points in the trajectory are evenly spaced #### That must be assured by the node providing the stick trajectory/robot trajectory generating service planned_left_poses = None planned_right_poses = None # The trajectory begins one second from now trajectory_start_time = rospy.Time.now() + rospy.Duration(1.0) prediction_time = 0 diab_state_req = GetDiaboloStateRequest() diab_state_req.header.stamp = rospy.Time.now() diabolo_state_resp = copy.deepcopy( self.get_diabolo_state_service(diab_state_req) ) self.latest_diabolo_state = copy.deepcopy(diabolo_state_resp.state) # Get diabolo orientation here, to handle pitch and yaw dp = self.latest_diabolo_state.pose.orientation self.get_stick_tips_from_tf() left_stick_start_pos = self.last_stick_positions["pos_left"] right_stick_start_pos = self.last_stick_positions["pos_right"] # First, execute the pre-defined horizontal motion motion = copy.deepcopy(self.current_motion) if preparatory_motion: self.current_motion = preparatory_motion ( a_bot_trajectory, b_bot_trajectory, left_stick_poses, right_stick_poses, ) = self.call_prediction_service( interactive=False, planned_left_poses=None, planned_right_poses=None, left_stick_start_pos=left_stick_start_pos, right_stick_start_pos=right_stick_start_pos, plan=False, ) trajectory_end_time = self.execute_periodic_trajectory_( a_bot_trajectory, b_bot_trajectory, 1.0, confirm_execution, start_time=trajectory_start_time, ) # In this part of the code, "prediction" means motion generation safe_prediction_time = rospy.Duration(0.5) prediction_start_time = ( trajectory_end_time - trajectory_start_time ) - safe_prediction_time print("Prediction start time = " + str(prediction_start_time.to_sec())) # Break out if there is not enough time to plan if prediction_start_time.to_sec() < 0.0: print( "Prediction time is too long. Is = " + str(safe_prediction_time.to_sec()) ) prediction_start_time = trajectory_end_time planned_left_poses = None planned_right_poses = None last_traj_end_time = rospy.Time.now() + rospy.Duration(1.0) else: # rospy.logwarn("prediction_start_time is " + str(prediction_start_time.to_sec())) # rospy.logwarn("Trajectory length is " + str((trajectory_end_time - trajectory_start_time).to_sec())) # Find the point from which to get planned poses planned_left_poses = geometry_msgs.msg.PoseArray() planned_right_poses = geometry_msgs.msg.PoseArray() # This is the id of the last pose to execute in the sent trajectory last_pose_to_execute = 0 for j in range(len(a_bot_trajectory.points) - 1): # print("Time from start for j = " + str(j) + " is" + str(a_bot_trajectory.points[j].time_from_start.to_sec())) if ( a_bot_trajectory.points[j].time_from_start <= prediction_start_time and a_bot_trajectory.points[j + 1].time_from_start > prediction_start_time ): # pass the left and right poses from the ith position onwards as planned trajectories to the prediction node planned_left_poses.poses = left_stick_poses.poses[j:] planned_right_poses.poses = right_stick_poses.poses[j:] last_pose_to_execute = j break # Store end position of start trajectory as start position of old trajectory print( "last_pose to execute is " + str(last_pose_to_execute) + " at time " + str( a_bot_trajectory.points[ last_pose_to_execute ].time_from_start.to_sec() ) ) left_stick_start_pos = planned_left_poses.poses[0].position right_stick_start_pos = planned_right_poses.poses[0].position planned_left_poses.poses = planned_left_poses.poses[1:] planned_right_poses.poses = planned_right_poses.poses[1:] # Sleep until the next trajectory is at left_stick_start_pos now = rospy.Time.now() sleep_time1 = ( trajectory_start_time - now ) # Until current trajectory is over sleep_time2 = ( trajectory_end_time - trajectory_start_time ) - safe_prediction_time # Until next trajectory is at left_stick_start_pos sleep_time = sleep_time1 + sleep_time2 rospy.sleep(sleep_time) # Change the current motion back to what it was before applying the impulse self.current_motion = motion trajectory_start_time = trajectory_end_time else: trajectory_start_time = rospy.Time.now() + rospy.Duration(1.0) prediction_time = 0 diab_state_req = GetDiaboloStateRequest() diab_state_req.header.stamp = rospy.Time.now() diabolo_state_resp = copy.deepcopy( self.get_diabolo_state_service(diab_state_req) ) self.latest_diabolo_state = copy.deepcopy(diabolo_state_resp.state) while True: prediction_start_time = rospy.Time.now() ( a_bot_trajectory, b_bot_trajectory, left_stick_poses, right_stick_poses, ) = self.call_prediction_service( interactive=True, planned_left_poses=planned_left_poses, planned_right_poses=planned_right_poses, left_stick_start_pos=left_stick_start_pos, right_stick_start_pos=right_stick_start_pos, plan=False, ) # If user-set flag is true, stop moving the arms if self.stop_motion_flag or rospy.is_shutdown(): break # Ensure that the prediction service found something if a_bot_trajectory: reverse = False if ( self.motion_functions[self.current_motion + "_sl"]["motion_type"] == "periodic" ): # Queue up the trajectory in the driver, so it will be executed next trajectory_end_time = self.execute_periodic_trajectory_( a_bot_trajectory, b_bot_trajectory, 1.0, confirm_execution, start_time=trajectory_start_time, ) # Time that this prediction/motion generation took prediction_time = rospy.Time.now() - prediction_start_time # Add safety buffer safe_prediction_time = prediction_time + prediction_time * 0.3 # This should be the time from start for the first pose for the list of "planned poses" # when planning the next trajectory prediction_start_time = ( trajectory_end_time - trajectory_start_time ) - safe_prediction_time # Don't plan another trajectory if there is not enough time to plan it if prediction_start_time.to_sec() < 0.0: # print("Prediction time is too long. Is = " + str(safe_prediction_time.to_sec())) prediction_start_time = trajectory_end_time planned_left_poses = None planned_right_poses = None last_traj_end_time = rospy.Time.now() + rospy.Duration(1.0) break else: # Prepare next loop # rospy.logwarn("prediction_start_time is " + str(prediction_start_time.to_sec())) # rospy.logwarn("Trajectory length is " + str((trajectory_end_time - trajectory_start_time).to_sec())) # Find the point from which to get planned poses planned_left_poses = geometry_msgs.msg.PoseArray() planned_right_poses = geometry_msgs.msg.PoseArray() # Find the last point in the stick trajectory to be executed before beginning the prediction # for the diabolo state at the end of the current trajectory # Trim planned poses to contain only remainder of next trajectory. This will be used during the # next iteration. last_pose_to_execute = 0 for j in range(len(a_bot_trajectory.points) - 1): if ( a_bot_trajectory.points[j].time_from_start <= prediction_start_time and a_bot_trajectory.points[j + 1].time_from_start > prediction_start_time ): # pass the left and right poses from the ith positon onwards as planned trajectories to the prediction node # print("len(a_bot_trajectory.points)", len(a_bot_trajectory.points)) # print("len(left_stick_poses.poses)", len(left_stick_poses.poses)) planned_left_poses.poses = left_stick_poses.poses[j:] planned_right_poses.poses = right_stick_poses.poses[j:] last_pose_to_execute = j break # Store end position of start trajectory as start position of old trajectory left_stick_start_pos = planned_left_poses.poses[0].position right_stick_start_pos = planned_right_poses.poses[0].position planned_left_poses.poses = planned_left_poses.poses[1:] planned_right_poses.poses = planned_right_poses.poses[1:] # Sleep until the next trajectory is at left_stick_start_pos now = rospy.Time.now() sleep_time1 = ( trajectory_start_time - now ) # Until current trajectory is over sleep_time2 = ( trajectory_end_time - trajectory_start_time ) - safe_prediction_time # Until next trajectory is at left_stick_start_pos sleep_time = sleep_time1 + sleep_time2 rospy.sleep(sleep_time) # self.pause_gazebo_service() diab_state_req = GetDiaboloStateRequest() diab_state_req.header.stamp = ( trajectory_start_time + a_bot_trajectory.points[last_pose_to_execute].time_from_start ) self.latest_diabolo_state = copy.deepcopy( self.get_diabolo_state_service(diab_state_req).state ) trajectory_start_time = trajectory_end_time # self.unpause_gazebo_service() return def get_diabolo_waypoint_goals( self, goal_velocity=geometry_msgs.msg.Point(), goal_position=geometry_msgs.msg.Point(), ): # This is the initial position. Do not add to request waypoints goal_states = [] goal_state = DiaboloState() diabolo_goal_pos = geometry_msgs.msg.Point() diabolo_goal_vel = geometry_msgs.msg.Point() # if self.latest_diabolo_pose: # diabolo_goal_pos = copy.deepcopy(self.latest_diabolo_pose.position) # else: if ( self.motion_functions[self.current_motion + "_sl"]["motion_type"] == "periodic" ): diabolo_goal_pos = geometry_msgs.msg.Point() diabolo_goal_pos.x = self.DEFAULT_X_COORD diabolo_goal_pos.y = -0.0382 diabolo_goal_pos.z = 0.51991 ## First waypoint diabolo_goal_pos.x = self.DEFAULT_X_COORD diabolo_goal_pos.y = diabolo_goal_pos.y + 0.3 diabolo_goal_pos.z = diabolo_goal_pos.z + 0.2 diabolo_goal_vel.x = 0.0 diabolo_goal_vel.y = -0.5 diabolo_goal_vel.z = 1.0 goal_state.trans_velocity = copy.deepcopy(diabolo_goal_vel) goal_state.pose.position = copy.deepcopy(diabolo_goal_pos) goal_state.pose.orientation.w = 1.0 goal_states.append(copy.deepcopy(goal_state)) ## Second waypoint diabolo_goal_pos.x = self.DEFAULT_X_COORD diabolo_goal_pos.y = diabolo_goal_pos.y - 0.1 diabolo_goal_pos.z = diabolo_goal_pos.z + 0.2 diabolo_goal_vel.x = 0.0 diabolo_goal_vel.y = -1.0 diabolo_goal_vel.z = 0.1 goal_state.trans_velocity = copy.deepcopy(diabolo_goal_vel) goal_state.pose.position = copy.deepcopy(diabolo_goal_pos) goal_state.pose.orientation.w = 1.0 goal_states.append(copy.deepcopy(goal_state)) ## Third waypoint diabolo_goal_pos.x = self.DEFAULT_X_COORD diabolo_goal_pos.y = diabolo_goal_pos.y - 0.5 diabolo_goal_pos.z = diabolo_goal_pos.z + 0.0 diabolo_goal_vel.x = 0.0 diabolo_goal_vel.y = -0.5 diabolo_goal_vel.z = -0.5 goal_state.trans_velocity = copy.deepcopy(diabolo_goal_vel) goal_state.pose.position = copy.deepcopy(diabolo_goal_pos) goal_state.pose.orientation.w = 1.0 goal_states.append(copy.deepcopy(goal_state)) ## Fourth waypoint diabolo_goal_pos.x = self.DEFAULT_X_COORD diabolo_goal_pos.y = diabolo_goal_pos.y - 0.1 diabolo_goal_pos.z = diabolo_goal_pos.z - 0.2 diabolo_goal_vel.x = 0.0 diabolo_goal_vel.y = 1.0 diabolo_goal_vel.z = -0.5 goal_state.trans_velocity = copy.deepcopy(diabolo_goal_vel) goal_state.pose.position = copy.deepcopy(diabolo_goal_pos) goal_state.pose.orientation.w = 1.0 goal_states.append(copy.deepcopy(goal_state)) # End of if current motion is circular acceleration else: diabolo_goal_pos = geometry_msgs.msg.Point( x=self.DEFAULT_X_COORD, y=0.0, z=1.25 ) diabolo_goal_vel = geometry_msgs.msg.Point(x=0.0, y=0.0, z=1.4) # 0.1 m # diabolo_goal_vel = geometry_msgs.msg.Point(x=0.0, y=0.0, z=2.0) # 0.2 m # diabolo_goal_vel = geometry_msgs.msg.Point(x=0.0, y=0.0, z=2.8) # 0.4 m # diabolo_goal_vel = geometry_msgs.msg.Point(x=0.0, y=0.0, z=3.4) # 0.6 m # diabolo_goal_vel = geometry_msgs.msg.Point(x=0.0, y=0.0, z=3.97) # 0.8 m # diabolo_goal_vel = geometry_msgs.msg.Point(x=0.0, y=0.0, z=4.4) # 1.0 m goal_state.trans_velocity = copy.deepcopy(diabolo_goal_vel) goal_state.pose.position = copy.deepcopy(diabolo_goal_pos) goal_states.append(goal_state) return goal_states def save_current_knot_points(self, filename="default.pkl"): path = os.path.join(self._package_directory, "config", filename) print("Saving to " + path) with open(path, "w") as f: pickle.dump(self.motion_functions, f) def call_prediction_service( self, planned_left_poses=None, planned_right_poses=None, interactive=False, left_stick_start_pos=None, right_stick_start_pos=None, plan=True, ): """ Call the service that returns a robot trajectory for a given set of diabolo goal states. The service starts planning a new motion starting from a point in the future. planned_left_poses, planned_right_poses are the stick trajectories that will be executed until that point in the future. The current diabolo state is added inside this method, and the diabolo state in the future estimated using the planned_poses. left_stick_start_pos, right_stick_start_pos are the stick positions *before* that prediction, or the start position to plan from if the planned_poses are empty. """ ## Set diabolo goal states # rospy.logwarn("Entered prediction service function") ## TODO: Change this to allow multiple waypoint goals req = self.make_prediction_request_msg_(planned_left_poses, planned_right_poses) req.goal_states = self.get_diabolo_waypoint_goals() ## Set current sim config # Diabolo velocity and pose diabolo_pose = Pose() diabolo_vel = geometry_msgs.msg.Point() if self.latest_diabolo_state: # print("Using actual diabolo starting position") diabolo_pose = self.latest_diabolo_state.pose diabolo_vel = self.latest_diabolo_state.trans_velocity else: rospy.logwarn("Using default diabolo coordinates for prediction service") diabolo_pose.position.x = self.DEFAULT_X_COORD diabolo_pose.position.y = 0.053 diabolo_pose.position.z = 0.554 req.current_sim_config.trans_velocity = geometry_msgs.msg.Point() sl_pose = Pose() sr_pose = Pose() # self.get_stick_tips_from_tf() ## TODO: Get the actual current stick poses. This is temporary sl_pose.position = left_stick_start_pos sr_pose.position = right_stick_start_pos req.current_sim_config.initial_poses.poses.append(diabolo_pose) req.current_sim_config.trans_velocity = diabolo_vel req.current_sim_config.initial_poses.poses.append(sl_pose) req.current_sim_config.initial_poses.poses.append(sr_pose) # IMPORTANT: Must give stick update rate and sim time step req.stick_update_time_step = 1.0 / self.pub_rate req.current_sim_config.time_step = 0.002 req.optimize = plan req.constrain_to_YZ = True # Set spline knot point seeds # Set seeds for left stick time_seed = self.motion_functions[self.current_motion + "_sl"]["time_seed"] # Plot the stick trajectories/splines # These are the seeds for the chosen motion if not interactive: """ If not interactive, use the motion seeds precalculated for the current motion """ left_motion = self.motion_functions[self.current_motion + "_sl"] right_motion = self.motion_functions[self.current_motion + "_sr"] # The number of knot points should correspond to the number of time seeds for i in range(len(time_seed)): left_knot_point = geometry_msgs.msg.Point() right_knot_point = geometry_msgs.msg.Point() if ( i == len(time_seed) - 1 and self.motion_functions[self.current_motion + "_sl"][ "motion_type" ] == "periodic" ): # If this is a periodic motion, the last knot point must be at the initial robot position left_knot_point = geometry_msgs.msg.Point() right_knot_point = geometry_msgs.msg.Point() else: left_knot_point.x = copy.deepcopy(left_motion["x_knot_seed"][i]) left_knot_point.y = copy.deepcopy(left_motion["y_knot_seed"][i]) left_knot_point.z = copy.deepcopy(left_motion["z_knot_seed"][i]) right_knot_point.x = copy.deepcopy(right_motion["x_knot_seed"][i]) right_knot_point.y = copy.deepcopy(right_motion["y_knot_seed"][i]) right_knot_point.z = copy.deepcopy(right_motion["z_knot_seed"][i]) if self.changed_tilt_offset_flag: # This means the tilt offset has changed since the last trajectory. # Must add tilt over the course of this new trajectory print( "Setting left x knot seed at " + str(self.tilt_offset * ((float(i + 1)) / len(time_seed))) ) left_knot_point.x -= self.tilt_offset * ( float((i + 1.0)) / len(time_seed) ) right_knot_point.x += self.tilt_offset * ( float((i + 1.0)) / len(time_seed) ) req.knot_seeds.left_seed.append(copy.deepcopy(left_knot_point)) req.knot_seeds.right_seed.append(copy.deepcopy(right_knot_point)) req.knot_seeds.time_seed.append(copy.deepcopy(time_seed[i])) else: """ If interactive, set the motion seeds to the points gotten from the interactive markers """ marker_positions = copy.deepcopy( self.knot_point_server.get_marker_positions(relative=True) ) # Replace current knot seeds with newly set knot seeds self.motion_functions[self.current_motion + "_sl"]["x_knot_seed"] = [] self.motion_functions[self.current_motion + "_sl"]["y_knot_seed"] = [] self.motion_functions[self.current_motion + "_sl"]["z_knot_seed"] = [] self.motion_functions[self.current_motion + "_sr"]["x_knot_seed"] = [] self.motion_functions[self.current_motion + "_sr"]["z_knot_seed"] = [] self.motion_functions[self.current_motion + "_sr"]["y_knot_seed"] = [] left_positions = marker_positions[0] right_positions = marker_positions[1] # print(left_positions) for i in range(len(time_seed)): left_knot_point = geometry_msgs.msg.Point() right_knot_point = geometry_msgs.msg.Point() if ( i == len(time_seed) - 1 and self.motion_functions[self.current_motion + "_sl"][ "motion_type" ] == "periodic" ): # If this is a periodic motion, the last knot point must be at the initial robot position left_knot_point = geometry_msgs.msg.Point() right_knot_point = geometry_msgs.msg.Point() else: left_knot_point = copy.deepcopy(left_positions[i]) right_knot_point = copy.deepcopy(right_positions[i]) self.motion_functions[self.current_motion + "_sl"][ "x_knot_seed" ].append(left_knot_point.x) self.motion_functions[self.current_motion + "_sl"][ "y_knot_seed" ].append(left_knot_point.y) self.motion_functions[self.current_motion + "_sl"][ "z_knot_seed" ].append(left_knot_point.z) self.motion_functions[self.current_motion + "_sr"][ "x_knot_seed" ].append(right_knot_point.x) self.motion_functions[self.current_motion + "_sr"][ "y_knot_seed" ].append(right_knot_point.y) self.motion_functions[self.current_motion + "_sr"][ "z_knot_seed" ].append(right_knot_point.z) if self.changed_tilt_offset_flag: # This means the tilt offset has changed since the last trajectory. # Must add tilt over the course of this new trajectory print( "Setting left x knot seed at " + str(self.tilt_offset * ((float(i + 1)) / len(time_seed))) ) left_knot_point.x -= self.tilt_offset * ( float((i + 1.0)) / len(time_seed) ) right_knot_point.x += self.tilt_offset * ( float((i + 1.0)) / len(time_seed) ) req.knot_seeds.left_seed.append(copy.deepcopy(left_knot_point)) req.knot_seeds.right_seed.append(copy.deepcopy(right_knot_point)) req.knot_seeds.time_seed.append(copy.deepcopy(time_seed[i])) self.changed_tilt_offset_flag = False # rospy.logwarn("Calling prediction service") resp = self.generate_trajectory_service(req) # rospy.logwarn("Prediction service returned") if resp.success: # print("Got trajectories!") self.marker_count = 0 marker_array = [] self.left_traj_plan_marker = self._make_marker_from_mesh( mesh_filename="", namespace="left_stick_plan", scale=(0.01, 1, 1), color=(1, 0, 0), ) self.left_traj_plan_marker.type = visualization_msgs.msg.Marker.LINE_STRIP for i in resp.left_stick_poses.poses: self.left_traj_plan_marker.points.append(i.position) self.right_traj_plan_marker = self._make_marker_from_mesh( mesh_filename="", namespace="right_stick_plan", scale=(0.01, 1, 1), color=(0, 0, 1), ) self.right_traj_plan_marker.type = visualization_msgs.msg.Marker.LINE_STRIP for i in resp.right_stick_poses.poses: self.right_traj_plan_marker.points.append(i.position) marker_array.append(copy.deepcopy(self.left_traj_plan_marker)) marker_array.append(copy.deepcopy(self.right_traj_plan_marker)) self.sphere_marker_1.pose = sr_pose self.sphere_marker_1.pose.orientation.w = 1.0 self.sphere_marker_1.ns = "right_stick_plan" self.sphere_marker_1.color.r = 0 self.sphere_marker_1.color.g = 0 self.sphere_marker_1.color.b = 1 self.sphere_marker_2.pose = sl_pose self.sphere_marker_2.ns = "left_stick_plan" self.sphere_marker_2.pose.orientation.w = 1.0 self.sphere_marker_2.color.r = 1 self.sphere_marker_2.color.g = 0 self.sphere_marker_2.color.b = 0 marker_array.append(copy.deepcopy(self.sphere_marker_1)) marker_array.append(copy.deepcopy(self.sphere_marker_2)) # Display diabolo start state with a white marker initial_pos_shell_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_shell.stl", color=(1.0, 1.0, 1.0), scale=[0.001, 0.001, 0.001], namespace="initial_pos", ) initial_pos_shell_marker.pose = diabolo_pose initial_pos_fixator_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_fixators.stl", color=(1.0, 1.0, 1.0), scale=[0.001, 0.001, 0.001], namespace="initial_pos", ) initial_pos_fixator_marker.pose = diabolo_pose initial_pos_axis_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_axis.stl", color=(1.0, 1.0, 1.0), scale=[0.001, 0.001, 0.001], namespace="initial_pos", ) initial_pos_axis_marker.pose = diabolo_pose marker_array.append(copy.deepcopy(initial_pos_shell_marker)) marker_array.append(copy.deepcopy(initial_pos_fixator_marker)) marker_array.append(copy.deepcopy(initial_pos_axis_marker)) initial_diabolo_vel_marker = self._make_marker_from_mesh( "", color=(1.0, 1.0, 1.0), scale=[0.03, 0.02, 0.02], namespace="initial_pos", ) initial_vel_base = geometry_msgs.msg.Point() initial_vel_tip = geometry_msgs.msg.Point() initial_diabolo_vel_marker.type = visualization_msgs.msg.Marker.ARROW initial_vel_base = diabolo_pose.position initial_vel_tip.x = initial_vel_base.x + (diabolo_vel.x) / 2.0 initial_vel_tip.y = initial_vel_base.y + (diabolo_vel.y) / 2.0 initial_vel_tip.z = initial_vel_base.z + (diabolo_vel.z) / 2.0 initial_diabolo_vel_marker.points.append(initial_vel_base) initial_diabolo_vel_marker.points.append(initial_vel_tip) marker_array.append(copy.deepcopy(initial_diabolo_vel_marker)) marker_count = self.marker_count diabolo_shell_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_shell.stl", color=(0.0, 1.0, 0.0), scale=[0.001, 0.001, 0.001], namespace="", ) diabolo_fixator_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_fixators.stl", color=(0.1, 0.1, 0.1), scale=[0.001, 0.001, 0.001], namespace="", ) diabolo_axis_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_axis.stl", color=(0.7, 0.7, 0.7), scale=[0.001, 0.001, 0.001], namespace="", ) goal_diabolo_shell_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_shell.stl", color=(100.0 / 255.0, 255.0 / 255.0, 50.0 / 255.0), scale=[0.001, 0.001, 0.001], namespace="", ) goal_diabolo_fixator_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_fixators.stl", color=(0.1, 0.1, 0.1), scale=[0.001, 0.001, 0.001], namespace="", ) goal_diabolo_axis_marker = self._make_marker_from_mesh( "package://diabolo_scene_description/meshes/diabolo_axis.stl", color=(0.7, 0.7, 0.7), scale=[0.001, 0.001, 0.001], namespace="", ) goal_diabolo_vel_marker = self._make_marker_from_mesh( "", color=(100.0 / 255.0, 255.0 / 255.0, 50.0 / 255.0), scale=[0.02, 0.02, 0.02], namespace="", ) diabolo_to_goal_marker = self._make_marker_from_mesh( "", color=(1.0, 1.0, 1.0), scale=[0.01, 0.02, 0.02], namespace="", alpha=0.5, ) self.marker_count = marker_count + 1 for i in range(len(req.goal_states)): ns = "waypoint_" + str(i) # diabolo_shell_marker.pose = resp.diabolo_states[i].pose # diabolo_fixator_marker.pose = resp.diabolo_states[i].pose # diabolo_axis_marker.pose = resp.diabolo_states[i].pose self.sphere_marker_g = self._make_marker_from_mesh( "", color=(240.0 / 255.0, 230.0 / 255.0, 50.0 / 255.0), scale=[0.05, 0.05, 0.05], namespace="closest_point_to_goal", ) self.sphere_marker_g.type = visualization_msgs.msg.Marker.SPHERE self.sphere_marker_g.pose = resp.diabolo_states[i].pose self.sphere_marker_g.id = self.marker_count self.marker_count += 1 marker_array.append(copy.deepcopy(self.sphere_marker_g)) goal_diabolo_shell_marker.pose = req.goal_states[i].pose goal_diabolo_shell_marker.id = self.marker_count goal_diabolo_shell_marker.ns = "goal_states" self.marker_count += 1 goal_diabolo_fixator_marker.pose = req.goal_states[i].pose goal_diabolo_fixator_marker.id = self.marker_count goal_diabolo_fixator_marker.ns = "goal_states" self.marker_count += 1 goal_diabolo_axis_marker.pose = req.goal_states[i].pose goal_diabolo_axis_marker.id = self.marker_count goal_diabolo_axis_marker.ns = "goal_states" self.marker_count += 1 marker_array.append(copy.deepcopy(goal_diabolo_shell_marker)) marker_array.append(copy.deepcopy(goal_diabolo_fixator_marker)) marker_array.append(copy.deepcopy(goal_diabolo_axis_marker)) ## The goal state velocity # goal_vel_base = geometry_msgs.msg.Point() # goal_vel_tip = geometry_msgs.msg.Point() # goal_diabolo_vel_marker.type = visualization_msgs.msg.Marker.ARROW # goal_vel_base = req.goal_states[i].pose.position # goal_vel_tip.x = goal_vel_base.x + (req.goal_states[i].trans_velocity.x)/2.0 # goal_vel_tip.y = goal_vel_base.y + (req.goal_states[i].trans_velocity.y)/2.0 # goal_vel_tip.z = goal_vel_base.z + (req.goal_states[i].trans_velocity.z)/2.0 # goal_diabolo_vel_marker.points.append(goal_vel_base) # goal_diabolo_vel_marker.points.append(goal_vel_tip) ## The distance between the goal state and the closest point # FIXME: This doesn't seem to point to the closest point. diabolo_to_goal_base = geometry_msgs.msg.Point() diabolo_to_goal_tip = geometry_msgs.msg.Point() diabolo_to_goal_marker.type = visualization_msgs.msg.Marker.ARROW diabolo_to_goal_base = req.goal_states[i].pose.position diabolo_to_goal_tip = resp.diabolo_states[i].pose.position diabolo_to_goal_marker.points.append(diabolo_to_goal_base) diabolo_to_goal_marker.points.append(diabolo_to_goal_tip) diabolo_to_goal_marker.id = self.marker_count diabolo_to_goal_marker.ns = "from_goal_to_closest_point" self.marker_count += 1 marker_array.append(copy.deepcopy(diabolo_to_goal_marker)) # predicted_diabolo_vel_marker = self._make_marker_from_mesh("", color=(0.,1.,0.), scale=[0.02, 0.02, 0.02], namespace=ns) # predicted_vel_base = geometry_msgs.msg.Point() # predicted_vel_tip = geometry_msgs.msg.Point() # predicted_diabolo_vel_marker.type = visualization_msgs.msg.Marker.ARROW # predicted_vel_base = resp.diabolo_states[i].pose.position # predicted_vel_tip.x = predicted_vel_base.x + (resp.diabolo_states[i].trans_velocity.x)/2.0 # predicted_vel_tip.y = predicted_vel_base.y + (resp.diabolo_states[i].trans_velocity.y)/2.0 # predicted_vel_tip.z = predicted_vel_base.z + (resp.diabolo_states[i].trans_velocity.z)/2.0 # predicted_diabolo_vel_marker.points.append(predicted_vel_base) # predicted_diabolo_vel_marker.points.append(predicted_vel_tip) # marker_array.append(copy.deepcopy(predicted_diabolo_vel_marker)) self.marker_array_pub.publish(marker_array) # time_of_flight = 2.0*(resp.diabolo_trans_vel.z)/9.81 # rospy.logwarn("Returning trajectories") return ( resp.a_bot_trajectory, resp.b_bot_trajectory, resp.left_stick_poses, resp.right_stick_poses, ) else: # print("Trajectory not found. Aborting") return None, None, None, None if __name__ == "__main__": try: c = PlayerClass() i = 1 # print(c.motion_functions) c.force_add_motion_function_() prep_motions = ["None", "horizontal_impulse", "horizontal_impulse_short_left"] # prep_motion = prep_motions[2] prep_motion = "" while not rospy.is_shutdown(): rospy.loginfo("Enter 1 to load motion data") rospy.loginfo( "Enter 2 to initialize the motion functions with hardcoded values." ) rospy.loginfo("Enter 3 to initialize the robot positions.") rospy.loginfo("Enter d to spawn diabolo in simulation") rospy.loginfo("Enter sx to start playback at custom rate.") rospy.loginfo("Enter m to change the motion being executed") rospy.loginfo("Enter n to change the preparatory motion") rospy.loginfo("Enter ox to start oneshot motion") rospy.loginfo("Enter px to start continuous periodic motion") rospy.loginfo("Enter t to stop motion.") rospy.loginfo("Enter f to tilt the diabolo forward.") rospy.loginfo("Enter b to tilt the diabolo backward.") rospy.loginfo("Enter k to save the current knot points") rospy.loginfo("Enter x to exit.") i = raw_input() if i == "1": c.read_transformed_motion_data( folder=("experiments/output/2020-09-14_motion_extraction/") ) elif i == "2": c.initialize_motion_functions(use_saved_values=False) elif i == "3": c.initialize_robot_positions() elif i == "d" or i == "D": print("Default parameters are (0.13, 0.13, 0.07, .9999). Change? y/n") a = raw_input() if a == "y": print("Enter the parameters, seperated by spaces") p = raw_input().split() if len(p) >= 4: print( "New parameters are: " + p[0] + " " + p[1] + " " + p[2] + " " + p[3] ) c.initialize_sim_diabolo( parameters=( float(p[0]), float(p[1]), float(p[2]), float(p[3]), ) ) else: print("Not enough parameters") else: c.initialize_sim_diabolo( parameters=(0.13, 0.13, 0.07, 0.9999) ) # Set the diabolo plugin parameters and spawn the diabolo # One-shot / continuous motion execution call elif i == "ox" or i == "OX": print( "This will execute the motion without asking for confirmation. \n Meant for execution in simulation \n Are you sure? y/n?" ) e = raw_input() if e == "y": # TODO: pass preparatory_motion? c.run_oneshot_motion(interactive=True, confirm_execution=False) else: print("Aborting") elif i == "px" or i == "PX": print( "This will execute the motion without asking for confirmation. \n Meant for execution in simulation \n Are you sure? y/n?" ) e = raw_input() if e == "y": c.start_periodic_motion( interactive=True, confirm_execution=False, preparatory_motion=prep_motion, ) else: print("Aborting") elif i == "T" or i == "t": c.stop_periodic_motion() elif i == "f": # To tilt the diabolo forward, the right hand goes forward c.tilt_offset = 0.03 c.changed_tilt_offset_flag = True elif i == "b": c.tilt_offset = -0.03 c.changed_tilt_offset_flag = True ## Changing motion / prep. motion elif i == "m" or i == "M": print("The current motion is " + c.current_motion) print("Change? y/n") i = raw_input() if i == "y": print("List of available functions is as follows: ") print( "Enter the appropriate index number to choose the motion to change to" ) for i in range(len(c.motion_list)): print(str(i) + ": " + str(c.motion_list[i])) i = raw_input() try: c.current_motion = c.motion_list[int(i)] except: print("Incorrect index. Aborting") raise elif i == "n" or i == "N": print("The current preparatory motion is " + prep_motion) print("Change? y/n") i = raw_input() if i == "y": print("List of available motions: ") print( "Enter the appropriate index number to choose the motion to change to" ) for i in range(len(prep_motions)): print(str(i) + ": " + str(prep_motions[i])) i = raw_input() try: prep_motion = prep_motions[int(i)] if prep_motion == "None": prep_motion = "" except: print("Incorrect index. Aborting") raise elif i == "r": c.tilt_offset = 0.0 elif i == "k" or i == "K": c.save_current_knot_points() elif i == "x": # c.stop_publish() break elif i == "": continue except rospy.ROSInterruptException: pass
44.014831
142
0.575779
12,726
103,875
4.394704
0.062156
0.009191
0.009602
0.00987
0.646056
0.582938
0.525203
0.485705
0.443113
0.403133
0
0.029829
0.329993
103,875
2,359
143
44.033489
0.773755
0.145463
0
0.447242
0
0.001607
0.097028
0.024876
0
0
0
0.00212
0
1
0.015533
false
0.000536
0.019282
0
0.042314
0.024638
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2a9847b819084a601442dc4d30086db0ba4a8ad
1,378
py
Python
genius.py
fedecalendino/alfred-lyrics-finder
771eb9ddcd1849b6095b2e7b16a2335d25c74f30
[ "MIT" ]
3
2020-09-14T01:07:11.000Z
2021-03-12T09:43:12.000Z
genius.py
fedecalendino/alfred-lyrics-finder
771eb9ddcd1849b6095b2e7b16a2335d25c74f30
[ "MIT" ]
null
null
null
genius.py
fedecalendino/alfred-lyrics-finder
771eb9ddcd1849b6095b2e7b16a2335d25c74f30
[ "MIT" ]
null
null
null
from workflow import web class APIException(Exception): def __init__(self, status, message, url): self.status = status self.message = message self.url = url super(APIException, self).__init__( "{status} > {message}".format( status=self.status, message=self.message ) ) class Genius: BASE_URL = "https://api.genius.com" def __init__(self, access_token): assert access_token self.access_token = "Bearer {access_token}".format(access_token=access_token) def __call__(self, service, **params): url = "{base_url}/{service}".format(base_url=self.BASE_URL, service=service) params["text_format"] = "plain" response = web.get( url=url, params=params, headers={"Authorization": self.access_token} ).json() meta = response["meta"] if meta["status"] != 200: raise APIException(meta["status"], meta["message"], url) return response["response"] def search(self, text, page=1, per_page=20): assert text assert page > 0 assert 21 > per_page > 1 result = self("search", q=text, page=page, per_page=per_page) return map( lambda hit: hit["result"], result.get("hits", []) )
26
85
0.564586
152
1,378
4.907895
0.342105
0.103217
0.060322
0
0
0
0
0
0
0
0
0.010526
0.310595
1,378
52
86
26.5
0.774737
0
0
0
0
0
0.115385
0
0
0
0
0
0.105263
1
0.105263
false
0
0.026316
0
0.263158
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2b2b69ac9c8d9c5d5b9c1cb7f1d8d0174255511
2,310
py
Python
utils/html_markup.py
carlboudreau007/BlockChain_Demo
fb90212e9a401aa3b757e49af7fd28d250bafbc4
[ "MIT" ]
null
null
null
utils/html_markup.py
carlboudreau007/BlockChain_Demo
fb90212e9a401aa3b757e49af7fd28d250bafbc4
[ "MIT" ]
null
null
null
utils/html_markup.py
carlboudreau007/BlockChain_Demo
fb90212e9a401aa3b757e49af7fd28d250bafbc4
[ "MIT" ]
null
null
null
import glob from flask import Markup SERVER_OPTIONS = [{'text': 'Local Host', 'value': '127.0.0.1'}, {'text': 'Test weved23962', 'value': '10.201.144.167'}, {'text': 'Stage weves31263', 'value': '10.50.8.130'}, {'text': 'Prod wevep31172', 'value': '10.48.164.198'} ] def server_options(ip_address: str) -> Markup: return Markup(SERVER_OPTIONS) def sql_options(base_dir: str) -> [Markup, str]: """Create an option list based on files in the directory. :param base_dir: where the sql files are located :return: list of options """ pattern = f'{base_dir}/*.sql' files = glob.glob(pattern, recursive=True) options = '' first = True first_file = '' for file in files: file = file.replace('\\', '/') description = file.replace('.sql', '').replace('_', ' ') last_count = description.rfind('/') + 1 description = description[last_count:] # print(description) if first: options += f'<option value="{file}" selected="selected">{description}</option>\n' first_file = file first = False else: options += f'<option value="{file}">{description}</option>\n' return Markup(options), first_file def vue_sql_select(base_dir: str) -> [Markup, str]: """Create an option list based on files in the directory. :param base_dir: where the sql files are located :return: list of options """ pattern = f'{base_dir}/*.sql' files = glob.glob(pattern, recursive=True) options = [] first = True first_file = '' for file in files: file = file.replace('\\', '/') description = file.replace('.sql', '').replace('_', ' ') last_count = description.rfind('/') + 1 description = description[last_count:] # print(description) if first: first_file = file first = False # options += f"{{text: '{description}', value: '{file}'}}," options.append({'text': f'{description}', 'value': f'{file}'}) return Markup(options), first_file if __name__ == '__main__': print(vue_sql_select('../sql/pa_related/care_guidance')) print(sql_options('../sql/pa_related/care_guidance'))
32.535211
93
0.577056
269
2,310
4.806691
0.297398
0.032483
0.029389
0.024749
0.672854
0.521268
0.521268
0.521268
0.521268
0.521268
0
0.030534
0.262771
2,310
70
94
33
0.728714
0.155411
0
0.565217
0
0
0.211216
0.075996
0
0
0
0
0
1
0.065217
false
0
0.043478
0.021739
0.173913
0.043478
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2b606f246e1cf267d985e5ff3efcca86aeda8cd
2,237
py
Python
streamlit_app.py
sebastiandres/xkcd_streamlit
68b1c01dd8eca34135126ebb33a2d539a0d25650
[ "MIT" ]
1
2021-07-21T03:20:52.000Z
2021-07-21T03:20:52.000Z
streamlit_app.py
sebastiandres/xkcd_streamlit
68b1c01dd8eca34135126ebb33a2d539a0d25650
[ "MIT" ]
null
null
null
streamlit_app.py
sebastiandres/xkcd_streamlit
68b1c01dd8eca34135126ebb33a2d539a0d25650
[ "MIT" ]
null
null
null
import streamlit as st from xkcd import xkcd_plot from shared import translate, LANGUAGE_DICT # Set page properties for the app st.set_page_config( page_title="Streamlit & XKCD", layout="wide", initial_sidebar_state="expanded", ) # Initialize the session states - f_list has functions and colors if 'f_list' not in st.session_state: st.session_state['f_list'] = [ ("5*exp(-x**2)", "g"), ("sin(5*x)/x", "b"), ] if 'SLANG' not in st.session_state: st.session_state['SLANG'] = list(LANGUAGE_DICT.keys())[0] # The side bar language_title = st.sidebar.empty() # Hack so the title gets updated before selection is made st.session_state['SLANG'] = st.sidebar.selectbox("", list(LANGUAGE_DICT.keys()) ) language_title.subheader(translate("language_title")) # Delete SLANG_DICT = LANGUAGE_DICT[st.session_state['SLANG']] st.sidebar.subheader(translate("parameters_title")) with st.sidebar.expander(translate("functions_expander")): f = st.text_input(translate("equation"), "sin(5*x)/x") c = st.color_picker(translate("function_color"), "#0000FF") col1, col2 = st.columns(2) if col1.button(translate("add_function")): st.session_state['f_list'].append( (f, c) ) if col2.button(translate("clean_functions")): st.session_state['f_list'] = [] st.write(translate("functions_link")) with st.sidebar.expander(translate("graph_expander")): title = st.text_input(translate("title_text"), translate("title_value")) xlabel = st.text_input(translate("xlabel_text"), "x") ylabel = st.text_input(translate("ylabel_text"), "y") xmin = st.number_input(translate("xmin_text"), value=-5) xmax = st.number_input(translate("xmax_text"), value=+5) st.sidebar.markdown(translate("links_md")) # The main view try: fig = xkcd_plot(st.session_state['f_list'], title, xlabel, ylabel, xmin, xmax, Nx=1001) st.pyplot(fig) except Exception as e: st.session_state['f_list'] = [] st.error(translate("error_warning")) st.warning(translate("error_advice")) st.exception(e)
37.283333
93
0.644166
295
2,237
4.698305
0.355932
0.064935
0.10101
0.054113
0.192641
0.118326
0.047619
0.047619
0
0
0
0.011312
0.209656
2,237
60
94
37.283333
0.772624
0.0827
0
0.043478
0
0
0.16911
0
0
0
0
0
0
1
0
false
0
0.065217
0
0.065217
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2b7c2a6955082c094b447b57a5e843a6c763e15
4,693
py
Python
cyclegan/data/celeba/mask_face_region_with_avail_kpts.py
dingyanna/DepthNets
a13b05e315b0732b6a28594b1343a6940bbab229
[ "MIT" ]
114
2018-11-27T19:34:13.000Z
2022-03-26T19:39:00.000Z
cyclegan/data/celeba/mask_face_region_with_avail_kpts.py
dingyanna/DepthNets
a13b05e315b0732b6a28594b1343a6940bbab229
[ "MIT" ]
9
2018-12-11T09:05:22.000Z
2021-07-02T21:27:34.000Z
cyclegan/data/celeba/mask_face_region_with_avail_kpts.py
kdh4672/Face_Recognition_With_Augmentation
b0795b97c94bbba1a1e3310670d0868f3eacb479
[ "MIT" ]
32
2018-12-03T00:52:54.000Z
2021-08-30T01:45:31.000Z
""" This module masks faces using kpts already detected """ import numpy as np import argparse import cv2 #from RCN.preprocessing.tools import BGR2Gray from PIL import Image import h5py def get_parsed_keypoints(path): with open(path) as f: x = f.read() y=x.split('\n') z=[[int(i) for i in k.split()] for k in y if k is not ''] return np.array(z) def read_kpts(kpts_dir, imgs_ids): kpts_list = [] for img_id in imgs_ids: img_path = '%s/%s_crop.txt' % (kpts_dir, img_id) kpts = get_parsed_keypoints(img_path) kpts_list.append(kpts) return np.array(kpts_list) def mask_out_face(imgs, pred_kpts): mask_imgs = [] for img, kpts in zip(imgs, pred_kpts): # mask_img = cv2.fillPoly(img, kpts) kpts = kpts.astype(np.int32) # reordering #1 to #17 kpts to form a polygon kpts_mask = np.concatenate((kpts[:17][::-1], kpts[17:27]), axis=0) img_mask = img.copy() #cv2.fillConvexPoly(img_mask, kpts_mask, 0) cv2.fillPoly(img_mask, kpts_mask.reshape(1,27,2), 0) mask_imgs.append(img_mask) return mask_imgs def plot_cross(img, kpt, color, lnt=1): kpt = map(int, kpt) x, y = kpt cv2.line(img=img, pt1=(x-lnt, y-lnt), pt2=(x+lnt, y+lnt), color=color) cv2.line(img=img, pt1=(x-lnt, y+lnt), pt2=(x+lnt, y-lnt), color=color) return img def draw_kpts(img, kpts, color): for kpt in kpts: x_i = int(kpt[0]) y_i = int(kpt[1]) img = plot_cross(img, kpt=(x_i, y_i), color=color) return img def convert_np_to_PIL(np_img): img_rev = np_img[:, :, ::-1].copy() rescaled = (255.0 / img_rev.max() * (img_rev - img_rev.min())).astype(np.uint8) im = Image.fromarray(rescaled) return im def tile_images(img, img_mask, img_depthNet, row_size, col_size): rows = 1 cols = 3 gap_sz = 5 gap_cols = (cols - 1) * gap_sz gap_rows = (rows - 1) * gap_sz index = 0 new_im = Image.new('RGB', (cols*col_size + gap_cols, rows*row_size + gap_rows), "white") for i in xrange(0, rows * row_size + gap_rows, row_size + gap_sz): for jj in xrange(0, cols * col_size + gap_cols, col_size + gap_sz): if jj == 0: new_im.paste(img, (jj, i)) elif jj == col_size + gap_sz: new_im.paste(img_mask, (jj, i)) else: new_im.paste(img_depthNet, (jj, i)) return new_im if __name__ == "__main__": #parser = argparse.ArgumentParser(description='Getting keypoint prediction\ # using a trained model.') #parser.add_argument('--img_path', type=str, help='the complete path to the\ # pickle file that contains pre-processed images', # required=True) #kpts_path = '/home/honari/libs/test_RCN/RCN/plotting/keypoints' kpts_path = "./keypoints" #args = parser.parse_args() #img_path = args.img_path imgs_path = 'celebA.h5' #fp = open(img_path, 'r') fp = h5py.File(imgs_path, 'a') #dset = pickle.load(fp) imgs = fp['src_GT'] #imgs_depthNet = fp['src_depthNet'] imgs_ids = fp['src_id'][:].astype("U6") print('getting kpts') #pred_kpts = get_kpts(imgs, path) pred_kpts = read_kpts(kpts_path, imgs_ids) print('getting masks') masked_face = mask_out_face(imgs, pred_kpts) """ data_dict = OrderedDict() data_dict['img_orig'] = imgs data_dict['img_mask'] = masked_face pickle.dump('mask_faces.pickle', data_dict) """ src_GT_mask_face = np.array(masked_face).astype(np.uint8) #img_path_out = img_path.split('.pickle')[0] + '_with_mask.pickle' #with open(img_path_out, 'wb') as fp: # pickle.dump(dset, fp) fp.create_dataset('src_GT_mask_face', data=src_GT_mask_face) src_depthNet = fp['src_depthNet'] fp.create_dataset('src_depthNet_and_mask', data=np.concatenate((src_depthNet, src_GT_mask_face), axis=-1)) ''' print('plotting samples') n_sample = 50 for img, img_mask, img_depthNet, img_id in \ zip(imgs, masked_face, imgs_depthNet, np.arange(n_sample)): row_size, col_size, _ = img.shape img_PIL = convert_np_to_PIL(img) img_mask_PIL = convert_np_to_PIL(img_mask) img_depthNet_PIL = convert_np_to_PIL(img_depthNet) img_new = tile_images(img_PIL, img_mask_PIL, img_depthNet_PIL, row_size, col_size) img_new.save('./sample_mask_imgs/img_%s.png' % (img_id)) ''' fp.close() print('done!')
32.818182
97
0.603665
707
4,693
3.739745
0.254597
0.029123
0.015129
0.012103
0.142965
0.07413
0.034039
0.034039
0.034039
0.034039
0
0.016507
0.264223
4,693
142
98
33.049296
0.749204
0.198381
0
0.025316
0
0
0.048392
0.006961
0
0
0
0
0
1
0.088608
false
0
0.063291
0
0.240506
0.037975
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2b7d3d40db3233a8eadd8a94f91fbf6d7c9b69b
589
py
Python
task1/task1.py
ZHN202/opencv_learning
f0725955e6e525d3918c1117763bf0aaa4299777
[ "MIT" ]
1
2021-11-04T03:41:04.000Z
2021-11-04T03:41:04.000Z
task1/task1.py
ZHN202/opencv_learning
f0725955e6e525d3918c1117763bf0aaa4299777
[ "MIT" ]
null
null
null
task1/task1.py
ZHN202/opencv_learning
f0725955e6e525d3918c1117763bf0aaa4299777
[ "MIT" ]
null
null
null
import cv2 as cv import numpy as np img = cv.imread('test.png') # 将图片大小改为1920*1080h,s,v = cv.split(hsvimg) img = cv.resize(img, dsize=(1920, 1080), fx=1, fy=1, interpolation=cv.INTER_NEAREST) # hsv图像 hsvimg = cv.cvtColor(img, cv.COLOR_BGR2HSV) lower_y = np.array([20, 43, 46]) upper_y = np.array([34, 255, 220]) mask = cv.inRange(hsvimg, lower_y, upper_y) # 霍夫直线检测 lines = cv.HoughLinesP(mask, 1, np.pi / 180, 127, minLineLength=500, maxLineGap=1) for line in lines: x1, y1, x2, y2 = line[0] cv.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1) cv.imshow('img', img) cv.waitKey(0)
26.772727
84
0.665535
107
589
3.607477
0.570093
0.051813
0.041451
0.041451
0
0
0
0
0
0
0
0.122244
0.152801
589
21
85
28.047619
0.651303
0.089983
0
0
0
0
0.020677
0
0
0
0
0
0
1
0
false
0
0.142857
0
0.142857
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2ba3f6c4a26d42ba28e90efe9fded89ad4b027a
385
py
Python
Importing_&_Managing_Financial_Data/Importing_financial_data_from_the_web/Visualize_a_stock_price_trend.py
RKiddle/python_finance
7c0ed2998c0f82a0998ba0cb06225453ba8ee3fe
[ "MIT" ]
1
2021-04-28T01:26:38.000Z
2021-04-28T01:26:38.000Z
Importing_&_Managing_Financial_Data/Importing_financial_data_from_the_web/Visualize_a_stock_price_trend.py
RKiddle/python_finance
7c0ed2998c0f82a0998ba0cb06225453ba8ee3fe
[ "MIT" ]
null
null
null
Importing_&_Managing_Financial_Data/Importing_financial_data_from_the_web/Visualize_a_stock_price_trend.py
RKiddle/python_finance
7c0ed2998c0f82a0998ba0cb06225453ba8ee3fe
[ "MIT" ]
null
null
null
# Import matplotlib.pyplot import matplotlib.pyplot as plt # Set start and end dates start = date(2016, 1, 1) end = date(2016, 12, 31) # Set the ticker and data_source ticker = 'FB' data_source = 'google' # Import the data using DataReader stock_prices = DataReader(ticker, data_source, start, end) # Plot Close stock_prices['Close'].plot(title=ticker) # Show the plot plt.show()
19.25
58
0.735065
60
385
4.633333
0.483333
0.107914
0.158273
0
0
0
0
0
0
0
0
0.04321
0.158442
385
19
59
20.263158
0.814815
0.355844
0
0
0
0
0.053942
0
0
0
0
0
0
1
0
false
0
0.125
0
0.125
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2bdc8d9084d26a302efcbe7ca92780a65ffbfe3
3,722
py
Python
src/resnet/resnetv2_3stage_gaussian.py
googleinterns/out-of-distribution
84a2d5af59462f0943f629f742090b485ed50e61
[ "Apache-2.0" ]
null
null
null
src/resnet/resnetv2_3stage_gaussian.py
googleinterns/out-of-distribution
84a2d5af59462f0943f629f742090b485ed50e61
[ "Apache-2.0" ]
null
null
null
src/resnet/resnetv2_3stage_gaussian.py
googleinterns/out-of-distribution
84a2d5af59462f0943f629f742090b485ed50e61
[ "Apache-2.0" ]
null
null
null
from typing import List, Union import torch from torch import nn from torch.nn import functional as F from src.modules.max_mahalanobis import MaxMahalanobis, GaussianResult from src.modules.normalize import Normalize from src.resnet.bottleneck_block_v2s3 import create_bottleneck_stage_v2s3 from src.resnet.shared import GaussianMode, ResNet_Gaussian class ResNetV2_3Stage_Gaussian(ResNet_Gaussian): """ Implements Max-Mahalanobis center loss for classification on 32x32 RGB images (e.g. CIFAR-10). Reference papers: - Identity Mappings in Deep Residual Networks (https://arxiv.org/abs/1603.05027) - Rethinking Softmax Cross-Entropy Loss For Adversarial Robustness (https://arxiv.org/pdf/1905.10626.pdf) Reference implementations: - Official code (https://github.com/P2333/Max-Mahalanobis-Training/blob/master/train.py) """ normalize: Normalize conv1: nn.Conv2d stage2: nn.Sequential stage3: nn.Sequential stage4: nn.Sequential bn_post: nn.BatchNorm2d avgpool: nn.AdaptiveAvgPool2d fc: nn.Linear max_mahalanobis: MaxMahalanobis out_channels: int def __init__(self, stage_sizes: List[int], radius: float, n_classes: int): super().__init__() if len(stage_sizes) != 3: raise ValueError("Stage_sizes must have length 3!") if radius <= 0: raise ValueError("Radius must be positive!") if n_classes <= 1: raise ValueError("N_classes must be greater than 1!") self.init_layers(stage_sizes, radius, n_classes) self.reset_parameters() self.out_channels = n_classes def init_layers(self, stage_sizes: List[int], radius: float, n_classes: int) -> None: self.normalize = Normalize(3) self.conv1 = nn.Conv2d(3, 16, 3, padding=1, bias=False) self.stage2 = create_bottleneck_stage_v2s3(stage_sizes[0], 16, 16, 64, 1) self.stage3 = create_bottleneck_stage_v2s3(stage_sizes[1], 64, 32, 128, 2) self.stage4 = create_bottleneck_stage_v2s3(stage_sizes[2], 128, 64, 256, 2) self.bn_post = nn.BatchNorm2d(256) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(256, 256) self.max_mahalanobis = MaxMahalanobis(radius, 256, n_classes) def reset_parameters(self) -> None: for module in self.modules(): if isinstance(module, (nn.Conv2d, nn.Linear)): nn.init.kaiming_normal_(module.weight, nonlinearity="relu") def forward(self, x: torch.Tensor, mode: GaussianMode) -> Union[torch.Tensor, GaussianResult]: if x.shape[1:] != (3, 32, 32): raise ValueError("Input tensor must have shape [N, C=3, H=32, W=32]!") x = self.normalize(x) x = self.conv1(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.bn_post(x) x = F.relu(x, inplace=True) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) x = self.max_mahalanobis(x, mode) return x class ResNet29V2_Gaussian(ResNetV2_3Stage_Gaussian): def __init__(self, radius: float, n_classes: int): super().__init__([3, 3, 3], radius, n_classes) class ResNet47V2_Gaussian(ResNetV2_3Stage_Gaussian): def __init__(self, radius: float, n_classes: int): super().__init__([5, 5, 5], radius, n_classes) class ResNet65V2_Gaussian(ResNetV2_3Stage_Gaussian): def __init__(self, radius: float, n_classes: int): super().__init__([7, 7, 7], radius, n_classes) class ResNet83V2_Gaussian(ResNetV2_3Stage_Gaussian): def __init__(self, radius: float, n_classes: int): super().__init__([9, 9, 9], radius, n_classes)
35.113208
109
0.671682
503
3,722
4.755467
0.308151
0.050167
0.0301
0.047659
0.204013
0.204013
0.160117
0.156355
0.156355
0.156355
0
0.053155
0.21655
3,722
105
110
35.447619
0.767147
0.112037
0
0.056338
0
0
0.043438
0
0
0
0
0
0
1
0.112676
false
0
0.112676
0
0.450704
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2c0ef753b4cd8675d6db691f0d1c053e49d0236
504
py
Python
assignments/Exercise_Lecture73_Phumeth.P.py
ZnoKunG/PythonProject
388b5dfeb0161aee66094e7b2ecc2d6ed13588bd
[ "MIT" ]
null
null
null
assignments/Exercise_Lecture73_Phumeth.P.py
ZnoKunG/PythonProject
388b5dfeb0161aee66094e7b2ecc2d6ed13588bd
[ "MIT" ]
null
null
null
assignments/Exercise_Lecture73_Phumeth.P.py
ZnoKunG/PythonProject
388b5dfeb0161aee66094e7b2ecc2d6ed13588bd
[ "MIT" ]
null
null
null
systemMenu = {"ไก่ทอด": 35, "เป็ดทอด": 45, "ปลาทอด": 55, "ผักทอด": 20} menuList = [] def showBill(): print("---- My Food----") totalPrice = 0 for number in range(len(menuList)): print(menuList[number][0],menuList[number][1]) totalPrice += int(menuList[number][1]) print("Totalprice :", totalPrice) while True: menuName = input("Please Enter Menu :") if(menuName.lower() == "exit"): break else: menuList.append([menuName, systemMenu[menuName]]) showBill()
28
70
0.613095
63
504
4.952381
0.68254
0.134615
0.096154
0
0
0
0
0
0
0
0
0.029484
0.19246
504
18
71
28
0.72973
0
0
0
0
0
0.150495
0
0
0
0
0
0
1
0.0625
false
0
0
0
0.0625
0.1875
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2c15988d8527886dc69eb42d21e16810aed3ba2
2,229
py
Python
FetchTextFromRISE.py
RISE-MPIWG/hylg
7d49e7aed0623d9730d5c8933030954fa8f729b0
[ "MIT" ]
1
2020-05-30T02:29:36.000Z
2020-05-30T02:29:36.000Z
FetchTextFromRISE.py
RISE-MPIWG/hylg
7d49e7aed0623d9730d5c8933030954fa8f729b0
[ "MIT" ]
null
null
null
FetchTextFromRISE.py
RISE-MPIWG/hylg
7d49e7aed0623d9730d5c8933030954fa8f729b0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import requests import os # 6000 is a large number to make sure we get all the components of a collection. Please do note that RISE also has a pagination feature, # which can be implemented by clients if they wish. per_page = 6000 # getting the list of collections that the user has access to: collections_response = requests.get(f'https://rise.mpiwg-berlin.mpg.de/api/collections?per_page={per_page}') collections = collections_response.json() # each accessible collections has a name, a uuid, and a number of resources. # print(collections) idx = 1 for collection in collections: print(f'collection at index: {idx}') idx += 1 print(collection) # picking a collection by its index # collection_index = 1 # collection = collections[collection_index] results = list(filter(lambda collection: collection['name'] == 'MPIWG - 哈佛燕京圖書館藏珍稀方志', collections)) collection = results[0] print(collection['uuid']) collection_uuid = collection['uuid'] # we grab all resources for this collection resources_response = requests.get(f'https://rise.mpiwg-berlin.mpg.de/api/collections/{collection_uuid}/resources?per_page={per_page}') corpus_path = './corpus' if not os.path.exists(corpus_path): os.makedirs(corpus_path) for resource in resources_response.json(): uuid = resource['uuid'] resource_name = resource['name'] print(resource_name) if not os.path.exists(corpus_path + "/" + resource_name): os.makedirs(corpus_path + "/" + resource_name) sections = requests.get("https://rise.mpiwg-berlin.mpg.de/api/resources/"+ resource['uuid'] +"/sections") for section in sections.json(): print(section) print(section['uuid']) section_name = section['name'] section_path = corpus_path + "/" + resource_name + "/" + section_name file = open(section_path +".txt", "w") content_units = requests.get("https://rise.mpiwg-berlin.mpg.de/api/sections/"+ section['uuid'] +"/content_units?per_page=6000") for content_unit in content_units.json(): print(content_unit) file.write(content_unit['content']) file.close()
39.803571
139
0.682369
291
2,229
5.106529
0.323024
0.028264
0.037685
0.053836
0.168237
0.168237
0.168237
0.131898
0.131898
0.079408
0
0.009471
0.194706
2,229
56
140
39.803571
0.818384
0.224764
0
0
0
0.027778
0.232829
0.016298
0
0
0
0
0
1
0
false
0
0.055556
0
0.055556
0.194444
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2c4872a061796a24a75f519586680551cd85468
348
py
Python
data.py
alantess/DDQN-BTC
0fff185200dd1c16088dc322cbb7790b848c1e6d
[ "MIT" ]
2
2021-01-12T08:59:54.000Z
2022-02-07T23:41:49.000Z
data.py
alantess/DDQN-BTC
0fff185200dd1c16088dc322cbb7790b848c1e6d
[ "MIT" ]
null
null
null
data.py
alantess/DDQN-BTC
0fff185200dd1c16088dc322cbb7790b848c1e6d
[ "MIT" ]
null
null
null
import pandas as pd import matplotlib.pyplot as plt def retrieve_data(): train_data = 'data/Nov_btc.csv' test_data = 'data/btc_test_data.csv' df = pd.read_csv(test_data) df = df.drop(columns=['date', 'weighted','volume']) # Columns are set at close, high, low and open. df = df.dropna() data = df.values return data
23.2
55
0.666667
55
348
4.072727
0.6
0.107143
0.098214
0
0
0
0
0
0
0
0
0
0.20977
348
14
56
24.857143
0.814545
0.12931
0
0
0
0
0.187291
0.073579
0
0
0
0
0
1
0.1
false
0
0.2
0
0.4
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2c664d27fab22d77e93ebebd90d26fccfda0d77
4,715
py
Python
main.py
lucaswerner90/upc_dl_project_2021
c02061da0e25a0b24a9b742074b87ac30f36586d
[ "MIT" ]
2
2021-07-15T12:30:43.000Z
2021-11-04T07:50:16.000Z
main.py
lucaswerner90/upc_dl_project_2021
c02061da0e25a0b24a9b742074b87ac30f36586d
[ "MIT" ]
30
2021-05-03T07:37:37.000Z
2021-07-01T18:53:23.000Z
main.py
lucaswerner90/upc_dl_project_2021
c02061da0e25a0b24a9b742074b87ac30f36586d
[ "MIT" ]
1
2021-06-21T11:12:32.000Z
2021-06-21T11:12:32.000Z
import argparse import os import torch import torch.nn as nn import torch.optim as optim import argparse from torch.utils.data import DataLoader from torchvision import transforms from dataset.main import Flickr8kDataset from dataset.caps_collate import CapsCollate from dataset.download import DownloadDataset from model.main import ImageCaptioningModel,ViTImageCaptioningModel from train import train, split_subsets from transformers import ViTFeatureExtractor device = torch.device("cuda" if torch.cuda.is_available() else "cpu") use_ViT_Enc = True def main(args): if use_ViT_Enc: print("It is using ViT encoder!!!!") transform = None feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') else: feature_extractor = None transform = transforms.Compose([ transforms.ToTensor(), transforms.Resize((args['image_size'], args['image_size'])), # The normalize parameters depends on the model we're gonna use # If we apply transfer learning from a model that used ImageNet, then # we should use the ImageNet values to normalize the dataset. # Otherwise we could just normalize the values between -1 and 1 using the # standard mean and standard deviation transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) dataset = Flickr8kDataset(dataset_folder='data', transform=transform, reduce=True, vocab_max_size=args['vocabulary_size'],feature_extractor=feature_extractor) # Create the model if use_ViT_Enc: model = ViTImageCaptioningModel( embed_size=args['embedding_dimension'], vocab = dataset.vocab, caption_max_length=args['captions_max_length'], ).to(device) else: model = ImageCaptioningModel( image_features_dim=args['image_features_dimension'], embed_size=args['embedding_dimension'], vocab = dataset.vocab, caption_max_length=args['captions_max_length'], ).to(device) # Perform the split of the dataset train_split, test_split = split_subsets(dataset,all_captions=True) train_loader = DataLoader(train_split, shuffle=True, batch_size=args['batch_size'], collate_fn=CapsCollate( pad_idx=dataset.vocab.word_to_index['<PAD>'], batch_first=True)) test_loader = DataLoader(test_split, shuffle=True, batch_size=args['batch_size'], collate_fn=CapsCollate( pad_idx=dataset.vocab.word_to_index['<PAD>'], batch_first=True)) optimizer = optim.Adam(model.parameters(), lr=args['learning_rate'], betas=(0.9, 0.98), eps=1e-9) criterion = nn.CrossEntropyLoss(ignore_index=dataset.vocab.word_to_index['<PAD>']) train( num_epochs=args['epochs'], model=model, train_loader=train_loader, test_loader=test_loader, optimizer=optimizer, criterion=criterion, device=device, log_interval=args['log_interval'] ) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Image captioning model setup') parser.add_argument('-bsz','--batch-size',type=int, required=False, choices=[4,8,16,32,64], default=64, help='Number of images to process on each batch') parser.add_argument('-vocab','--vocabulary-size',type=int, required=False, default=5000, help='Number of words that our model will use to generate the captions of the images') parser.add_argument('-image-feature','--image-features-dimension',type=int, choices=[256,512,1024], required=False, default=512, help='Number of features that the model will take for each image') parser.add_argument('-attn-dim','--attention-dimension',type=int, choices=[256,512,1024], required=False, default=256, help='Dimension of the attention tensor') parser.add_argument('-embed-dim','--embedding-dimension',type=int, choices=[256,512,1024], required=False, default=256, help='Dimension of the word embedding tensor') parser.add_argument('-epochs','--epochs',type=int, required=False, default=100, help='Number of epochs that our model will run') parser.add_argument('-captions-length','--captions-max-length',type=int, required=False, default=28, help='Max size of the predicted captions') parser.add_argument('-lr','--learning-rate',type=float, required=False, choices=[1e-1,1e-2,1e-3,1e-4],default=1e-3, help='Max size of the predicted captions') parser.add_argument('-img-size','--image-size',type=int, required=False, choices=[224,256,320], default=224, help='Size of the input image that our model will process') parser.add_argument('-log','--log-interval',type=int, required=False, default=5, help='During training, every X epochs, we log the results') args = parser.parse_args() variables = vars(args) if not os.path.exists('data'): print('Downloading Flickr8k dataset...') filepath = os.path.join(os.getcwd(),'data') DownloadDataset.download(filepath) main(variables)
45.336538
196
0.759915
671
4,715
5.208644
0.304024
0.025751
0.048641
0.034335
0.25608
0.224034
0.198856
0.198856
0.198856
0.198856
0
0.029545
0.109862
4,715
103
197
45.776699
0.803193
0.074019
0
0.202532
0
0
0.241854
0.033502
0
0
0
0
0
1
0.012658
false
0
0.177215
0
0.189873
0.025316
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2c78a6895c6f2bb08f5bc34684b1ca6a132fd79
2,050
py
Python
tests/FasterSubsetSumTests/test_randomizedBase.py
joakiti/Benchmark-SubsetSums
a875b5adf7f800d26b73516452904031c73ec29d
[ "MIT" ]
null
null
null
tests/FasterSubsetSumTests/test_randomizedBase.py
joakiti/Benchmark-SubsetSums
a875b5adf7f800d26b73516452904031c73ec29d
[ "MIT" ]
null
null
null
tests/FasterSubsetSumTests/test_randomizedBase.py
joakiti/Benchmark-SubsetSums
a875b5adf7f800d26b73516452904031c73ec29d
[ "MIT" ]
null
null
null
import unittest from unittest import TestCase from Implementations.FastIntegersFromGit import FastIntegersFromGit from Implementations.helpers.Helper import ListToPolynomial, toNumbers from Implementations.FasterSubsetSum.RandomizedBase import NearLinearBase from benchmarks.test_distributions import Distributions as dist class RandomizedBaseTester(TestCase): @classmethod def setUp(cls): cls.fasterSubset = NearLinearBase(False, 1) def test_faster_sumset_base_returns_correct_sumset(self): vals = [1, 15, 3, 8, 120, 290, 530, 420, 152, 320, 150, 190] T = 11 sums = self.fasterSubset.fasterSubsetSum(vals, T, 0.2) self.assertListEqual(sums, [0, 1, 3, 4, 8, 9, 11]) def test_color_coding_base_returns_correct_sumset(self): vals = [1, 15, 3, 8, 120, 290, 530, 420, 152, 320, 150, 190] T = 11 characteristic = ListToPolynomial(vals) sums = self.fasterSubset.color_coding(characteristic, T, len(vals), 0.2) self.assertListEqual(toNumbers(sums), [0, 1, 3, 4, 8, 9, 11]) @unittest.skip("Not currently working.") def test_faster_sumset_returns_correct_sumset_multiples(self): vals = [1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] T = 11 sums = self.fasterSubset.fasterSubsetSum(vals, T, 0.2) self.assertListEqual(sums, [0, 1, 3, 4]) @unittest.skip("Not currently working. I.e some of the speed ups we done means this does not work properly") def test_faster_simple(self): vals = [8, 10] T = 18 a = list(set(vals)) delta = 0.0001 fast = self.fasterSubset.fasterSubsetSum(a, T, delta) self.assertListEqual(fast, [0, 8, 10, 18]) @unittest.skip("comment in for benchmark.") def test_me(self): delta = 0.0001 i = 500 a, T = dist.evenDistribution(i) fast = self.fasterSubset.fasterSubsetSum(a, T, delta) # expertSolution = FastIntegersFromGit().run(a, T) # self.assertListEqual(fast, expertSolution)
38.679245
112
0.661463
271
2,050
4.918819
0.346863
0.022506
0.031508
0.03901
0.335334
0.288822
0.288822
0.225806
0.213803
0.213803
0
0.083386
0.227805
2,050
52
113
39.423077
0.758686
0.04439
0
0.268293
0
0
0.070041
0
0
0
0
0
0.097561
1
0.146341
false
0
0.146341
0
0.317073
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2ca9fdc60f3ee0343b7c18df16ab40ecebc987e
4,744
py
Python
web/fabric_utils/deploy.py
kbarnes3/guidcoin
c9011a00f18bbd181a538a553950dbc0e8c1a05e
[ "BSD-2-Clause" ]
null
null
null
web/fabric_utils/deploy.py
kbarnes3/guidcoin
c9011a00f18bbd181a538a553950dbc0e8c1a05e
[ "BSD-2-Clause" ]
null
null
null
web/fabric_utils/deploy.py
kbarnes3/guidcoin
c9011a00f18bbd181a538a553950dbc0e8c1a05e
[ "BSD-2-Clause" ]
null
null
null
from fabric.api import cd, run, settings, sudo configurations = { 'daily': { 'branch': 'master', 'ssl': False, }, 'dev': { 'branch': 'master', 'ssl': False, }, 'prod': { 'branch': 'prod', 'ssl': False, }, 'staging': { 'branch': 'prod', 'ssl': False, }, } def deploy(config): configuration = configurations[config] branch = configuration['branch'] use_ssl = configuration['ssl'] PYTHON_DIR = '/var/www/python' repo_dir = '{0}/guidcoin-{1}'.format(PYTHON_DIR, config) web_dir = '{0}/web'.format(repo_dir) config_dir = '{0}/config/ubuntu-14.04'.format(repo_dir) uwsgi_dir = '{0}/uwsgi'.format(config_dir) nginx_dir = '{0}/nginx'.format(config_dir) virtualenv_python = '{0}/venv/bin/python'.format(repo_dir) _update_source(repo_dir, branch) _compile_source(config, repo_dir, web_dir, virtualenv_python) _reload_code(config, uwsgi_dir) _reload_web(config, nginx_dir, use_ssl) _run_tests(config, web_dir, virtualenv_python) def _update_source(repo_dir, branch): with cd(repo_dir): sudo('chgrp -R webadmin .') sudo('chmod -R ug+w .') run('git fetch origin') # Attempt to checkout the target branch. This might fail if we've # never deployed from this branch before in this deployment. In that case, # just create the branch then try again. with settings(warn_only=True): result = sudo('git checkout {0}'.format(branch)) if result.failed: sudo('git branch {0}'.format(branch)) sudo('git checkout {0}'.format(branch)) sudo('git reset --hard origin/{0}'.format(branch)) def _compile_source(config, repo_dir, web_dir, virtualenv_python): with cd(repo_dir): sudo('venv/bin/pip install --requirement=requirements.txt') with cd(web_dir): sudo('find . -iname "*.pyc" -exec rm {} \;') sudo('{0} -m compileall .'.format(virtualenv_python)) sudo('{0} manage_{1}.py collectstatic --noinput'.format(virtualenv_python, config)) def _reload_code(config, uwsgi_dir): with cd(uwsgi_dir): sudo('cp guidcoin-{0}.ini /etc/uwsgi/apps-enabled'.format(config)) sudo('chmod 755 /etc/uwsgi/apps-enabled/guidcoin-{0}.ini'.format(config)) sudo('/etc/init.d/uwsgi start guidcoin-{0}'.format(config)) sudo('/etc/init.d/uwsgi reload guidcoin-{0}'.format(config)) def _reload_web(config, nginx_dir, ssl): with cd(nginx_dir): sudo('cp {0}-guidcoin-com /etc/nginx/sites-enabled/'.format(config)) if ssl: sudo('cp ssl/{0}.guidcoin.com.* /etc/nginx/ssl'.format(config)) sudo('chown root /etc/nginx/ssl/{0}.guidcoin.com.*'.format(config)) sudo('chgrp root /etc/nginx/ssl/{0}.guidcoin.com.*'.format(config)) sudo('chmod 644 /etc/nginx/ssl/{0}.guidcoin.com.*'.format(config)) sudo('/etc/init.d/nginx reload') def _run_tests(config, web_dir, virtualenv_python): with cd(web_dir): run('{0} manage_{1}.py test'.format(virtualenv_python, config)) def deploy_global_config(config): global_dir = '/var/www/python/guidcoin-{0}/config/ubuntu-14.04/global'.format(config) SHARED_MEM = '/etc/sysctl.d/30-postgresql-shm.conf' NGINX_CONF = '/etc/nginx/nginx.conf' POSTGRES_HBA = '/etc/postgresql/9.3/main/pg_hba.conf' POSTGRES_CONF = '/etc/postgresql/9.3/main/postgresql.conf' with cd(global_dir): sudo('cp 30-postgresql-shm.conf {0}'.format(SHARED_MEM)) _update_permissions(SHARED_MEM, 'root', 'root', '644') sudo('cp nginx.conf {0}'.format(NGINX_CONF)) _update_permissions(NGINX_CONF, 'root', 'root', '644') sudo('cp pg_hba.conf {0}'.format(POSTGRES_HBA)) _update_permissions(POSTGRES_HBA, 'postgres', 'postgres', '640') sudo('cp postgresql.conf {0}'.format(POSTGRES_CONF)) _update_permissions(POSTGRES_HBA, 'postgres', 'postgres', '644') sudo('/etc/init.d/nginx restart') sudo('/etc/init.d/postgresql restart') def _update_permissions(path, owner, group, mode): sudo('chown {0}:{1} {2}'.format(owner, group, path)) sudo('chmod {0} {1}'.format(mode, path)) def shutdown(config): configuration = configurations[config] branch = configuration['branch'] PYTHON_DIR = '/var/www/python' repo_dir = '{0}/guidcoin-{1}'.format(PYTHON_DIR, config) nginx_dir = '{0}/config/ubuntu-14.04/nginx/shutdown'.format(repo_dir) _update_source(repo_dir, branch) _reload_web(config, nginx_dir)
35.669173
92
0.620784
617
4,744
4.60778
0.226904
0.032008
0.039395
0.021104
0.450229
0.308477
0.236722
0.145973
0.11924
0.071755
0
0.020563
0.220911
4,744
132
93
35.939394
0.748647
0.036889
0
0.222222
0
0
0.309948
0.120009
0
0
0
0
0
1
0.090909
false
0
0.010101
0
0.10101
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2cace32420ebacd10ddd9012cee72a53278a13e
1,863
py
Python
sorts/4.Tree_sort.py
18-2-SKKU-OSS/2018-2-OSS-E5--
8bb7e4c239f5bd95f4635b442bb8b2838e76fb36
[ "MIT" ]
4
2018-12-02T14:21:02.000Z
2019-02-28T04:15:42.000Z
sorts/4.Tree_sort.py
18-2-SKKU-OSS/2018-2-OSS-E5
8bb7e4c239f5bd95f4635b442bb8b2838e76fb36
[ "MIT" ]
25
2018-11-27T10:00:05.000Z
2018-12-11T01:58:46.000Z
sorts/4.Tree_sort.py
18-2-SKKU-OSS/2018-2-OSS-E5--
8bb7e4c239f5bd95f4635b442bb8b2838e76fb36
[ "MIT" ]
null
null
null
""" 파이썬으로 Tree Sort를 구현한 코드입니다. 정확히 말하자면 Binary Search Tree를 구현하였습니다. Binary Search Tree는 각 노드에 값이 있다. Root 노드가 존재한다. 노드의 왼쪽 서브트리에는 그 노드의 값보다 작은 값들을 지닌 노드들로 이루어져있다. 노드의 오른쪽 서브트리에는 그 노드의 값과 같거나 큰 값들을 지닌 노드들로 이루어져있다. 좌우 하위 트리는 각각이 다시 Binary Search Tree 이어야 합니다. """ from __future__ import print_function class node(): #Binary Search Tree를 구현한 class def __init__(self, val): #시작할때 처음 값을 node에 넣어줍니다. self.val = val self.left = None self.right = None def insert(self,val): #insert 해주는 코드로서 if self.val: if val < self.val: #root의 값보다 작을 경우 왼쪽 서브트리로 if self.left is None: self.left = node(val) else: self.left.insert(val) elif val > self.val: #root의 값보다 클 경우 오른쪽 서브트리로 넣어줍니다. if self.right is None: self.right = node(val) else: self.right.insert(val) else: self.val = val """ Binary Search Tree를 오름차순으로 출력하기위해선 inorder 순으로 배열에 저장하여 출력을 해야하기 위해 inorder 함수를 추가하였습니다. """ def inorder(root, res): if root: inorder(root.left,res) res.append(root.val) inorder(root.right,res) def treesort(arr): # Binary Search Tree를 만드는 코드입니다. if len(arr) == 0: return arr root = node(arr[0]) for i in range(1,len(arr)): root.insert(arr[i]) # 오름차순 출력을 위해 inorder 함수를 사용하였습니다. res = [] inorder(root,res) return res if __name__ == '__main__': try: raw_input # Python 2 except NameError: raw_input = input # Python 3 for i in range(3): user_input = raw_input('Enter numbers separated by a comma:\n').strip() unsorted = [int(item) for item in user_input.split(',')] print(treesort(unsorted))
28.661538
79
0.570585
265
1,863
3.928302
0.45283
0.04707
0.065322
0.028818
0.034582
0
0
0
0
0
0
0.004882
0.340311
1,863
64
80
29.109375
0.842148
0.258722
0
0.116279
0
0
0.036249
0
0
0
0
0
0
1
0.093023
false
0
0.023256
0
0.186047
0.046512
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
f2cb9232d1beaf4ae9243ec51c0966d350c75625
446
py
Python
rules/helpers.py
prokoptsev/rules
436348004aa34c2e50d71960dad2076719fc433b
[ "MIT" ]
null
null
null
rules/helpers.py
prokoptsev/rules
436348004aa34c2e50d71960dad2076719fc433b
[ "MIT" ]
1
2017-02-01T08:56:08.000Z
2017-02-01T08:56:08.000Z
rules/helpers.py
prokoptsev/rules
436348004aa34c2e50d71960dad2076719fc433b
[ "MIT" ]
1
2019-11-08T10:44:43.000Z
2019-11-08T10:44:43.000Z
# coding: utf-8 from __future__ import unicode_literals, absolute_import _NOTSET = type( b"NotSet", (object,), {"__repr__": lambda self: "<ValueNotSet>"} )() def get_by_path(keys, source_dict): if "." in keys: key, tail_keys = keys.split(".", 1) if key not in source_dict: return _NOTSET return get_by_path(tail_keys, source_dict[key]) else: return source_dict.get(keys, _NOTSET)
24.777778
56
0.632287
59
446
4.389831
0.559322
0.15444
0.069498
0
0
0
0
0
0
0
0
0.005952
0.246637
446
18
57
24.777778
0.764881
0.029148
0
0
0
0
0.06713
0
0
0
0
0
0
1
0.071429
false
0
0.071429
0
0.357143
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b2bca30173574ead32b90a8d29f7a356f54d612
3,030
py
Python
e2e/Vectors/Generation/Consensus/Beaten.py
kayabaNerve/Currency
260ebc20f1704f42ad6183fee39ad58ec6d07961
[ "CC0-1.0" ]
66
2019-01-14T08:39:52.000Z
2022-01-06T11:39:15.000Z
e2e/Vectors/Generation/Consensus/Beaten.py
kayabaNerve/Currency
260ebc20f1704f42ad6183fee39ad58ec6d07961
[ "CC0-1.0" ]
228
2019-01-16T15:42:44.000Z
2022-02-05T07:48:07.000Z
e2e/Vectors/Generation/Consensus/Beaten.py
kayabaNerve/Currency
260ebc20f1704f42ad6183fee39ad58ec6d07961
[ "CC0-1.0" ]
19
2019-01-14T08:53:04.000Z
2021-11-03T20:19:28.000Z
from typing import List import json import e2e.Libs.Ristretto.Ristretto as Ristretto from e2e.Libs.BLS import PrivateKey from e2e.Classes.Transactions.Transactions import Claim, Send, Transactions from e2e.Classes.Consensus.Verification import SignedVerification from e2e.Classes.Consensus.VerificationPacket import VerificationPacket from e2e.Classes.Consensus.SpamFilter import SpamFilter from e2e.Classes.Merit.Merit import Block, Merit from e2e.Vectors.Generation.PrototypeChain import PrototypeBlock, PrototypeChain edPrivKey: Ristretto.SigningKey = Ristretto.SigningKey(b'\0' * 32) edPubKey: bytes = edPrivKey.get_verifying_key() transactions: Transactions = Transactions() sendFilter: SpamFilter = SpamFilter(3) proto: PrototypeChain = PrototypeChain(40, keepUnlocked=True) proto.add(1) merit: Merit = Merit.fromJSON(proto.toJSON()) #Create a Claim. claim: Claim = Claim([(merit.mints[-1], 0)], edPubKey) claim.sign(PrivateKey(0)) transactions.add(claim) merit.add( PrototypeBlock( merit.blockchain.blocks[-1].header.time + 1200, packets=[VerificationPacket(claim.hash, list(range(2)))] ).finish(0, merit) ) sends: List[Send] = [ #Transaction which will win. Send([(claim.hash, 0)], [(bytes(32), claim.amount)]), #Transaction which will be beaten. Send([(claim.hash, 0)], [(edPubKey, claim.amount // 2), (edPubKey, claim.amount // 2)]) ] #Children. One which will have a Verification, one which won't. sends += [ Send([(sends[1].hash, 0)], [(edPubKey, claim.amount // 2)]), Send([(sends[1].hash, 1)], [(edPubKey, claim.amount // 2)]) ] #Send which spend the remaining descendant of the beaten Transaction. sends.append(Send([(sends[2].hash, 0)], [(bytes(32), claim.amount // 2)])) for s in range(len(sends)): sends[s].sign(edPrivKey) sends[s].beat(sendFilter) if s < 3: transactions.add(sends[s]) verif: SignedVerification = SignedVerification(sends[2].hash, 1) verif.sign(1, PrivateKey(1)) merit.add( PrototypeBlock( merit.blockchain.blocks[-1].header.time + 1200, packets=[ VerificationPacket(sends[0].hash, [0]), VerificationPacket(sends[1].hash, [1]) ] ).finish(0, merit) ) merit.add( PrototypeBlock( merit.blockchain.blocks[-1].header.time + 1200, packets=[VerificationPacket(sends[2].hash, [0])] ).finish(0, merit) ) for _ in range(4): merit.add( PrototypeBlock(merit.blockchain.blocks[-1].header.time + 1200).finish(0, merit) ) blockWBeatenVerif: Block = PrototypeBlock( merit.blockchain.blocks[-1].header.time + 1200, packets=[VerificationPacket(sends[2].hash, [1])] ).finish(0, merit) merit.add( PrototypeBlock(merit.blockchain.blocks[-1].header.time + 1200).finish(0, merit) ) with open("e2e/Vectors/Consensus/Beaten.json", "w") as vectors: vectors.write(json.dumps({ "blockchain": merit.toJSON(), "transactions": transactions.toJSON(), "sends": [send.toJSON() for send in sends], "verification": verif.toSignedJSON(), "blockWithBeatenVerification": blockWBeatenVerif.toJSON() }))
29.705882
89
0.718482
381
3,030
5.706037
0.249344
0.022539
0.080037
0.096596
0.295768
0.282889
0.23873
0.23873
0.23873
0.23873
0
0.032867
0.126403
3,030
101
90
30
0.78844
0.067657
0
0.236842
0
0
0.03617
0.021277
0
0
0
0
0
1
0
false
0
0.131579
0
0.131579
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b2c8fbe001a03db6be5e0e2f8295d8600500dd8
5,105
py
Python
main/pythonDev/TestModels/sphericalJointTest.py
eapcivil/EXUDYN
52bddc8c258cda07e51373f68e1198b66c701d03
[ "BSD-3-Clause-Open-MPI" ]
1
2020-10-06T08:06:25.000Z
2020-10-06T08:06:25.000Z
main/pythonDev/TestModels/sphericalJointTest.py
eapcivil/EXUDYN
52bddc8c258cda07e51373f68e1198b66c701d03
[ "BSD-3-Clause-Open-MPI" ]
null
null
null
main/pythonDev/TestModels/sphericalJointTest.py
eapcivil/EXUDYN
52bddc8c258cda07e51373f68e1198b66c701d03
[ "BSD-3-Clause-Open-MPI" ]
null
null
null
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # This is an EXUDYN example # # Details: Simulate Chain with 3D rigid bodies and SphericalJoint; # Also test MarkerNodePosition # # Author: Johannes Gerstmayr # Date: 2020-04-09 # # Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details. # #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import sys sys.path.append('../TestModels') #for modelUnitTest as this example may be used also as a unit test import exudyn as exu from exudyn.itemInterface import * from exudyn.utilities import * from exudyn.graphicsDataUtilities import * from modelUnitTests import ExudynTestStructure, exudynTestGlobals SC = exu.SystemContainer() mbs = SC.AddSystem() nBodies = 4 color = [0.1,0.1,0.8,1] s = 0.1 #width of cube sx = 3*s #lengt of cube/body cPosZ = 0.1 #offset of constraint in z-direction zz = sx * (nBodies+1)*2 #max size of background background0 = GraphicsDataRectangle(-zz,-zz,zz,sx,color) oGround=mbs.AddObject(ObjectGround(referencePosition= [0,0,0], visualization=VObjectGround(graphicsData= [background0]))) mPosLast = mbs.AddMarker(MarkerBodyPosition(bodyNumber = oGround, localPosition=[-sx,0,cPosZ*0])) #create a chain of bodies: for i in range(nBodies): f = 0 #factor for initial velocities omega0 = [0,50.*f,20*f] #arbitrary initial angular velocity ep0 = eulerParameters0 #no rotation ep_t0 = AngularVelocity2EulerParameters_t(omega0, ep0) p0 = [-sx+i*2*sx,0.,0] #reference position v0 = [0.2*f,0.,0.] #initial translational velocity nRB = mbs.AddNode(NodeRigidBodyEP(referenceCoordinates=p0+ep0, initialVelocities=v0+list(ep_t0))) #nRB = mbs.AddNode(NodeRigidBodyEP(referenceCoordinates=[0,0,0,1,0,0,0], initialVelocities=[0,0,0,0,0,0,0])) oGraphics = GraphicsDataOrthoCubeLines(-sx,-s,-s, sx,s,s, [0.8,0.1,0.1,1]) oRB = mbs.AddObject(ObjectRigidBody(physicsMass=2, physicsInertia=[6,1,6,0,0,0], nodeNumber=nRB, visualization=VObjectRigidBody(graphicsData=[oGraphics]))) mMassRB = mbs.AddMarker(MarkerBodyMass(bodyNumber = oRB)) mbs.AddLoad(Gravity(markerNumber = mMassRB, loadVector=[0.,-9.81,0.])) #gravity in negative z-direction if i==0: #mPos = mbs.AddMarker(MarkerBodyPosition(bodyNumber = oRB, localPosition = [-sx*0,0.,cPosZ*0])) mPos = mbs.AddMarker(MarkerNodePosition(nodeNumber=nRB)) else: mPos = mbs.AddMarker(MarkerBodyPosition(bodyNumber = oRB, localPosition = [-sx,0.,cPosZ])) #alternative with spring-damper: #mbs.AddObject(ObjectConnectorCartesianSpringDamper(markerNumbers = [mPosLast, mPos], # stiffness=[k,k,k], damping=[d,d,d])) #gravity in negative z-direction axes = [1,1,1] if (i==0): axes = [0,1,1] mbs.AddObject(SphericalJoint(markerNumbers = [mPosLast, mPos], constrainedAxes=axes)) #marker for next chain body mPosLast = mbs.AddMarker(MarkerBodyPosition(bodyNumber = oRB, localPosition = [sx,0.,cPosZ])) mbs.Assemble() #exu.Print(mbs) simulationSettings = exu.SimulationSettings() #takes currently set values or default values fact = 1000 simulationSettings.timeIntegration.numberOfSteps = 1*fact simulationSettings.timeIntegration.endTime = 0.001*fact simulationSettings.solutionSettings.solutionWritePeriod = simulationSettings.timeIntegration.endTime/fact*10 simulationSettings.timeIntegration.verboseMode = 1 simulationSettings.timeIntegration.newton.useModifiedNewton = True simulationSettings.timeIntegration.generalizedAlpha.useIndex2Constraints = False simulationSettings.timeIntegration.generalizedAlpha.useNewmark = False simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 0.6 #0.6 works well simulationSettings.solutionSettings.solutionInformation = "rigid body tests" SC.visualizationSettings.nodes.defaultSize = 0.05 #simulationSettings.displayComputationTime = True #simulationSettings.displayStatistics = True if exudynTestGlobals.useGraphics: exu.StartRenderer() mbs.WaitForUserToContinue() SC.TimeIntegrationSolve(mbs, 'GeneralizedAlpha', simulationSettings) #+++++++++++++++++++++++++++++++++++++++++++++ sol = mbs.systemData.GetODE2Coordinates(); solref = mbs.systemData.GetODE2Coordinates(configuration=exu.ConfigurationType.Reference); #exu.Print('sol=',sol) u = 0 for i in range(14): #take coordinates of first two bodies u += abs(sol[i]+solref[i]) exu.Print('solution of sphericalJointTest=',u) exudynTestGlobals.testError = u - (4.409004179180698) #2020-04-04: 4.409004179180698 if exudynTestGlobals.useGraphics: #SC.WaitForRenderEngineStopFlag() exu.StopRenderer() #safely close rendering window!
40.84
181
0.681097
560
5,105
6.203571
0.419643
0.009787
0.007772
0.046056
0.117444
0.058146
0.056131
0.056131
0.056131
0
0
0.039886
0.174927
5,105
124
182
41.169355
0.7849
0.326934
0
0.028169
0
0
0.022399
0
0
0
0
0
0
1
0
false
0
0.084507
0
0.084507
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b315d99b885f67bca9bd8f9e32645470a5d8448
1,915
py
Python
inference/online_inference/src/app.py
made-ml-in-prod-2021/marina-zav
7b4b6e5f333707001e36dfb014dcd36bf975d969
[ "FTL" ]
null
null
null
inference/online_inference/src/app.py
made-ml-in-prod-2021/marina-zav
7b4b6e5f333707001e36dfb014dcd36bf975d969
[ "FTL" ]
null
null
null
inference/online_inference/src/app.py
made-ml-in-prod-2021/marina-zav
7b4b6e5f333707001e36dfb014dcd36bf975d969
[ "FTL" ]
null
null
null
import logging import sys import time from typing import List, Optional import uvicorn from fastapi import FastAPI from fastapi.exceptions import RequestValidationError from fastapi.responses import PlainTextResponse from sklearn.pipeline import Pipeline from src.entities import ( read_app_params, HeartDiseaseModelRequest, HeartDiseaseModelResponse, ) from src.models import make_predict, load_model logger = logging.getLogger(__name__) handler = logging.StreamHandler(sys.stdout) logger.setLevel(logging.INFO) logger.addHandler(handler) DEFAULT_CONFIG_PATH = "configs/app_config.yaml" model: Optional[Pipeline] = None app = FastAPI() @app.exception_handler(RequestValidationError) async def validation_exception_handler(request, exc): return PlainTextResponse(str(exc), status_code=400) @app.get("/") def main(): return "it is entry point of our predictor" @app.on_event("startup") def load_app_model(): time.sleep(30) app_params = read_app_params("configs/app_config.yaml") logger.info("Start loading model") global model model = load_model(app_params.model_path) logger.info("Model loaded") @app.get("/predict/", response_model=List[HeartDiseaseModelResponse]) def predict(request: HeartDiseaseModelRequest): return make_predict(request.data, request.features, model) @app.get("/predict_new/", response_model=List[HeartDiseaseModelResponse]) def predict(request: HeartDiseaseModelRequest): # For checking new code version (new docker image) return make_predict(request.data, request.features, model) @app.get("/healthz") def health() -> bool: return not (model is None) def setup_app(): app_params = read_app_params(DEFAULT_CONFIG_PATH) logger.info(f"Running app on {app_params.host} with port {app_params.port}") uvicorn.run(app, host=app_params.host, port=app_params.port) if __name__ == "__main__": setup_app()
26.232877
80
0.769191
245
1,915
5.812245
0.379592
0.063202
0.027388
0.02809
0.223315
0.192416
0.192416
0.192416
0.075843
0.075843
0
0.003001
0.130026
1,915
72
81
26.597222
0.851741
0.025065
0
0.078431
0
0
0.116354
0.024665
0
0
0
0
0
1
0.117647
false
0
0.215686
0.078431
0.431373
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b34659c04f2dfee8c71b653e9b765ff930cf91e
8,040
py
Python
serverCollector.py
VertexC/pipot-server
0e2c9b0e34a589d9813301765ef8d2433ef67869
[ "ISC" ]
4
2019-02-11T12:43:08.000Z
2019-03-23T06:59:38.000Z
serverCollector.py
VertexC/pipot-server
0e2c9b0e34a589d9813301765ef8d2433ef67869
[ "ISC" ]
25
2019-02-26T17:16:58.000Z
2019-08-19T03:36:56.000Z
serverCollector.py
VertexC/pipot-server
0e2c9b0e34a589d9813301765ef8d2433ef67869
[ "ISC" ]
5
2019-01-15T06:32:21.000Z
2020-01-10T11:58:43.000Z
import hashlib import hmac import json import datetime from abc import ABCMeta, abstractmethod from twisted.internet import protocol from mod_config.models import Rule, Actions from mod_honeypot.models import PiPotReport, Deployment from pipot.encryption import Encryption from pipot.notifications import NotificationLoader from pipot.services import ServiceLoader class ICollector: """ Interface that represents a uniform collector. """ __metaclass__ = ABCMeta def __init__(self): pass @abstractmethod def process_data(self, data): """ Server-side processing of received data. :param data: A JSONified version of the data. :type data: str :return: None :rtype: None """ pass @abstractmethod def queue_data(self, service_name, data): """ Client-side processing of data to send :param service_name: The name of the service. :type service_name: str :param data: A JSON collection of data :type data: dict :return: None :rtype: None """ pass class ServerCollector(ICollector): def __init__(self, db): super(ServerCollector, self).__init__() self.db = db def queue_data(self, service_name, data): pass def process_data(self, data): print("Received a message: %s" % data) # Attempt to deserialize the data try: data = json.loads(data) except ValueError: print('Message not valid JSON; discarding') return # Check if JSON contains the two required fields if 'data' not in data or 'instance' not in data: print('Invalid JSON (information missing; discarding)') return """:type : mod_honeypot.models.Deployment""" honeypot = Deployment.query.filter( Deployment.instance_key == data['instance']).first() if honeypot is not None: # Attempt to decrypt content decrypted = Encryption.decrypt(honeypot.encryption_key, data['data']) try: decrypted_data = json.loads(decrypted) except ValueError: print('Decrypted data is not JSON; discarding') return if 'hmac' not in decrypted_data or \ 'content' not in decrypted_data: print('Decrypted data misses info; discarding') return # Verify message authenticity mac = hmac.new( str(honeypot.mac_key), str(json.dumps(decrypted_data['content'], sort_keys=True)), hashlib.sha256 ).hexdigest() try: authentic = hmac.compare_digest( mac, decrypted_data['hmac'].encode('utf8')) except AttributeError: # Older python version? Fallback which is less safe authentic = mac == decrypted_data['hmac'] if authentic: print('Data authenticated; processing') # Determine service for entry in decrypted_data['content']: # Entry exists out of timestamp, service & data elements timestamp = datetime.datetime.utcnow() try: timestamp = datetime.datetime.strptime( entry['timestamp'], '%Y-%m-%d %H:%M:%S') except ValueError: pass if entry['service'] == 'PiPot': # Store row = PiPotReport(honeypot.id, entry['data'], timestamp) self.db.add(row) self.db.commit() print('Stored PiPot entry in the database') else: # Get active services through the deployment profile for p_service in honeypot.profile.services: if p_service.service.name != entry['service']: continue print('Valid service for profile: %s' % entry['service']) # Valid service service = ServiceLoader.get_class_instance( entry['service'], self, p_service.get_service_config() ) # Convert JSON back to object service_data = service.create_storage_row( honeypot.id, entry['data'], timestamp) notification_level = \ service.get_notification_level(service_data) # Get rules that apply here rules = Rule.query.filter( Rule.service_id == p_service.service_id ).order_by(Rule.level.asc()) rule_parsed = False for rule in rules: if not rule.matches(notification_level): continue # Process message according to rule notifier = \ NotificationLoader.get_class_instance( rule.notification.name, rule.get_notification_config() ) notifier.process( service_data.get_message_for_level( notification_level ) ) if rule.action == Actions.drop: rule_parsed = True break if not rule_parsed: # Store in DB self.db.add(service_data) self.db.commit() print('Processed message; stored in DB') else: print('Processed message; dropping due to ' 'rules') if len(honeypot.profile.services) == 0: print('There are no services configured for ' 'this honeypot; discarding') else: print('Message not authentic; discarding') # print('Expected: %s, got %s' % (mac, decrypted_data[ # 'hmac'])) # print('Payload: %s' % json.dumps(decrypted_data['content'])) else: print('Unknown honeypot instance (%s); discarding' % data['instance']) class SSLCollector(protocol.Protocol): def __init__(self, factory): self.factory = factory def connectionMade(self): pass def connectionLost(self, reason=protocol.connectionDone): pass def dataReceived(self, data): if 'collector' in self.factory.__dict__: self.factory.collector.process_data(data) else: print('No collector present!') class SSLFactory(protocol.Factory): def __init__(self, collector): self.collector = collector def buildProtocol(self, addr): return SSLCollector(self) class UDPCollector(protocol.DatagramProtocol): def __init__(self, collector): self.collector = collector def datagramReceived(self, data, addr): self.collector.process_data(data)
37.924528
78
0.486318
691
8,040
5.526773
0.287988
0.037444
0.014402
0.015711
0.093218
0.039801
0.039801
0.023566
0
0
0
0.001114
0.441915
8,040
211
79
38.104265
0.850011
0.114801
0
0.25
0
0
0.093275
0
0
0
0
0
0
1
0.094595
false
0.047297
0.074324
0.006757
0.243243
0.094595
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b3702971613873f8e0d3ea487888d2084d6acd1
4,852
py
Python
pyhttptest/decorators.py
NickMitin/pyhttptest
5116caf3962dab63d62bffe94b0659f435b3e2d3
[ "BSD-3-Clause" ]
142
2019-10-22T11:19:44.000Z
2021-11-09T11:05:27.000Z
pyhttptest/decorators.py
NickMitin/pyhttptest
5116caf3962dab63d62bffe94b0659f435b3e2d3
[ "BSD-3-Clause" ]
5
2019-10-22T14:43:39.000Z
2020-10-09T13:25:24.000Z
pyhttptest/decorators.py
NickMitin/pyhttptest
5116caf3962dab63d62bffe94b0659f435b3e2d3
[ "BSD-3-Clause" ]
14
2019-10-23T18:27:58.000Z
2020-09-22T01:07:39.000Z
from sys import modules from functools import wraps from jsonschema import validate from pyhttptest.constants import ( HTTP_METHOD_NAMES, JSON_FILE_EXTENSION, ) from pyhttptest.exceptions import ( FileExtensionError, HTTPMethodNotSupportedError ) from pyhttptest.http_schemas import ( # noqa get_schema, post_schema, put_schema, delete_schema ) def check_file_extension(func): """A decorator responsible for checking whether the file extension is supported. An inner :func:`_decorator` slices the last five characters of the passed ``file_path`` parameter and checking whether they are equal to JSON file extension(.json). If there is equality, decorated function business logic is performed otherwise, the exception for not supported file extension is raised. Usage: .. code-block:: python @check_file_extension def load_content_from_json_file(file_path): ... :raises FileExtensionError: If the file extension is not '.json'. """ @wraps(func) def _decorator(file_path): file_extension = file_path[-5:] if file_extension != JSON_FILE_EXTENSION: raise FileExtensionError(file_extension) return func(file_path) return _decorator def validate_extract_json_properties_func_args(func): """A validation decorator, ensuring that arguments passed to the decorated function are with proper types. An inner :func:`_decorator` does checking of arguments types. If the types of the arguments are different than allowing ones, the exception is raised, otherwise decorated function is processed. Usage: .. code-block:: python @validate_extract_json_properties_func_args def extract_properties_values_from_json(data, keys): ... :raises TypeError: If the data is not a `dict`. :raises TypeError: If the keys is not a type of (`tuple`, `list`, `set`). """ @wraps(func) def _decorator(data, keys): if not isinstance(data, dict): raise TypeError( ( "Passed 'data' param argument, must be of " "data type 'dict'. Not a type of {type}.".format( type=type(data) ) ) ) if not isinstance(keys, (tuple, list, set)): raise TypeError( ( "Passed 'keys' param argument, must be one of: " "(tuple, list, set) data types. Not a type of {type}.".format( type=type(keys) ) ) ) return func(data, keys) return _decorator def validate_data_against_json_schema(func): """A validation decorator, ensuring that data is covering JSON Schema requirements. An inner :func:`_decorator` does checking of data type, HTTP Method support along with appropriate JSON Schema, that can validate passed data. If one of the checks doesn't match, the exception is raised, otherwise, data validation is run against JSON Schema and decorated function is processed. Usage: .. code-block:: python @validate_data_against_json_schema def extract_json_data(data): ... :raises TypeError: If the data is not a `dict`. :raises HTTPMethodNotSupportedError: If an HTTP Method is not supported. :raises TypeError: If lack of appropriate JSON Schema to validate data. """ @wraps(func) def _decorator(data): if not isinstance(data, dict): raise TypeError( ( "Passed 'data' param argument, must be of " "data type 'dict'. Not a type of {type}.".format( type=type(data) ) ) ) if 'verb' not in data or data['verb'].lower() not in HTTP_METHOD_NAMES: raise HTTPMethodNotSupportedError(data.get('verb', 'None')) http_schema_name = '_'.join([data['verb'].lower(), 'schema']) # The key is used to extract module loaded in sys.modules http_schema_module_key = '.'.join( ['pyhttptest.http_schemas', http_schema_name] ) # Extract the module instance http_schema_module = modules[http_schema_module_key] if not hasattr(http_schema_module, http_schema_name): raise ValueError( ( 'There is no appropriate JSON Schema to ' 'validate data against it.' ) ) http_schema_instance = getattr(http_schema_module, http_schema_name) validate(instance=data, schema=http_schema_instance) return func(data) return _decorator
31.303226
82
0.61789
561
4,852
5.187166
0.244207
0.049141
0.027491
0.013746
0.341581
0.269416
0.17732
0.153952
0.14433
0.105842
0
0.000298
0.307708
4,852
154
83
31.506494
0.866032
0.395095
0
0.217949
0
0
0.135834
0.008376
0
0
0
0
0
1
0.076923
false
0.038462
0.076923
0
0.230769
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b3983c191ae8db18994072c0ce7b31ca01543db
12,081
py
Python
python/test/lib/zk/cache_test.py
cschutijser/scion
054cef53b31a577ed224a090d6a4fd3883fd520b
[ "Apache-2.0" ]
1
2018-03-18T14:46:34.000Z
2018-03-18T14:46:34.000Z
python/test/lib/zk/cache_test.py
cschutijser/scion
054cef53b31a577ed224a090d6a4fd3883fd520b
[ "Apache-2.0" ]
1
2020-03-20T01:28:56.000Z
2020-03-20T01:28:56.000Z
python/test/lib/zk/cache_test.py
cschutijser/scion
054cef53b31a577ed224a090d6a4fd3883fd520b
[ "Apache-2.0" ]
2
2020-03-14T16:03:27.000Z
2020-03-18T08:13:19.000Z
# Copyright 2015 ETH Zurich # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ :mod:`cache_test` --- lib.zk.cache unit tests ====================================================== """ # Stdlib from unittest.mock import call, patch # External packages import nose import nose.tools as ntools from kazoo.exceptions import ( ConnectionLoss, NoNodeError, NodeExistsError, SessionExpiredError, ) # SCION from lib.zk.errors import ZkNoConnection, ZkNoNodeError from lib.zk.cache import ZkSharedCache from test.testcommon import assert_these_calls, create_mock class TestZkSharedCacheStore(object): """ Unit tests for lib.zk.cache.ZkSharedCache.store """ def _setup(self): inst = ZkSharedCache("zk", "path", "handler") inst._path = "/path" inst._zk = create_mock(["is_connected"]) inst._kazoo = create_mock(["create", "set"]) inst._incoming_entries = create_mock(["append"]) return inst @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_not_connected(self, init): inst = self._setup() inst._zk.is_connected.return_value = False # Call ntools.assert_raises(ZkNoConnection, inst.store, 'n', 'v') # Tests inst._zk.is_connected.assert_called_once_with() @patch("lib.zk.cache.time.time", autospec=True) @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_set(self, init, time_): inst = self._setup() # Call inst.store('n', 'v') # Tests inst._kazoo.set.assert_called_once_with("/path/n", "v") ntools.assert_false(inst._kazoo.create.called) inst._incoming_entries.append.assert_called_once_with( ("n", time_.return_value)) @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def _check_set_conn_loss(self, excp, init): inst = self._setup() inst._kazoo.set.side_effect = excp # Call ntools.assert_raises(ZkNoConnection, inst.store, 'n', 'v') def test_set_conn_loss(self): for excp in ConnectionLoss, SessionExpiredError: yield self._check_set_conn_loss, excp @patch("lib.zk.cache.time.time", autospec=True) @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_create(self, init, time_): inst = self._setup() inst._kazoo.set.side_effect = NoNodeError # Call inst.store('n', 'v') # Tests inst._kazoo.create.assert_called_once_with("/path/n", "v", makepath=True) inst._incoming_entries.append.assert_called_once_with( ("n", time_.return_value)) @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_suddenly_exists(self, init): inst = self._setup() inst._kazoo.set.side_effect = NoNodeError inst._kazoo.create.side_effect = NodeExistsError # Call inst.store('n', 'v') @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def _check_create_conn_loss(self, excp, init): inst = self._setup() inst._kazoo.set.side_effect = NoNodeError inst._kazoo.create.side_effect = excp # Call ntools.assert_raises(ZkNoConnection, inst.store, 'n', 'v') def test_create_conn_loss(self): for excp in ConnectionLoss, SessionExpiredError: yield self._check_create_conn_loss, excp class TestZkSharedCacheProcess(object): """ Unit tests for lib.zk.cache.ZkSharedCache.process """ @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_not_connected(self, init): inst = ZkSharedCache("zk", "path", "handler") inst._zk = create_mock(["is_connected"]) inst._zk.is_connected.return_value = False # Call ntools.assert_raises(ZkNoConnection, inst.process) # Tests inst._zk.is_connected.assert_called_once_with() @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_full(self, init): inst = ZkSharedCache("zk", "path", "handler") inst._zk = create_mock(["conn_epoch", "is_connected"]) inst._incoming_entries = create_mock(["__bool__", "popleft"]) inst._incoming_entries.__bool__.side_effect = True, True, False inst._incoming_entries.popleft.side_effect = ("inc0", 1), ("inc1", 0) inst._entries = {"inc0": 0, "old0": 0} inst._list_entries = create_mock() inst._list_entries.return_value = "inc0", "inc1", "new0" inst._handle_entries = create_mock() inst._path = "/path" # Call inst.process() # Tests ntools.eq_(inst._entries, {"inc0": 0, "inc1": 0}) inst._handle_entries.assert_called_once_with({"new0"}) class TestZkSharedCacheGet(object): """ Unit tests for lib.zk.cache.ZkSharedCache._get """ @patch("lib.zk.cache.time.time", autospec=True) @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_success(self, init, time_): inst = ZkSharedCache("zk", "path", "handler") inst._path = "/path" inst._kazoo = create_mock(["get"]) inst._kazoo.get.return_value = ("data", "meta") inst._entries = create_mock(["setdefault"]) # Call ntools.eq_(inst._get("name"), "data") # Tests inst._kazoo.get.assert_called_once_with("/path/name") inst._entries.setdefault.assert_called_once_with( "name", time_.return_value) @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_no_entry(self, init): inst = ZkSharedCache("zk", "path", "handler") inst._path = "/path" inst._kazoo = create_mock(["get"]) inst._kazoo.get.side_effect = NoNodeError inst._entries = create_mock(["pop"]) # Call ntools.assert_raises(ZkNoNodeError, inst._get, "name") # Tests inst._kazoo.get.assert_called_once_with("/path/name") inst._entries.pop.assert_called_once_with("name", None) @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def _check_exception(self, excp, expected, init): inst = ZkSharedCache("zk", "path", "handler") inst._path = "/path" inst._kazoo = create_mock(["get"]) inst._kazoo.get.side_effect = excp # Call ntools.assert_raises(expected, inst._get, "name") def test_exceptions(self): for excp, expected in ( (ConnectionLoss, ZkNoConnection), (SessionExpiredError, ZkNoConnection), ): yield self._check_exception, excp, expected class TestZkSharedCacheListEntries(object): """ Unit tests for lib.zk.cache.ZkSharedCache._list_entries """ @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_sucesss(self, init): inst = ZkSharedCache("zk", "path", "handler") inst._path = "/path" inst._kazoo = create_mock(["get_children"]) inst._kazoo.get_children.return_value = [ "node0", "node1", "node2", "node3"] # Call ntools.eq_(inst._list_entries(), {"node0", "node1", "node2", "node3"}) @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_no_cache(self, init): inst = ZkSharedCache("zk", "path", "handler") inst._path = "/path" inst._kazoo = create_mock(["get_children"]) inst._kazoo.get_children.side_effect = NoNodeError # Call ntools.eq_(inst._list_entries(), set()) @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def _check_children_exception(self, excp, expected, init): inst = ZkSharedCache("zk", "path", "handler") inst._path = "/path" inst._kazoo = create_mock(["get_children"]) inst._kazoo.get_children.side_effect = excp # Call ntools.assert_raises(expected, inst._list_entries) def test_children_exceptions(self): for excp, expected in ( (ConnectionLoss, ZkNoConnection), (SessionExpiredError, ZkNoConnection), ): yield self._check_children_exception, excp, expected class TestZkSharedCacheHandleEntries(object): """ Unit test for lib.zk.cache.ZkSharedCache._handle_entries """ @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test(self, init): inst = ZkSharedCache("zk", "path", "handler") entry_names = ["entry0", "entry1", "entry2", "entry3"] inst._get = create_mock() inst._get.side_effect = [ "data0", ZkNoNodeError, "data2", ZkNoConnection ] inst._path = "/path" inst._handler = create_mock() # Call ntools.eq_(inst._handle_entries(entry_names), 2) # Tests assert_these_calls(inst._get, ([call(i) for i in entry_names])) inst._handler.assert_called_once_with(["data0", "data2"]) class TestZkSharedCacheExpire(object): """ Unit test for lib.zk.cache.ZkSharedCache.expire """ @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_not_connected(self, init): inst = ZkSharedCache("zk", "path", "handler") inst._zk = create_mock(["is_connected"]) inst._zk.is_connected.return_value = False # Call ntools.assert_raises(ZkNoConnection, inst.expire, 42) # Tests inst._zk.is_connected.assert_called_once_with() def _setup(self, time_, entries): inst = ZkSharedCache("zk", "path", "handler") inst._zk = create_mock(["is_connected"]) time_.return_value = 1000 inst._entries = entries inst._kazoo = create_mock(["delete"]) inst._path = "/path" return inst @patch("lib.zk.cache.time.time", autospec=True) @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def test_success(self, init, time_): entries = {} for last_seen in 1000, 999, 996, 995, 994, 990, 1001: entries["entry%d" % last_seen] = last_seen inst = self._setup(time_, entries) # Call inst.expire(5) # Tests assert_these_calls(inst._kazoo.delete, [ call("/path/entry994"), call("/path/entry990") ], any_order=True) @patch("lib.zk.cache.time.time", autospec=True) @patch("lib.zk.cache.ZkSharedCache.__init__", autospec=True, return_value=None) def _check_exception(self, excp, expected, init, time_): inst = self._setup(time_, {"entry1": 0}) inst._kazoo.delete.side_effect = excp # Call ntools.assert_raises(expected, inst.expire, 5) def test_exceptions(self): for excp, expected in ( (NoNodeError, ZkNoNodeError), (ConnectionLoss, ZkNoConnection), (SessionExpiredError, ZkNoConnection), ): yield self._check_exception, excp, expected if __name__ == "__main__": nose.run(defaultTest=__name__)
36.279279
77
0.631653
1,397
12,081
5.163207
0.143164
0.022182
0.042978
0.076528
0.66089
0.634271
0.61708
0.60086
0.552752
0.516013
0
0.008697
0.238556
12,081
332
78
36.388554
0.77541
0.093866
0
0.541126
0
0
0.126319
0.06848
0
0
0
0
0.112554
1
0.108225
false
0
0.030303
0
0.17316
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b3b08e4408a36e23ecf7b49e3efe15dedf8336d
2,347
py
Python
scripts/macro-f1-tag.py
shuoyangd/stenella
a677c67c602f2229e4452ed7f38b778897df51c0
[ "MIT" ]
1
2021-11-09T04:57:24.000Z
2021-11-09T04:57:24.000Z
scripts/macro-f1-tag.py
shuoyangd/stenella
a677c67c602f2229e4452ed7f38b778897df51c0
[ "MIT" ]
null
null
null
scripts/macro-f1-tag.py
shuoyangd/stenella
a677c67c602f2229e4452ed7f38b778897df51c0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright © 2021 Shuoyang Ding <[email protected]> # Created on 2021-02-11 # # Distributed under terms of the MIT license. import argparse import logging import math import sys logging.basicConfig( format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO) logging.getLogger().setLevel(logging.INFO) opt_parser = argparse.ArgumentParser(description="") opt_parser.add_argument("--tag-file", "-tf", required=True, help="file that holds system predictions, one label per line") opt_parser.add_argument("--ref-file", "-rf", required=True, help="file that holds reference ok/bad labels, one label per line") def f1(prec, recl): return 2 * (prec * recl) / (prec + recl) def main(options): tf = open(options.tag_file, 'r') rf = open(options.ref_file, 'r') ok_correct = 0 ok_label_total = 0 ok_pred_total = 0 bad_correct = 0 bad_label_total = 0 bad_pred_total = 0 for idx, (tl, rl) in enumerate(zip(tf, rf)): tag = tl.strip() rl = rl.strip() if tag == "OK": ok_pred_total += 1 if rl == "OK": ok_correct += 1 ok_label_total += 1 else: bad_label_total += 1 elif tag == "BAD": bad_pred_total += 1 if rl == "BAD": bad_correct += 1 bad_label_total += 1 else: ok_label_total += 1 else: logging.error("line {0}: tag should either have value OK/BAD, but has value {1}".format(idx, tag)) if not (tf.read() == rf.read() == ''): logging.error("Your tag and reference file are of different length. You should fix that first.") ok_prec = ok_correct / ok_pred_total ok_recl = ok_correct / ok_label_total ok_f1 = f1(ok_prec, ok_recl) sys.stdout.write("p/r/f for ok label: {0:.4f}/{1:.4f}/{2:.4f}\n".format(ok_prec, ok_recl, ok_f1)) bad_prec = bad_correct / bad_pred_total bad_recl = bad_correct / bad_label_total bad_f1 = f1(bad_prec, bad_recl) sys.stdout.write("p/r/f for bad label: {0:.4f}/{1:.4f}/{2:.4f}\n".format(bad_prec, bad_recl, bad_f1)) sys.stdout.write("macro-f1: {0:.4f}\n".format(ok_f1 * bad_f1)) if __name__ == "__main__": ret = opt_parser.parse_known_args() options = ret[0] if ret[1]: logging.warning( "unknown arguments: {0}".format( opt_parser.parse_known_args()[1])) main(options)
27.611765
127
0.647635
377
2,347
3.835544
0.334218
0.055325
0.033195
0.03112
0.17704
0.102351
0.062241
0.062241
0.029046
0
0
0.030818
0.198125
2,347
84
128
27.940476
0.736982
0.059651
0
0.116667
0
0.033333
0.222273
0.022727
0
0
0
0
0
1
0.033333
false
0
0.066667
0.016667
0.116667
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b3bc0d2b44d013537c672eed0453f853feeca74
8,865
py
Python
Stack/Solutions_Two.py
daniel-zeiler/potential-happiness
1c9d503a52c35dab8b031f72e63725578735ac73
[ "MIT" ]
null
null
null
Stack/Solutions_Two.py
daniel-zeiler/potential-happiness
1c9d503a52c35dab8b031f72e63725578735ac73
[ "MIT" ]
null
null
null
Stack/Solutions_Two.py
daniel-zeiler/potential-happiness
1c9d503a52c35dab8b031f72e63725578735ac73
[ "MIT" ]
null
null
null
import collections from typing import List def maxDepth(s: str) -> int: stack = [] max_depth = 0 for character in s: if character == '(': stack.append(character) elif character == ')': stack.pop() max_depth = max(max_depth, len(stack)) return max_depth def removeOuterParentheses(s: str) -> str: stack = [] result = '' for i, character in enumerate(s): if character == '(': stack.append(i) else: if len(stack) == 1: result += s[stack[0] + 1:i] stack.pop() return result def removeDuplicates(s: str) -> str: stack = [] for character in s: if not stack: stack.append(character) elif character == stack[-1]: stack.pop() else: stack.append(character) return ''.join(stack) def calPoints(ops: List[str]) -> int: stack = [] total_points = 0 for operation in ops: if operation == 'C': total_points -= stack.pop() else: if operation == '+': stack.append(stack[-1] + stack[-2]) elif operation == 'D': stack.append(stack[-1] * 2) else: stack.append(int(operation)) total_points += stack[-1] return total_points def makeGood(s: str) -> str: stack = [] for character in s: if not stack: stack.append(character) elif stack[-1] == character.lower() and stack[-1] != character: stack.pop() else: stack.append(character) return ''.join(stack) def backspaceCompare(s: str, t: str) -> bool: s_list = [] t_list = [] for character in s: if character == '#': if s_list: s_list.pop() else: s_list.append(character) for character in t: if character == '#': if t_list: t_list.pop() else: t_list.append(character) return s_list == t_list def isValid(s: str) -> bool: curly = 0 square = 0 bracket = 0 for character in s: if character == ')': bracket -= 1 elif character == '(': bracket += 1 elif character == ']': square -= 1 elif character == '[': square += 1 elif character == '}': curly -= 1 else: curly += 1 if curly | square | bracket == -1: return False return curly == square == bracket == 0 def minAddToMakeValid(s: str) -> int: min_add = 0 stack = 0 for character in s: if character == ')': if not stack: min_add += 1 else: stack -= 1 else: stack += 1 return min_add + stack def reverseParentheses(s: str) -> str: s = list(s) stack = [] result_list = [] for index, character in enumerate(s): if character == ')': while stack[-1] != '(': result_list.append(stack.pop()) stack.pop() stack.extend(result_list) result_list = [] else: stack.append(character) return ''.join(stack) def validateStackSequences(pushed: List[int], popped: List[int]) -> bool: stack = [] pushed = collections.deque(pushed) popped = collections.deque(popped) while pushed: if not stack or stack[-1] != popped[0]: stack.append(pushed.popleft()) else: popped.popleft() stack.pop() while popped and stack[-1] == popped[0]: stack.pop() popped.popleft() return len(pushed) == len(popped) == 0 def minRemoveToMakeValid(s: str) -> str: stack = [] remove_set = set() for index, character in enumerate(s): if character == ')': if not stack: remove_set.add(index) else: stack.pop() elif character == '(': stack.append(index) remove_set.update(stack) result = '' for index, character in enumerate(s): if index not in remove_set: result += character return result def is_valid_abc(s: str) -> bool: stack = [] for character in s: stack.append(character) while len(stack) >= 3 and stack[-3] + stack[-2] + stack[-1] == 'abc': stack.pop() stack.pop() stack.pop() return not stack def remove_duplicate_value(s: str, k: int) -> str: stack = [] for character in s: stack.append(character) if len(stack) >= k: if set(stack[-k:]) == set(character): for _ in range(k): stack.pop() return ''.join(stack) def decodeString(s: str) -> str: stack = [] for character in s: stack.append(character) if stack[-1] == ']': stack.pop() decode = '' while stack[-1] != '[': decode = stack.pop() + decode stack.pop() number = '' while stack and stack[-1].isnumeric(): number += stack.pop() decode = int(number[::-1]) * decode stack.extend(list(decode)) return ''.join(stack) def isanumber(a): try: float(repr(a)) bool_a = True except: bool_a = False return bool_a def evalRPN(tokens: List[str]) -> int: stack = [] for i, token in enumerate(tokens): if token.lstrip('-').isnumeric(): stack.append(int(token)) else: first_pop = stack.pop() second_pop = stack.pop() if token == '/': stack.append(int(second_pop / first_pop)) elif token == '+': stack.append(second_pop + first_pop) elif token == '*': stack.append(second_pop * first_pop) elif token == '-': stack.append(second_pop - first_pop) return stack[-1] def finalPrices(prices: List[int]) -> List[int]: result = [price for price in prices] stack = [] for i, price in enumerate(prices): if not stack: stack.append(i) else: while stack and prices[stack[-1]] >= price: index = stack.pop() result[index] = prices[index] - price stack.append(i) return result def nextGreaterElement(nums1: List[int], nums2: List[int]) -> List[int]: result_map = {} stack = [] for i, number in enumerate(nums2): while stack and nums2[stack[-1]] < number: index = stack.pop() result_map[nums2[index]] = number stack.append(i) for i, num in enumerate(nums1): if num in result_map: nums1[i] = result_map[num] else: nums1[i] = -1 return nums1 def dailyTemperatures(temperatures: List[int]) -> List[int]: result = [0 for _ in range(len(temperatures))] stack = [] for index, temperature in enumerate(temperatures): while stack and temperatures[stack[-1]] < temperature: stack_index = stack.pop() result[stack_index] = index - stack_index stack.append(index) return result def nextGreaterElements(nums: List[int]) -> List[int]: stack = [] result = [-1 for _ in range(len(nums))] for i, num in enumerate(nums): while stack and nums[stack[-1]] < num: index = stack.pop() result[index] = num stack.append(i) for i, num in enumerate(nums): while stack and nums[stack[-1]] < num: index = stack.pop() result[index] = num if not stack: return result return result def exclusiveTime(n: int, logs: List[str]) -> List[int]: res = [0] * n stack = [] for log in logs: ID, op, time = log.split(':') ID = int(ID) time = int(time) if op == 'start': if stack: res[stack[-1][0]] += time - stack[-1][1] stack.append([ID, time]) else: prev = stack.pop() res[ID] += time - prev[1] + 1 if stack: stack[-1][1] = time + 1 return res def validSubarrays(nums: List[int]) -> int: result = 0 pointer_a = 0 while pointer_a < len(nums): pointer_b = pointer_a temp_result = [] while pointer_b < len(nums): if nums[pointer_b] < nums[pointer_a]: break temp_result.append(nums[pointer_b]) result += 1 pointer_b += 1 pointer_a += 1 return result input = [1, 4, 2, 5, 3] print(validSubarrays(input))
24.901685
77
0.502538
1,006
8,865
4.360835
0.125249
0.065193
0.031912
0.030773
0.300433
0.249829
0.226579
0.181901
0.134488
0.134488
0
0.014521
0.370784
8,865
355
78
24.971831
0.771961
0
0
0.417808
0
0
0.003835
0
0
0
0
0
0
1
0.075342
false
0
0.006849
0
0.164384
0.003425
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b3c016c7ef444898f5da6f026c91b333cec123a
4,684
py
Python
scripts/pklhisto2root.py
umd-lhcb/lhcb-ntuples-gen
d306895a0dc6bad2def19ca3d7d1304a5a9be239
[ "BSD-2-Clause" ]
null
null
null
scripts/pklhisto2root.py
umd-lhcb/lhcb-ntuples-gen
d306895a0dc6bad2def19ca3d7d1304a5a9be239
[ "BSD-2-Clause" ]
105
2018-12-20T19:09:19.000Z
2022-03-19T09:53:06.000Z
scripts/pklhisto2root.py
umd-lhcb/lhcb-ntuples-gen
d306895a0dc6bad2def19ca3d7d1304a5a9be239
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 # # Stolen almost verbatim from: # https://gitlab.cern.ch/lhcb-rta/pidcalib2/-/blob/master/src/pidcalib2/pklhisto2root.py ############################################################################### # (c) Copyright 2021 CERN for the benefit of the LHCb Collaboration # # # # This software is distributed under the terms of the GNU General Public # # Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING". # # # # In applying this licence, CERN does not waive the privileges and immunities # # granted to it by virtue of its status as an Intergovernmental Organization # # or submit itself to any jurisdiction. # ############################################################################### """Convert pickled PIDCalib2 histograms to TH*D & save them in a ROOT file. Only 1D, 2D, and 3D histograms are supported by ROOT. Attempting to convert higher-dimensional histograms will result in an exception. """ import itertools import math import pathlib import pickle import sys import boost_histogram as bh import ROOT def convert_to_root_histo(name: str, bh_histo: bh.Histogram): """Convert boost_histogram histogram to a ROOT histogram. Only 1D, 2D, and 3D histograms are supported by ROOT. Attempting to convert higher-dimensional histograms will result in an exception. Furthermore, the boost histogram must have a storage type that stores variance, e.g., Weight. Args: name: Name of the new ROOT histogram. bh_histo: The histogram to convert. Returns: The converted ROOT histogram. Type depends on dimensionality. """ histo = None if len(bh_histo.axes) == 1: histo = ROOT.TH1D(name, name, 3, 0, 1) histo.SetBins(bh_histo.axes[0].size, bh_histo.axes[0].edges) histo.GetXaxis().SetTitle(bh_histo.axes[0].metadata["name"]) elif len(bh_histo.axes) == 2: histo = ROOT.TH2D(name, name, 3, 0, 1, 3, 0, 1) histo.SetBins( bh_histo.axes[0].size, bh_histo.axes[0].edges, bh_histo.axes[1].size, bh_histo.axes[1].edges, ) histo.GetXaxis().SetTitle(bh_histo.axes[0].metadata["name"]) histo.GetYaxis().SetTitle(bh_histo.axes[1].metadata["name"]) elif len(bh_histo.axes) == 3: histo = ROOT.TH3D(name, name, 3, 0, 1, 3, 0, 1, 3, 0, 1) histo.SetBins( bh_histo.axes[0].size, bh_histo.axes[0].edges, bh_histo.axes[1].size, bh_histo.axes[1].edges, bh_histo.axes[2].size, bh_histo.axes[2].edges, ) histo.GetXaxis().SetTitle(bh_histo.axes[0].metadata["name"]) histo.GetYaxis().SetTitle(bh_histo.axes[1].metadata["name"]) histo.GetZaxis().SetTitle(bh_histo.axes[2].metadata["name"]) else: raise Exception(f"{len(bh_histo.axes)}D histograms not supported by ROOT") indices_ranges = [list(range(n)) for n in bh_histo.axes.size] for indices_tuple in itertools.product(*indices_ranges): root_indices = [index + 1 for index in indices_tuple] histo.SetBinContent( histo.GetBin(*root_indices), bh_histo[indices_tuple].value # type: ignore ) histo.SetBinError( histo.GetBin(*root_indices), math.sqrt(bh_histo[indices_tuple].variance) # type: ignore # noqa ) return histo def convert_pklfile_to_rootfile(path: str, output_path: str): pkl_path = pathlib.Path(path) root_path = pathlib.Path(output_path) eff_histos = {} with open(pkl_path, "rb") as f: eff_histos["eff"] = pickle.load(f) eff_histos["passing"] = pickle.load(f) eff_histos["total"] = pickle.load(f) for item in eff_histos.values(): assert isinstance(item, bh.Histogram) root_file = ROOT.TFile(str(root_path), "RECREATE") eff_histo = convert_to_root_histo("eff", eff_histos["eff"]) eff_histo.Write() passing_histo = convert_to_root_histo("passing", eff_histos["passing"]) passing_histo.Write() total_histo = convert_to_root_histo("total", eff_histos["total"]) total_histo.Write() root_file.Close() def main(): file_in = sys.argv[1] try: file_out = sys.argv[2] except IndexError: file_out = pathlib.Path(sys.argv[1]).with_suffix('.root') convert_pklfile_to_rootfile(file_in, file_out) if __name__ == "__main__": main()
35.755725
107
0.604825
608
4,684
4.508224
0.305921
0.068953
0.092302
0.039402
0.305728
0.263043
0.263043
0.249909
0.242977
0.242977
0
0.018036
0.25427
4,684
130
108
36.030769
0.766676
0.308924
0
0.2
0
0
0.048602
0.006991
0
0
0
0
0.013333
1
0.04
false
0.04
0.093333
0
0.146667
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b42581465b8edd2e244428913cc73b52bb89dd0
1,964
py
Python
ASC/Teme/tema1/consumer.py
mihai-constantin/ACS
098c99d82dad8fb5d0e909da930c72f1185a99e2
[ "Apache-2.0" ]
null
null
null
ASC/Teme/tema1/consumer.py
mihai-constantin/ACS
098c99d82dad8fb5d0e909da930c72f1185a99e2
[ "Apache-2.0" ]
null
null
null
ASC/Teme/tema1/consumer.py
mihai-constantin/ACS
098c99d82dad8fb5d0e909da930c72f1185a99e2
[ "Apache-2.0" ]
null
null
null
""" This module represents the Consumer. Computer Systems Architecture Course Assignment 1 March 2020 """ from threading import Thread from time import sleep class Consumer(Thread): """ Class that represents a consumer. """ def __init__(self, carts, marketplace, retry_wait_time, **kwargs): """ Constructor. :type carts: List :param carts: a list of add and remove operations :type marketplace: Marketplace :param marketplace: a reference to the marketplace :type retry_wait_time: Time :param retry_wait_time: the number of seconds that a producer must wait until the Marketplace becomes available :type kwargs: :param kwargs: other arguments that are passed to the Thread's __init__() """ Thread.__init__(self, **kwargs) self.carts = carts self.marketplace = marketplace self.retry_wait_time = retry_wait_time self.name = kwargs["name"] self.cart_id = -1 def run(self): for current_cart in self.carts: self.cart_id = self.marketplace.new_cart(self.name) for current_order in current_cart: product_type = current_order["type"] product = current_order["product"] quantity = current_order["quantity"] if product_type == "add": while quantity > 0: while True: ret = self.marketplace.add_to_cart(self.cart_id, product) if ret: break sleep(self.retry_wait_time) quantity -= 1 else: while quantity > 0: self.marketplace.remove_from_cart(self.cart_id, product) quantity -= 1 self.marketplace.place_order(self.cart_id)
30.215385
85
0.563646
211
1,964
5.042654
0.341232
0.050752
0.073308
0.031955
0.039474
0
0
0
0
0
0
0.008032
0.36609
1,964
64
86
30.6875
0.846586
0.26833
0
0.133333
0
0
0.019712
0
0
0
0
0
0
1
0.066667
false
0
0.066667
0
0.166667
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b42f8a4c4ed9dadeb6bc01da50d750be154d614
978
py
Python
rnn_based/model2.py
gunkaynar/heart_anomaly
94ea2700e2c4d79028e0448022f6857df3c35e04
[ "MIT" ]
null
null
null
rnn_based/model2.py
gunkaynar/heart_anomaly
94ea2700e2c4d79028e0448022f6857df3c35e04
[ "MIT" ]
null
null
null
rnn_based/model2.py
gunkaynar/heart_anomaly
94ea2700e2c4d79028e0448022f6857df3c35e04
[ "MIT" ]
null
null
null
import torch.nn as nn import torch import numpy as np from torch.autograd import Variable class RNNModel(nn.Module): def __init__(self, input_dim, hidden_dim, layer_dim, output_dim): super(RNNModel, self).__init__() self.hidden_dim = hidden_dim self.layer_dim = layer_dim self.rnn = nn.RNN(input_dim, hidden_dim, layer_dim, batch_first=True, nonlinearity='relu') self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): h0 = Variable(torch.zeros(self.layer_dim, x.size(0), self.hidden_dim)) out, hn = self.rnn(x, h0) out = self.fc(out[:, -1, :]) return out def shuffle_torch(x, y): p = np.random.permutation(x.shape[0]) return x[p], y[p] def batch_generator_torch(x, y, batch_size, shuffle=True): if shuffle: x, y = shuffle_torch(x, y) n_samples = x.shape[0] for i in range(0, n_samples, batch_size): yield x[i:i + batch_size], y[i:i + batch_size]
31.548387
98
0.649284
158
978
3.803797
0.341772
0.08985
0.0599
0.056572
0.083195
0.083195
0
0
0
0
0
0.009223
0.223926
978
30
99
32.6
0.782609
0
0
0
0
0
0.00409
0
0
0
0
0
0
1
0.16
false
0
0.16
0
0.44
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b44ab85799151e1020d7bb62b4190682ce5fa39
1,974
py
Python
src/entities/report/actions/consult.py
LuisArmando-TestCoder/ShareGraph
fa89d37c8fe522c526b903fe25bd1e22fd769425
[ "MIT" ]
null
null
null
src/entities/report/actions/consult.py
LuisArmando-TestCoder/ShareGraph
fa89d37c8fe522c526b903fe25bd1e22fd769425
[ "MIT" ]
null
null
null
src/entities/report/actions/consult.py
LuisArmando-TestCoder/ShareGraph
fa89d37c8fe522c526b903fe25bd1e22fd769425
[ "MIT" ]
null
null
null
from utilities.getStore import getStore filePath = "./entities/bill/store.json" productFilePath = "./entities/product/store.json" def getProduct(name): for product in getStore(productFilePath): if product["name"] == name: return product def getProductBillsAverage(name): productPriceSummation = 0 productAmount = 0 for bill in getStore(filePath): for sell in bill: if sell["name"] == name: productAmount += 1 productPriceSummation += sell["amount"] * getProduct( name )["price"] return productPriceSummation / (productAmount if productAmount else 1) def getSellsAverage(bills): # print("The average of sells has being") allProductsPricesSummation = 0 allSellsAmount = 0 for bill in bills: allSellsAmount += 1 for sell in bill: allProductsPricesSummation = sell["amount"] * getProduct(sell["name"])["price"] print(f"The average of sells has being {allProductsPricesSummation / allSellsAmount}") def getProductsAverage(): print("The average of sells for each product") for product in getStore(productFilePath): print(f"For {product['name']} the average sells are {getProductBillsAverage(product['name'])}") def getHighestSellWithBill(bills): maximumBillIndex = 0 maximumBill = 0 for billIndex in range(len(bills)): billSummation = 0 for sell in bills[billIndex]: billSummation += sell["amount"] * getProduct( sell["name"] )["price"] if billSummation > maximumBill: maximumBill = billSummation maximumBillIndex = billIndex print(f"The highest sell is {maximumBill}") print(f"For the following bill {bills[maximumBillIndex]}") def main(): bills = getStore(filePath) getSellsAverage(bills) getProductsAverage() getHighestSellWithBill(bills)
28.608696
103
0.644377
191
1,974
6.659686
0.277487
0.012579
0.021226
0.040094
0.208333
0.132075
0.080189
0
0
0
0
0.00684
0.259372
1,974
68
104
29.029412
0.863201
0.019757
0
0.122449
0
0
0.19824
0.076605
0
0
0
0
0
1
0.122449
false
0
0.020408
0
0.183673
0.102041
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b44b5778d0cc6b0adc1458cef3d5591585dd53d
1,826
py
Python
discordbot.py
kinotan/discordpy-startup
1505c4f78deff7f793de75985e669ee84a78a3f2
[ "MIT" ]
null
null
null
discordbot.py
kinotan/discordpy-startup
1505c4f78deff7f793de75985e669ee84a78a3f2
[ "MIT" ]
null
null
null
discordbot.py
kinotan/discordpy-startup
1505c4f78deff7f793de75985e669ee84a78a3f2
[ "MIT" ]
null
null
null
#discord.pyのインポート from asyncio import sleep import discord client = discord.Client() #BOTログイン処理 @client.event async def on_ready(): print('Logged in as') print(client.user.name) print(client.user.id) print('------') await client.change_presence(game=discord.Game(name='!delchat *')) # BOT動作プログラム @client.event async def on_message(message): # 送り主がBotだった場合反応したくないので if client.user != message.author: # 削除コマンド if message.content.startswith("!delchat "): #役職比較 if discord.utils.get(message.author.roles, name="admin"): # メッセージを格納 delcmd = message.content # 入力メッセージのリスト化 delcmd_ = delcmd.split() # 入力メッセージのint化 delcmd_int = int(delcmd_[1]) # 入力メッセージの単語数 delcmd_c = len(delcmd_) if delcmd_c == 2 and delcmd_int <= 50 and delcmd_int > 1: # メッセージ取得 msgs = [msg async for msg in client.logs_from(message.channel, limit=(delcmd_int+1))] await client.delete_messages(msgs) delmsg = await client.send_message(message.channel, '削除が完了しました') await sleep(5) await client.delete_message(delmsg) else: # エラーメッセージを送ります delmsg = await client.send_message(message.channel, "コマンドが間違っています。[!delchat *] *:2~50") await sleep(5) await client.delete_message(delmsg) else: # エラーメッセージを送ります delmsg = await client.send_message(message.channel, "admin権限がありません。") await sleep(5) await client.delete_message(delmsg) client.run("***")
37.265306
107
0.545455
179
1,826
5.452514
0.385475
0.090164
0.069672
0.064549
0.332992
0.289959
0.289959
0.246926
0.204918
0.204918
0
0.010213
0.356517
1,826
48
108
38.041667
0.820426
0.083242
0
0.294118
0
0
0.060205
0.013245
0
0
0
0
0
1
0
false
0
0.058824
0
0.058824
0.117647
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b465725a6717037599028f9aa649996198118b6
268
py
Python
exec-shell.py
zqsheng/snippet
cb14300fc62c616d48e6552ad93c6d33b5e8c9a1
[ "Apache-2.0" ]
1
2018-09-10T11:31:33.000Z
2018-09-10T11:31:33.000Z
exec-shell.py
zqsheng/snippet
cb14300fc62c616d48e6552ad93c6d33b5e8c9a1
[ "Apache-2.0" ]
null
null
null
exec-shell.py
zqsheng/snippet
cb14300fc62c616d48e6552ad93c6d33b5e8c9a1
[ "Apache-2.0" ]
null
null
null
import os import time exec_count = 100 cmds = [] cmds.append("tar -cPzf /opt/web.tar.gz /opt/web/ /opt/soft") cmds.append("rm -f /opt/web.tar.gz") for i in range(exec_count): for cmd in cmds: if os.system(cmd) != 0: break time.sleep(1)
24.363636
60
0.604478
47
268
3.404255
0.574468
0.1125
0.1125
0.1375
0
0
0
0
0
0
0
0.02451
0.238806
268
11
61
24.363636
0.759804
0
0
0
0
0
0.245353
0
0
0
0
0
0
1
0
false
0
0.181818
0
0.181818
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b48d527c36dcd783a13d6a5609545147bc8c89c
45,165
py
Python
platform/hwconf_data/zgm13/PythonSnippet/ExporterModel.py
lenloe1/v2.7
9ac9c4a7bb37987af382c80647f42d84db5f2e1d
[ "Zlib" ]
null
null
null
platform/hwconf_data/zgm13/PythonSnippet/ExporterModel.py
lenloe1/v2.7
9ac9c4a7bb37987af382c80647f42d84db5f2e1d
[ "Zlib" ]
1
2020-08-25T02:36:22.000Z
2020-08-25T02:36:22.000Z
platform/hwconf_data/zgm13/PythonSnippet/ExporterModel.py
lenloe1/v2.7
9ac9c4a7bb37987af382c80647f42d84db5f2e1d
[ "Zlib" ]
1
2020-08-25T01:56:04.000Z
2020-08-25T01:56:04.000Z
from . import types from . import dep from . import RuntimeModel from . import Metadata class Property(object): def __init__(self, name, description, namespace='', visible=False, readonly=False, define_name=None, long_description=None): ''' :param name: Name of the property (string) :param type: PropertyType describing the type of property :param visible: Boolean, whether the property is visible in the UI or not ''' self.name = name self.type = type self.dependencies = [] self.generation = [] self.visible = visible self.readonly = readonly self.category='' self.subcategory='' self.namespace = namespace self.id = '.'.join((str(namespace).upper(), self.name)) self.label = description self.description = long_description self.defaultvalue = '' self.transient = False self.parent = None self.mode = None self.define_name = define_name if define_name else name self.is_advanced = False self.allowedconflicts = [] self.generate_if_hidden = True def set_parent_module(self, mod): self.parent = mod # Set default category to name of module if not self.category: self.category = self.parent.name def set_namespace(self, namespace): ''' Sets the namespace on a property :param namespace: :return: ''' self.namespace = namespace self.id = '.'.join((str(namespace).upper(), self.name, 'PROP')) def set_visibility(self, visible): self.visible = visible def set_readonly(self, readonly): self.readonly = readonly def add_dependency(self, dependency): self.dependencies.append(dependency) def get_dependencies(self): return self.dependencies def generateXML(self): ''' Generate the Studio XML for this property :return: etree.Element containing the Studio XML describing the property ''' print("Not able to gen XML from base property!") print(self.name) print(self.type) return None class StringProperty(Property): ''' Property which can take on a string value ''' def __init__(self, name, description, namespace='', visible=False, readonly=False, define_name=None, long_description=None): Property.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name, long_description=long_description) self.id = '.'.join((str(namespace).upper(), self.name, 'STRING')) def set_namespace(self, namespace): self.id = '.'.join((str(namespace).upper(), self.name, 'STRING')) class ArrayProperty(Property): ''' Property which can take on an array value ''' def __init__(self, name, description, namespace='', visible=False, readonly=False, define_name=None, long_description=None): Property.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name, long_description=long_description) self.id = '.'.join((str(namespace).upper(), self.name, 'ARRAY')) def set_namespace(self, namespace): self.id = '.'.join((str(namespace).upper(), self.name, 'ARRAY')) class IntegerProperty(Property): ''' Property which can take on integer values ''' def __init__(self, name, description, min, max, default, namespace='', visible=False, readonly=False, define_name=None, long_description=None): Property.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name, long_description=long_description) self.min = int(min) self.max = int(max) self.defaultvalue = int(default) self.id = '.'.join((str(namespace).upper(), self.name, 'INT')) self.format = None def set_namespace(self, namespace): self.id = '.'.join((str(namespace).upper(), self.name, 'INT')) def set_format(self, format): self.format = format class Enum: ''' Container class for an item inside of an EnumProperty ''' def __init__(self, value, index, define_value=None, visible=True): self.value = value self.visible = visible self.index = index if define_value is not None: self.define_value = define_value else: self.define_value = value class EnumProperty(Property): ''' Property allowing a selection from a list of options ''' def __init__(self, name, description, namespace='', visible=False, readonly=False, define_name=None, long_description=None): Property.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name, long_description=long_description) self.values = {} self.id = '.'.join((str(namespace).upper(), self.name, 'ENUM')) def set_namespace(self, namespace): self.id = '.'.join((str(namespace).upper(), self.name, 'ENUM')) def add_enum(self, value, define_value=None, visible=True): ''' Add an option to the selection list :param value: String value for the option (visible in UI) :param visible: Whether or not this option will be visible in the UI :param define_value: Name which will be generated as #def value :return: None ''' self.values[len(self.values.keys())] = Enum(value, len(self.values.keys()), define_value=define_value, visible=visible) class ModeProperty(EnumProperty): def __init__(self, name, description, namespace='', visible=False, readonly=False, define_name=None, long_description=None, hide_properties=True): Property.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name, long_description=long_description) self.values = {} self.id = '.'.join((str(namespace).upper(), self.name, 'ENUM')) self.hide_properties = hide_properties class BoolProperty(EnumProperty): ''' Property allowing you to select a binary setting ''' def __init__(self, name, description, namespace='', visible=False, readonly=False, define_name=None, long_description=None): EnumProperty.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name, long_description=long_description) self.id = '.'.join((str(namespace).upper(), self.name, 'BOOL')) self.add_enum('False', define_value="0") self.add_enum('True', define_value="1") def set_namespace(self, namespace): self.id = '.'.join((str(namespace).upper(), self.name, 'BOOL')) def set_default_to_false(self): self.defaultvalue = 'False' def set_default_to_true(self): self.defaultvalue = 'True' class CheckboxProperty(Property): ''' Property allowing you to select a binary setting using a checkbox ''' def __init__(self, name, description, namespace='', visible=False, readonly=False, define_name=None): Property.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name) self.id = '.'.join((str(namespace).upper(), self.name, 'CHECKBOX')) def set_namespace(self, namespace): self.id = '.'.join((str(namespace).upper(), self.name, 'CHECKBOX')) class ModuleProperty(EnumProperty): ''' Property allowing you to select a peripheral available on the current chip ''' def __init__(self, name, description, namespace='', visible=False, readonly=False, define_name=None, long_description=None): EnumProperty.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name, long_description=long_description) self.id = '.'.join((str(namespace).upper(), self.name, 'MOD')) self.allowedModules = [] self.inherit_options = False self.define_value_prefix = '' self.owned_mode = None self.define_name_postfix = '' def set_namespace(self, namespace): self.id = '.'.join((str(namespace).upper(), self.name, 'MOD')) def add_allowed_module(self, module_namespace): ''' Adds a module 'namespace' to the allowed modules for this property :param module_namespace: regular expression for which modules can be selected by this property :return: None ''' self.allowedModules.append(module_namespace) def mask_with_module_list(self, module_name_list): ''' Updates the list of allowed modules for this property by comparing a list with the property's allowed modules. :param module_name_list: list of module names available on this part :return: ''' self.values = {} self.add_enum('None') for mod_name in module_name_list: for allowed_mod in self.allowedModules: if mod_name.rstrip('0123456789') == allowed_mod: define_value = mod_name self.add_enum(mod_name, define_value=define_value) class PinProperty(EnumProperty): ''' Property allowing you to select any GPIO pin available ''' def __init__(self, name, description, namespace='', visible=False, readonly=False, define_name=None, disabled_label=None, long_description=None): EnumProperty.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name, long_description=long_description) self.referenced_module = None self.referenced_route = None self.em4 = False self.id = '.'.join((str(namespace).upper(), self.name, 'PIN')) if not disabled_label: disabled_label = 'Disabled' self.disabled_label = disabled_label self.add_enum(disabled_label, define_value="Disabled") def set_namespace(self, namespace): self.id = '.'.join((str(namespace).upper(), self.name, 'PIN')) def mask_with_pin_list(self, pin_list): ''' Updates the available enum values with the values from pin_list :param pin_list: list of pin names available on the part :return: None ''' self.values={} self.add_enum(self.disabled_label, define_value="Disabled") for pin in pin_list: self.add_enum(pin) def set_reference_route(self, route): self.referenced_route = route def set_reference_module(self, module): self.referenced_module = module def set_reference(self, module, route): self.referenced_module = module self.referenced_route = route class PRSChannelProperty(EnumProperty): """ Property allowing you to select PRS channel available from the PRS module """ def __init__(self, name, description, channel_count, custom_name="", namespace='', visible=False, readonly=False, define_name=None, long_description=None, gpio=True): EnumProperty.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name, long_description=long_description) self.add_enum("Disabled") self.channel_count = channel_count self.custom_name = custom_name self.gpio = gpio for i in range(channel_count): self.add_enum("CH" + str(i), define_value=str(i)) class AportBusProperty(EnumProperty): """ APORT bus select """ def __init__(self, name, description, signal=None, define_name_prefix=None, define_value_prefix=None, namespace='', visible=True, readonly=False, define_name=None): EnumProperty.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name) self.signal = signal self.define_name_prefix = define_name_prefix self.define_value_prefix = define_value_prefix self.extra_enums = [] self.bus_props = {} def add_extra_enum(self, value, define_value=None): self.extra_enums.append((value, define_value)) def mask_with_bus_list(self, bus_list, superset=False): ''' Updates the list of allowed buses for this property. :param bus_list: list of buses available on this part :return: ''' self.values = {} # Find existing referenced bus property bus_property_prefix = "{}_".format(self.define_name_prefix.lower()) for bus_name in bus_list: aportname = busname_to_aportname(self.parent.name, bus_name) # Add bus to bus dropdown self.add_enum("APORT bus {}".format(bus_name), define_value="APORT{}".format(aportname)) # Add channel dropdown for bus bus_property_name = bus_property_prefix + bus_name bus_prop = self.bus_props.get(bus_property_name) if not bus_prop: bus_prop = PinProperty(bus_property_name, "Channel on APORT bus {} ({})".format(bus_name, self.signal), define_name=self.define_name_prefix, visible=False) bus_prop.set_reference(self.parent.name, "{}_{}".format(self.signal, bus_name)) bus_prop.category = self.category bus_prop.subcategory = self.subcategory self.parent.add_property(bus_prop) self.bus_props[bus_property_name] = bus_prop else: bus_prop.set_visibility(False) # Add extra values to bus dropdown for value, define_value in self.extra_enums: self.add_enum(value, define_value=define_value) class AportScanProperty(EnumProperty): scan_props = {} """ APORT scan select """ def __init__(self, name, description, define_name_prefix=None, define_value_prefix=None, namespace='', visible=True, readonly=False, define_name=None): EnumProperty.__init__(self, name, description, namespace=namespace, visible=visible, readonly=readonly, define_name=define_name) self.define_name_prefix = define_name_prefix self.define_value_prefix = define_value_prefix self.scan_mask = None self.start = 0 self.end = 0 def attach_to_scan_mask(self, scan_mask_property): self.scan_mask = scan_mask_property def set_range(self, start, end): self.start = start self.end = end def mask_with_bus_list(self, bus_list, superset=False): ''' Updates the list of allowed buses for this property. :param bus_list: list of buses available on this part :return: ''' self.values = {} if not self.scan_props.get(self.parent.name): self.scan_props[self.parent.name] = {} bus_channels = {} aports = {} updated_scan_props = [] # print(bus_list) for signal, buses in bus_list.items(): for bus_name, routes in buses.items(): aport = busname_to_aportname(self.parent.name, bus_name)[:-1] bus_name = bus_name[:-1] aports[bus_name] = aport if bus_name not in bus_channels: bus_channels[bus_name] = set() bus_channels[bus_name] = bus_channels[bus_name] | set(routes) for name, route_prop in self.scan_props[self.parent.name].items(): # Hide props by default route_prop.set_visibility(False) for bus, routes in bus_channels.items(): channels_available = [False, False, False, False] for route in sorted(routes, key=lambda r: r.number): channels_available[int(route.number / 8)] = True for i in range(4): start = i * 8 end = (i + 1) * 8 - 1 if channels_available[i]: self.add_enum("APORT bus {} channel {}-{}".format(bus, start, end), "APORT{}CH{}TO{}".format(aports[bus], start, end)) else: self.add_enum("APORT bus {} channel {}-{} (no pins available)".format(bus, start, end), "APORT{}CH{}TO{}".format(aports[bus], start, end)) if superset: for route in sorted(routes, key=lambda r: r.number): route_prop_name = "{}_{}_ch{}".format(self.name.lower().rsplit('_', 1)[0], bus, route.number) route_prop = self.scan_props[self.parent.name].get(route_prop_name) if not route_prop: route_prop = CheckboxProperty(route_prop_name, "Enable channel {}".format(route.number), namespace=self.parent.namespace, visible=False) channel_range_start = int(route.number / 8) * 8 channel_range_end = channel_range_start + 7 route_prop.category = self.category route_prop.subcategory = "APORT bus {} channel {}-{}".format(bus, channel_range_start, channel_range_end) self.scan_props[self.parent.name][route_prop_name] = route_prop self.parent.add_property(route_prop) else: for route in sorted(routes, key=lambda r: r.number): route_prop_name = "{}_{}_ch{}".format(self.name.lower().rsplit('_', 1)[0], bus, route.number) route_prop = self.scan_props[self.parent.name].get(route_prop_name) route_prop.label = "Enable channel {} ({})".format(route.number, route.padName) route_prop.set_visibility(True) updated_scan_props.append(route_prop) if not superset: return updated_scan_props class AportScanMaskProperty(IntegerProperty): """ APORT scan mask """ def __init__(self, name, description, min, max, default, namespace='', visible=False, readonly=False, define_name=None): IntegerProperty.__init__(self, name, description, min, max, default, namespace, visible, readonly, define_name) self.channel_selectors = [] self.other_scan_masks = [] self.set_format("0x{:08X}UL") self.channel_start = 0 def add_channel_selector(self, channel_selector): self.channel_selectors.append(channel_selector) class AportBondedMaskProperty(IntegerProperty): """ APORT bonded mask """ def __init__(self, name, description, min, max, default, namespace='', visible=False, readonly=False, define_name=None): IntegerProperty.__init__(self, name, description, min, max, default, namespace, visible, readonly, define_name) self.set_format("0x{:08X}UL") self.channel_start = 0 self.aport = "1" self.input_props = [] def mask_with_bus_list(self, bus_list, superset=False): ''' Updates the list of allowed buses for this property. :param bus_list: list of buses available on this part :return: ''' updated_inputs = [] bus_channels = {} if not superset: for signal, buses in bus_list.items(): for bus_name, routes in buses.items(): bus_name = bus_name[:-1] if bus_name not in bus_channels: bus_channels[bus_name] = set() bus_channels[bus_name] = bus_channels[bus_name] | set(routes) for route in sorted(bus_channels[aportname_to_busname(self.parent.name, self.aport)], key=lambda r: r.number): route_prop = self.input_props[int(route.number) % 32] route_prop.label = "Enable channel {} ({})".format(route.number, route.padName) route_prop.set_visibility(True) updated_inputs.append(route_prop) return updated_inputs class StudioModule(object): """docstring for StudioModule""" def __init__(self, basename, modules): super(StudioModule, self).__init__() self.basename = basename self.modules = {} for m in modules: # Allow both lists of frameworks and single framework to be specified if isinstance(m.frameworks,list): for framework in m.frameworks: self.modules[framework.value] = m.name else: self.modules[m.frameworks.value] = m.name def getModuleId(self, framework): print ("%s: %s" % (self.basename, self.modules.keys())) if framework not in self.modules: return None return "%s.%s" % (self.basename, self.modules[framework]) def __str__(self): return self.basename class Module(object): ''' Class for describing a HALConfig module or device peripheral. A module is basically a collection of properties. ''' def __init__(self, name, core=False, visible=False, namespace=None): # Name is a required argument self.name = name self.displayname = name # namespace defaults to module base (i.e. module without the instance number) if namespace: self.namespace = namespace else: self.namespace = name.rstrip('0123456789') # No description by default self.description = "" # Core signifies a module contributed by the die self.core = core # Visible controls whether the module shows up in the UI self.visible = visible # List of properties on this module self.properties = [] # Category is the category where to put the module on the UI. Default for core is 'Core'. self.category = ' Peripherals' if core else " HAL" # Define generated with the module being active (selected) or not self.enabled_define = None # Compatibility of module self.compatibility = dep.Dependency() # Association with an on-chip peripheral self.peripheral = None # Studio module specifier self.studio_module = None # By default, module has no custom name property self.has_custom_name = False self.model = None self.family = None # Contribute 'standard' properties for every module, allowing SDKs to take control in a hwconf doc # (even though they shouldn't) inuse = BoolProperty('usedbysdk', 'SDK is taking control over this module', visible=False) self.add_property(inuse) hidden = BoolProperty('hiddenbysdk', 'SDK is hiding this module', visible=False) self.add_property(hidden) hidden = BoolProperty('showadvanced', 'Show advanced options', visible=False) self.add_property(hidden) forceenable = BoolProperty('forceenable', 'Forcefully enabled in model', visible=False) self.add_property(forceenable) owner = StringProperty('owner', 'Owned by', visible=True, readonly=True) owner.transient = True self.add_property(owner) if self.core and (self.namespace != self.name): # Add custom name property if this is a parameterized core module (e.g. USARTn, TIMERn...) customname = StringProperty('customname', 'Custom name', visible=True, readonly=False) self.add_property(customname) self.has_custom_name = True def __str__(self): if self.studio_module: return str(self.studio_module) return "none" def add_property(self, prop): ''' Add a property to this module :type prop: Property :param prop: property to add :return: None ''' # Regular list append for now # TODO: change to property merge on properties with same ID prop.set_namespace(self.namespace) prop.set_parent_module(self) self.properties.append(prop) def load_halconfig_model(self, available_module_names_list, family=None): ''' Load a HAL config model :param model: a HAL config model :param family: a halconfig_dependency Family object describing for which family this module is loaded or str containing family name :return: None ''' if not family: raise ValueError("Family is not set") if isinstance(family, str): self.family = dep.Family(family_str=family) else: self.family = family self.family.available_mods = available_module_names_list if hasattr(self.model, 'compatibility'): self.compatibility = self.model.compatibility if hasattr(self.model, "peripheral"): self.peripheral = self.model.peripheral if hasattr(self.model, "category"): self.category = self.model.category if hasattr(self.model, "displayname"): self.displayname = self.model.displayname if hasattr(self.model, "description"): self.description = self.model.description if hasattr(self.model, "studio_module"): self.studio_module = StudioModule(self.model.studio_module["basename"], \ self.model.studio_module["modules"]) if hasattr(self.model, 'modes'): mode_prop = ModeProperty(self.model.modes["define"], "mode", visible=True, hide_properties=self.model.modes.get('hide_properties', True)) for val in self.model.modes["values"]: if isinstance(val, types.EnumValue): if val.dependency: if val.dependency.applies_to(family=self.family): mode_prop.add_enum(val.display_name, define_value=val.define_value) else: mode_prop.add_enum(val.display_name, define_value=val.define_value) else: mode_prop.add_enum(val) self.add_property(mode_prop) if hasattr(self.model, 'enable'): self.enabled_define = self.model.enable["define"] for prop, options in self.model.options.items(): current_opt_set = None # If one property has several option elements, iterate to find which option element has the correct dependency if isinstance(options, list): for opt in options: # Skip documentation option if opt.get("documentation"): continue if opt.get("dependency"): if opt.get("dependency").applies_to_family(self.family): if opt.get("dependency").applies_to_module(self.name): current_opt_set = opt break else: if options.get("dependency"): if options.get("dependency").applies_to_family(self.family): if options.get("dependency").applies_to_module(self.name): current_opt_set = options else: current_opt_set = options if current_opt_set is not None: self._load_halconfig_property(prop, current_opt_set, self.family, self.model) self.post_load() def _load_halconfig_property(self, prop, opts, family, model): """ :param prop: a HAL config property :param opts: dictionary containing a set of options for current prop :param family: a halconfig_dependency Family object describing for which family this module is loaded :return: None """ prop_obj = None extra_properties = [] if opts['type'] == 'enable': self.enabled_define = prop elif opts['type'] == 'boolean': prop_obj = BoolProperty(prop, opts['description'], visible=True) elif opts['type'] == 'integer': prop_obj = IntegerProperty(prop, opts['description'], opts['min'], opts['max'], 0, visible=True) elif isinstance(opts['type'], str) and 'int' in opts['type'] and '_t' in opts['type']: prop_obj = IntegerProperty(prop, opts['description'], opts['min'], opts['max'], 0, visible=True) elif opts['type'] == 'string': prop_obj = StringProperty(prop, opts['description'], visible=True) elif opts['type'] == 'array': prop_obj = ArrayProperty(prop, opts['description'], visible=True) elif opts['type'] == 'enum': if opts['values']: prop_obj = EnumProperty(prop, opts['description'], visible=True) for val in opts['values']: if isinstance(val, types.EnumValue): if val.dependency: if val.dependency.applies_to_family(family=family): prop_obj.add_enum(val.display_name, define_value=val.define_value) else: prop_obj.add_enum(val.display_name, define_value=val.define_value) else: prop_obj.add_enum(val) elif isinstance(opts['type'], types.Pin): prop_obj = PinProperty(prop, opts['description'], visible=True, disabled_label=opts['type'].disabled_label) if opts['type'].signal: # Pin is connected to a PORTIO signal prop_obj.set_reference(self.name, opts['type'].signal) if opts['type'].em4: prop_obj.em4 = True elif isinstance(opts['type'], types.Peripheral): prop_obj = ModuleProperty(prop, opts['description'], visible=True) for filter in opts['type'].filter: prop_obj.add_allowed_module(filter) prop_obj.inherit_options = opts['type'].inherit_options prop_obj.define_value_prefix = opts['type'].define_value_prefix prop_obj.define_name_postfix = opts['type'].define_name_postfix if hasattr(opts['type'], 'mode'): prop_obj.owned_mode = opts['type'].mode elif isinstance(opts['type'], types.PinArray): prop_obj = IntegerProperty(opts['type'].count_define, opts['description'], opts['type'].min, opts['type'].max, opts['type'].default, visible=True) init_string = "" for i in range(opts['type'].min, opts['type'].max): visible = True if i < opts['type'].default else False item_property = PinProperty(opts['type'].item_define.replace("%n", str(i)), opts['type'].item_description.replace("%n", str(i)), visible=visible) if opts.get('allowedconflicts') is not None: item_property.allowedconflicts = opts['allowedconflicts'] if visible: init_string += ("{{ {0}, {1} }}, ".format(opts['type'].item_port_define.replace("%n", str(i)), opts['type'].item_pin_define.replace("%n", str(i)))) extra_properties.append(item_property) if init_string: # Strip last comma space from default value init_string = init_string[:-2] init_property = ArrayProperty(opts['type'].init_define, "{} init".format(prop), visible=False) init_property.defaultvalue = init_string init_property.transient = True extra_properties.append(init_property) elif isinstance(opts['type'], types.PRSChannelLocation): prs_chan_count = Metadata.get_prs_chan_with_gpio_count(family.get_name()) prop_obj = PRSChannelProperty(opts['type'].define, opts['description'], prs_chan_count, custom_name=opts['type'].custom_name, gpio=opts['type'].gpio, visible=True) if dep.Dependency(platform=dep.Platform.SERIES0).applies_to_family(family): # Make PRS dropdown readonly on Series 0, since changing it will affect unrelated modules that # also use PRS. Users will have to use PORTIO view to select PRS location. readonly = True else: readonly = False if opts['type'].gpio: disabled_property = StringProperty( "prs_disabled_chn_{}_pin".format(opts['type'].custom_name if opts['type'].custom_name else ""), "PRS channel output pin", visible=True, readonly=True, long_description="No PRS channel selected") if opts.get('category') is not None: disabled_property.category = opts['category'] if opts.get('subcategory') is not None: disabled_property.subcategory = opts['subcategory'] extra_properties.append(disabled_property) for i in range(prs_chan_count): item_property = PinProperty(opts['type'].name + str(i), opts['type'].output_description.replace("%n", str(i)), visible=False, readonly=readonly, define_name=opts['type'].name) if dep.Dependency(platform=dep.Platform.SERIES2).applies_to_family(family): item_property.set_reference("PRS", "ASYNCH" + str(i)) else: item_property.set_reference("PRS", "CH" + str(i)) if opts.get('category') is not None: item_property.category = opts['category'] if opts.get('subcategory') is not None: item_property.subcategory = opts['subcategory'] extra_properties.append(item_property) elif isinstance(opts['type'], types.AportSingleChannel): obj = opts['type'] prop_obj = AportBusProperty(obj.define, opts['description'], signal=obj.signal, define_name_prefix=obj.define_name_prefix, define_value_prefix=obj.define_value_prefix) for val in obj.extra_values: if isinstance(val, types.EnumValue): if val.dependency: if val.dependency.applies_to_family(family=family): prop_obj.add_extra_enum(val.display_name, define_value=val.define_value) else: prop_obj.add_extra_enum(val.display_name, define_value=val.define_value) else: prop_obj.add_extra_enum(val) elif isinstance(opts['type'], types.AportScanMode): obj = opts['type'] prop_obj = AportScanMaskProperty(prop, opts['description'], 0, 0xFFFFFFFF, 0, visible=True, readonly=True) prop_obj.channel_start = obj.channel_start define_prefix = prop.rsplit('_', 1)[0] range_start = int(obj.channel_start / 8) for i in range(range_start, range_start + 4): start = i * 8 end = (i + 1) * 8 - 1 input_number = "{}TO{}".format(start, end) input_name = "{}_INPUT{}".format(define_prefix, input_number) input_prop = AportScanProperty(input_name, "Input {} to {}".format(start, end), define_value_prefix=obj.define_value_prefix.replace("%n", input_number)) if opts.get('mode') is not None: input_prop.mode = opts['mode'] input_prop.set_range(start, end) if opts.get('subcategory') is not None: input_prop.subcategory = opts['subcategory'] if opts.get('category') is not None: input_prop.category = opts['category'] input_prop.attach_to_scan_mask(prop_obj) prop_obj.add_channel_selector(input_prop) extra_properties.append(input_prop) for i in range(obj.channel_start, obj.channel_start + 32): pin_prop = PinProperty("{}_INPUT{}".format(define_prefix, i), "Input {}".format(i), visible=True, readonly=True) pin_prop.category = opts['category'] + " Pinout" pin_prop.transient = True extra_properties.append(pin_prop) for p in self.properties: if isinstance(p, AportScanMaskProperty): prop_obj.other_scan_masks.append(p) p.other_scan_masks.append(prop_obj) elif isinstance(opts['type'], types.AportBondedMode): obj = opts['type'] prop_obj = AportBondedMaskProperty(prop, opts['description'], 0, 0xFFFFFFFF, 0, visible=True, readonly=True) prop_obj.channel_start = obj.channel_start prop_obj.aport = obj.aport define_prefix = prop.rsplit('_', 1)[0] for i in range(obj.channel_start, obj.channel_start + 32): input_prop_name = "{}_{}_ch{}".format(prop_obj.name.lower().rsplit('_', 1)[0], aportname_to_busname(self.name, obj.aport), i % 32) input_prop = CheckboxProperty(input_prop_name, "Enable channel {}".format(i), namespace=self.namespace, visible=False) input_prop.category = opts['category'] input_prop.subcategory = opts['subcategory'] extra_properties.append(input_prop) prop_obj.input_props.append(input_prop) pin_prop = PinProperty("{}_INPUT{}".format(define_prefix, i), "Input {}".format(i), visible=True, readonly=True) pin_prop.category = opts['category'] + " Pinout" pin_prop.transient = True extra_properties.append(pin_prop) else: print("ERROR: unknown property type {} in HAL config model for {}".format(opts['type'], model.name)) if prop_obj is not None: if opts.get('mode') is not None: prop_obj.mode = opts['mode'] if opts.get('generate_if_hidden') is not None: prop_obj.generate_if_hidden = opts['generate_if_hidden'] # Hiding properties that don't belong to the default mode mode_prop = next((prop for prop in self.get_properties() if isinstance(prop, ModeProperty)), None) if mode_prop and mode_prop.hide_properties: if hasattr(prop_obj, 'mode'): if isinstance(prop_obj.mode, list): prop_obj.set_visibility(True if mode_prop.values[0].define_value in prop_obj.mode else False) elif prop_obj.mode: prop_obj.set_visibility(True if prop_obj.mode == mode_prop.values[0].define_value else False) # If _model specifically states visibility, this overrides hiding by default mode if opts.get("visible") is not None: prop_obj.set_visibility(opts['visible']) if opts.get("advanced", False): # Hide advanced properties by default prop_obj.is_advanced = opts.get("advanced", False) prop_obj.set_visibility(False) if opts.get("readonly") is not None: prop_obj.set_readonly(opts['readonly']) if opts.get('defaultValue') is not None: prop_obj.defaultvalue = opts['defaultValue'] if opts.get('overrideDefaultValue') is not None: f = family.get_name().lower() for override_for, value in opts.get('overrideDefaultValue').items(): if f.startswith(override_for.lower()): prop_obj.defaultvalue = value if opts.get('longdescription') is not None: prop_obj.description = opts['longdescription'] elif opts.get("default") is not None: prop_obj.defaultvalue = opts['default'] if opts.get('subcategory') is not None: prop_obj.subcategory = opts['subcategory'] if opts.get('category') is not None: prop_obj.category = opts['category'] if opts.get('allowedconflicts') is not None: prop_obj.allowedconflicts = opts['allowedconflicts'] self.add_property(prop_obj) for property in extra_properties: self.add_property(property) def get_property(self, name): """ Look up property on this module :param name: Regular expression needing to match the name of the property :return: Property if found, None elsewhere """ return next((x for x in self.properties if name == x.name), None) def get_properties(self): ''' :return: Collection of properties in this module ''' return self.properties def activate_runtime(self, state): # Install default hooks for prop in self.properties: if isinstance(prop, ModuleProperty): if prop.inherit_options: RuntimeModel.set_change_handler(prop, RuntimeModel.owning_module_property_callback, on_enable=True) if isinstance(prop, ModeProperty): RuntimeModel.set_change_handler(prop, RuntimeModel.module_mode_callback) if isinstance(prop, PinProperty): if prop.referenced_route is None: RuntimeModel.set_change_handler(prop, RuntimeModel.pin_selection_callback) else: RuntimeModel.configure_route_handler(prop, state) if isinstance(prop, AportBusProperty): RuntimeModel.configure_aport_single_route_handler(prop, state) if isinstance(prop, AportScanMaskProperty): RuntimeModel.configure_aport_scan(prop, state) if isinstance(prop, AportBondedMaskProperty): RuntimeModel.configure_aport_bonded(prop, state) if prop.name == "owner": RuntimeModel.set_change_handler(prop, RuntimeModel.owner_changed_callback) if prop.name == "usedbysdk": RuntimeModel.set_change_handler(prop, RuntimeModel.module_usedbysdk_callback) if prop.name == "hiddenbysdk": RuntimeModel.set_change_handler(prop, RuntimeModel.module_hiddenbysdk_callback) if prop.name == "showadvanced": RuntimeModel.set_change_handler(prop, RuntimeModel.module_showadvanced_callback) if isinstance(prop, PRSChannelProperty): RuntimeModel.set_change_handler(prop, RuntimeModel.prs_channel_changed_callback, on_enable=True) RuntimeModel.set_enable_handler(self, RuntimeModel.module_enabled_callback) # Install user hooks self.set_runtime_hooks() def set_runtime_hooks(self): """ To be overridden by the implementing HAL Config module :return: None """ pass def post_load(self): """ To be overridden by the implementing HAL Config module :return: None """ pass def get_property(mod, property_name): """ Get a property model object by searching for property name :param mod: module on which to look for the property :param property_name: name of the property :return: ExporterModel.Property (or superclass) if found, None else. """ if mod is None: return None prop = mod.get_property(property_name) return prop def override_module(module_list, old, new): """ Override a module in the module_list with another instance :param old: :param new: :return: """ if old.name != new.name: print("ERROR: Not replacing module with same module") return for k,v in enumerate(module_list): if v == old: module_list[k] = new def mask_peripheral_selectors_with_module_list(module_list, module_names): for module_name, module in module_list.items(): for property in module.properties: if isinstance(property, ModuleProperty): property.mask_with_module_list(list(module_names)) def busname_to_aportname(module_name, busname): if 'IDAC' in module_name: idx = 1 elif len(busname) > 2: idx = 0 else: idx = ord(busname[0].upper()) - 64 aportname = "{}{}".format(idx, busname[-1]) return aportname def aportname_to_busname(module_name, aportname): if len(aportname) == 2: diff = aportname[1] aportname = aportname[0] else: diff = '' if 'IDAC' in module_name: busname = 'C' elif aportname == '0': busname = module_name else: busname = chr(ord(aportname) + 16) return "{}{}".format(busname, diff) def clear(): AportScanProperty.scan_props = {}
44.497537
179
0.613949
5,201
45,165
5.138819
0.080946
0.017959
0.01347
0.024956
0.444607
0.391814
0.342612
0.302915
0.286976
0.27968
0
0.003121
0.28356
45,165
1,014
180
44.54142
0.822857
0.112499
0
0.289474
0
0
0.056353
0.000589
0
0
0.000512
0.000986
0
1
0.097953
false
0.002924
0.005848
0.002924
0.154971
0.008772
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b4ddf5eeb83ed879035c41d407475a7baf89592
6,320
py
Python
benchmark/HIGGS/explore/contour_nll.py
victor-estrade/SystGradDescent
822e7094290301ec47a99433381a8d6406798aff
[ "MIT" ]
2
2019-03-20T09:05:02.000Z
2019-03-20T15:23:44.000Z
benchmark/HIGGS/explore/contour_nll.py
victor-estrade/SystGradDescent
822e7094290301ec47a99433381a8d6406798aff
[ "MIT" ]
null
null
null
benchmark/HIGGS/explore/contour_nll.py
victor-estrade/SystGradDescent
822e7094290301ec47a99433381a8d6406798aff
[ "MIT" ]
null
null
null
# coding: utf-8 from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import os import logging import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from config import SAVING_DIR from config import SEED from visual import set_plot_config set_plot_config() from utils.log import set_logger from utils.log import flush from utils.log import print_line from utils.evaluation import evaluate_minuit from problem.higgs import HiggsConfigTesOnly as Config from problem.higgs import get_minimizer from problem.higgs import get_minimizer_no_nuisance from problem.higgs import get_generators_torch from problem.higgs import HiggsNLL as NLLComputer from ..common import N_BINS def do_iter(config, model, i_iter, valid_generator, test_generator, root_dir, n_bins=N_BINS): logger = logging.getLogger() directory = os.path.join(root_dir, model.name, f"iter_{i_iter}") os.makedirs(directory, exist_ok=True) logger.info(f"saving dir = {directory}") logger.info('Generate testing data') X_test, y_test, w_test = test_generator.generate(*config.TRUE, n_samples=config.N_TESTING_SAMPLES, no_grad=True) logger.info('Set up NLL computer') compute_summaries = model.summary_computer(n_bins=n_bins) compute_nll = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config) basic_check(compute_nll, config) basic_contourplot(compute_nll, config, directory) # MINIMIZE NLL logger.info('Prepare minuit minimizer') minimizer = get_minimizer(compute_nll, config.CALIBRATED, config.CALIBRATED_ERROR) some_dict = evaluate_minuit(minimizer, config.TRUE, directory, suffix="") # FOCUSED contour plot nll_func = lambda mu, tes : compute_nll(tes, config.TRUE.jes, config.TRUE.les, mu) x = minimizer.values[3] y = minimizer.values[0] x_err = minimizer.errors[3] y_err = minimizer.errors[0] focused_contour(x, y, x_err, y_err, nll_func, directory, xlabel="mu", ylabel='tes') nll_func = lambda mu, jes : compute_nll(config.TRUE.tes, jes, config.TRUE.les, mu) x = minimizer.values[3] y = minimizer.values[1] x_err = minimizer.errors[3] y_err = minimizer.errors[1] focused_contour(x, y, x_err, y_err, nll_func, directory, xlabel="mu", ylabel='jes') nll_func = lambda mu, les : compute_nll(config.TRUE.tes, config.TRUE.jes, les, mu) x = minimizer.values[3] y = minimizer.values[2] x_err = minimizer.errors[3] y_err = minimizer.errors[2] focused_contour(x, y, x_err, y_err, nll_func, directory, xlabel="mu", ylabel='les') def basic_check(compute_nll, config): logger = logging.getLogger() nll = compute_nll(*config.CALIBRATED) logger.info(f"Calib nll = {nll}") nll = compute_nll(*config.TRUE) logger.info(f"TRUE nll = {nll}") def basic_contourplot(compute_nll, config, directory): logger = logging.getLogger() ARRAY_SIZE = 10 # MESH NLL logger.info(f"basic mu-tes contour plot...") mu_array = np.linspace(0.5, 1.5, ARRAY_SIZE) tes_array = np.linspace(0.95, 1.05, ARRAY_SIZE) mu_mesh, tes_mesh = np.meshgrid(mu_array, tes_array) nll_func = lambda mu, tes : compute_nll(tes, config.TRUE.jes, config.TRUE.les, mu) nll_mesh = np.array([nll_func(mu, tes) for mu, tes in zip(mu_mesh.ravel(), tes_mesh.ravel())]).reshape(mu_mesh.shape) plot_contour(mu_mesh, tes_mesh, nll_mesh, directory, xlabel="mu", ylabel="tes") logger.info(f"basic mu-jes contour plot...") jes_array = np.linspace(0.95, 1.05, ARRAY_SIZE) mu_mesh, jes_mesh = np.meshgrid(mu_array, jes_array) nll_func = lambda mu, jes : compute_nll(config.TRUE.tes, jes, config.TRUE.les, mu) nll_mesh = np.array([nll_func(mu, jes) for mu, jes in zip(mu_mesh.ravel(), jes_mesh.ravel())]).reshape(mu_mesh.shape) plot_contour(mu_mesh, jes_mesh, nll_mesh, directory, xlabel="mu", ylabel="jes") logger.info(f"basic mu-les contour plot...") les_array = np.linspace(0.95, 1.05, ARRAY_SIZE) mu_mesh, les_mesh = np.meshgrid(mu_array, les_array) nll_func = lambda mu, les : compute_nll(config.TRUE.tes, config.TRUE.jes, les, mu) nll_mesh = np.array([nll_func(mu, les) for mu, les in zip(mu_mesh.ravel(), les_mesh.ravel())]).reshape(mu_mesh.shape) plot_contour(mu_mesh, les_mesh, nll_mesh, directory, xlabel="mu", ylabel="les") logger.info(f"basic tes-jes contour plot...") tes_mesh, jes_mesh = np.meshgrid(tes_array, jes_array) nll_func = lambda tes, jes : compute_nll(tes, jes, config.TRUE.les, config.TRUE.mu) nll_mesh = np.array([nll_func(tes, jes) for tes, jes in zip(tes_mesh.ravel(), jes_mesh.ravel())]).reshape(tes_mesh.shape) plot_contour(tes_mesh, jes_mesh, nll_mesh, directory, xlabel="tes", ylabel="jes") def plot_contour(x, y, z, directory, xlabel="mu", ylabel="tes"): logger = logging.getLogger() fig, ax = plt.subplots() CS = ax.contour(x, y, z) ax.clabel(CS, inline=1, fontsize=10) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) now = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S\n") fig.title(now) fname = f"{xlabel}-{ylabel}_contour_plot.png" path = os.path.join(directory, fname) plt.savefig(path) plt.clf() plt.close(fig) logger.info(f"saved at {path}") def focused_contour(x, y, x_err, y_err, nll_func, directory, xlabel="mu", ylabel='tes'): logger = logging.getLogger() ARRAY_SIZE = 10 logger.info(f"focused {xlabel}-{ylabel} contour plot...") x_array = np.linspace(x-3*x_err, x+3*x_err, ARRAY_SIZE) y_array = np.linspace(y-3*y_err, y+3*y_err, ARRAY_SIZE) x_mesh, y_mesh = np.meshgrid(x_array, y_array) z_mesh = np.array([nll_func(x, y) for x, y in zip(x_mesh.ravel(), y_mesh.ravel())]).reshape(x_mesh.shape) fig, ax = plt.subplots() CS = ax.contour(x_mesh, y_mesh, z_mesh) ax.clabel(CS, inline=1, fontsize=10) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) now = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S\n") fig.title(now) fname = f"{xlabel}-{ylabel}_focused_contour_plot.png" path = os.path.join(directory, fname) plt.savefig(path) plt.clf() plt.close(fig) logger.info(f"saved at {path}")
39.012346
125
0.708861
1,012
6,320
4.222332
0.151186
0.039785
0.041189
0.043061
0.566113
0.494734
0.428739
0.39106
0.361573
0.321086
0
0.009211
0.158228
6,320
161
126
39.254658
0.793985
0.008861
0
0.322835
0
0
0.07637
0.012143
0
0
0
0
0
1
0.03937
false
0
0.188976
0
0.228346
0.015748
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b5611952b114a3d2cf44eadfe8d22e693d8c643
682
py
Python
python_fundamentals/Multiple_Sum_Average/index.py
justnclrk/Python
0922961cbd94694a69ae8132a5c33baf552d8d89
[ "MIT" ]
null
null
null
python_fundamentals/Multiple_Sum_Average/index.py
justnclrk/Python
0922961cbd94694a69ae8132a5c33baf552d8d89
[ "MIT" ]
8
2020-06-06T01:02:06.000Z
2022-03-12T00:24:13.000Z
python_fundamentals/Multiple_Sum_Average/index.py
justnclrk/Python
0922961cbd94694a69ae8132a5c33baf552d8d89
[ "MIT" ]
null
null
null
# Multiples -- Part I - Write code that prints all the odd numbers from 1 to 1000. Use the for loop and don't use a list to do this exercise for i in range(1, 1000, 2): print(i) # Multiples -- Part II - Create another program that prints all the multiples of 5 from 5 to 1,000,000 for m in range(5, 1000000, 5): print(m) # Sum List -- Create a program that prints the sum of all the values in the list: a = [1, 2, 5, 10, 255, 3] a = [1, 2, 5, 10, 255, 3] b = sum(a) print(b) # Average List -- Create a program that prints the average of the values in the list: c = [1, 2, 5, 10, 255, 3] c = [1, 2, 5, 10, 255, 3] dSum = sum(c) eLen = len(c) fAvg = (dSum / eLen) print(fAvg)
40.117647
140
0.64956
141
682
3.141844
0.361702
0.090293
0.027088
0.045147
0.311512
0.230248
0.230248
0
0
0
0
0.123574
0.228739
682
16
141
42.625
0.718631
0.667155
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0
0
0
0.333333
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b5646cef1fca290360a2f8a03244f3cf60a9b62
2,817
py
Python
examples/gen9_valset_test.py
mgesteiro/pyubx2
02fd8fa2863b88ed2d746b5800717a1b6b213181
[ "BSD-3-Clause" ]
null
null
null
examples/gen9_valset_test.py
mgesteiro/pyubx2
02fd8fa2863b88ed2d746b5800717a1b6b213181
[ "BSD-3-Clause" ]
null
null
null
examples/gen9_valset_test.py
mgesteiro/pyubx2
02fd8fa2863b88ed2d746b5800717a1b6b213181
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 """ Demo example to test CFG-VALSET ublox message - generation 9 @author: mgesteiro """ import sys import time from serial import Serial, SerialException, SerialTimeoutException from pyubx2 import ( UBXMessage, GET, SET, VALSET_RAM, UBXMessageError, UBXTypeError, UBXParseError, ) def message_valsetuart1baudrate_set(baudrate): """ Function to generate a CFG-VALSET CFG-UART1-BAUDRATE set UBX message """ # https://www.u-blox.com/en/docs/UBX-18010854#page=86&zoom=auto,-74,499 # CFG-UART1-BAUDRATE Key = 0x40520001 return UBXMessage( "CFG", "CFG-VALSET", SET, payload=b"\x00" + VALSET_RAM # version + int(0).to_bytes(2, byteorder="little", signed=False) # layers + 0x40520001 .to_bytes(4, byteorder="little", signed=False) # reserved0 + baudrate.to_bytes(4, byteorder="little", signed=False), # key # value ) def message_valsetuart1baudrate_response(): """ Function to generate a ACK-ACK-ACK UBX message """ # https://www.u-blox.com/en/docs/UBX-18010854#page=52&zoom=auto,-74,379 return UBXMessage("ACK", "ACK-ACK", GET, clsID=0x06, msgID=0x8A) if __name__ == "__main__": PORTNAME = "/dev/tty.usbserial-A50285BI" BAUDRATE = 230400 try: print("\nBuilding CFG-UART1-BAUDRATE VALSET message:") msg = message_valsetuart1baudrate_set(BAUDRATE) print(f" GENERATED: {msg.serialize().hex()}") print( " EXPECTED: b562068a0c00000100000100524000840300b7ef" + " (Note: valid for 230400 baudrate)" ) print(f" {msg}\n") print(f"This demo will now set your module's UART1 to {BAUDRATE} (only in RAM)") try: input("press <ENTER> to continue, CTRL-C to abort!\n") except KeyboardInterrupt: print("\nExecution aborted.\n") sys.exit(0) sport = Serial(PORTNAME, BAUDRATE, timeout=2) time.sleep(0.250) # stabilize print( f"Sending set message to {PORTNAME} at {BAUDRATE} " + "(edit the code to change these values)\n" ) sport.flushInput() sport.write(msg.serialize()) print("Receiving response ...") raw = sport.read(512) START = raw.find(b"\xB5\x62") data = raw[START : START + 10] # expected ACK msg = message_valsetuart1baudrate_response() print(f" RECEIVED: {data.hex()}") print(f" EXPECTED: {msg.serialize().hex()}") print(f" {UBXMessage.parse(data)}\n") except ( UBXMessageError, UBXTypeError, UBXParseError, SerialException, SerialTimeoutException, ) as err: print(f"Something broke 💥🤷‍♂️: {err}\n")
28.17
88
0.606674
320
2,817
5.290625
0.484375
0.028352
0.028352
0.046072
0.095688
0.095688
0.095688
0.055523
0.055523
0.055523
0
0.065796
0.266241
2,817
99
89
28.454545
0.750847
0.160454
0
0.179104
0
0
0.271706
0.060043
0
0
0.007775
0
0
1
0.029851
false
0
0.059701
0
0.119403
0.179104
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b57edd76cfedc441b5ed69fe2a9fd78c4dbd2d2
3,996
py
Python
main.py
saswatsamal/Snake-Game
2c0f427fd6001f09d26a4586ce55453af706c355
[ "CC0-1.0" ]
2
2021-04-25T07:34:14.000Z
2021-04-30T15:24:55.000Z
main.py
saswatsamal/Snake-Game
2c0f427fd6001f09d26a4586ce55453af706c355
[ "CC0-1.0" ]
null
null
null
main.py
saswatsamal/Snake-Game
2c0f427fd6001f09d26a4586ce55453af706c355
[ "CC0-1.0" ]
null
null
null
import pygame import time import sys, random pygame.init() yellow = (255, 255, 102) green = (0, 255, 0) black = (0,0,0) width = 1280 height = 720 gameDisplay = pygame.display.set_mode((width, height)) pygame.display.set_caption('Snake Game By Saswat Samal') clock = pygame.time.Clock() snake_block = 10 snake_speed = 15 font_style = pygame.font.SysFont("ubuntu", 25) score_font = pygame.font.SysFont("ubuntu", 20) def main_menu(): while 1: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() if event.type == pygame.MOUSEBUTTONDOWN: gameLoop() gameDisplay.fill(black) main_menu_message = font_style.render('Press anywhere to start the game' , True , (255,255,255)) font_pos = main_menu_message.get_rect(center=(width//2, height//2)) gameDisplay.blit(main_menu_message , font_pos) pygame.display.update() def gameScore(score): value = score_font.render("Your Score: " + str(score), True, green) gameDisplay.blit(value, [width/2, 0]) def our_snake(snake_block, snake_list): for x in snake_list: pygame.draw.rect(gameDisplay, green, [x[0], x[1], snake_block, snake_block]) def message(msg, color): mesg = font_style.render(msg, True, color) gameDisplay.blit(mesg, [width / 6, height / 3]) def gameLoop(): game_over = False game_close = False x1 = width / 2 y1 = height / 2 x1_change = 0 y1_change = 0 snake_List = [] Length_of_snake = 1 foodx = round(random.randrange(0, width - snake_block) / 10.0) * 10.0 foody = round(random.randrange(0, height - snake_block) / 10.0) * 10.0 while not game_over: while game_close == True: gameDisplay.fill(black) message("Game Over! Press P to Play Again and Press Q to Quit the game. ", green) gameScore(Length_of_snake - 1) pygame.display.update() for event in pygame.event.get(): if event.type == pygame.KEYDOWN: if event.key == pygame.K_q: game_over = True game_close = False if event.key == pygame.K_p: gameLoop() for event in pygame.event.get(): if event.type == pygame.QUIT: game_over = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: x1_change = -snake_block y1_change = 0 elif event.key == pygame.K_RIGHT: x1_change = snake_block y1_change = 0 elif event.key == pygame.K_UP: y1_change = -snake_block x1_change = 0 elif event.key == pygame.K_DOWN: y1_change = snake_block x1_change = 0 if x1 >= width or x1 < 0 or y1 >= height or y1 < 0: game_close = True x1 += x1_change y1 += y1_change gameDisplay.fill(black) pygame.draw.rect(gameDisplay, yellow, [foodx, foody, snake_block, snake_block]) snake_Head = [] snake_Head.append(x1) snake_Head.append(y1) snake_List.append(snake_Head) if len(snake_List) > Length_of_snake: del snake_List[0] for x in snake_List[:-1]: if x == snake_Head: game_close = True our_snake(snake_block, snake_List) gameScore(Length_of_snake - 1) pygame.display.update() if x1 == foodx and y1 == foody: foodx = round(random.randrange(0, width - snake_block) / 10.0) * 10.0 foody = round(random.randrange(0, height - snake_block) / 10.0) * 10.0 Length_of_snake += 1 clock.tick(snake_speed) pygame.quit() quit() main_menu()
27.369863
104
0.56006
511
3,996
4.209393
0.221135
0.069735
0.039052
0.041841
0.362622
0.320316
0.295212
0.261274
0.222222
0.222222
0
0.044461
0.335836
3,996
146
105
27.369863
0.766014
0
0
0.336538
0
0
0.036277
0
0
0
0
0
0
1
0.048077
false
0
0.028846
0
0.076923
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b59cb1bcbcd0c6d58e12de2aac812a57e139151
918
py
Python
SoftMax_Regression.py
chunish/tfboy-is-on-the-way
7cd4c1f7c0c1dd94189377ee0751f2c232a1e98c
[ "Apache-2.0" ]
null
null
null
SoftMax_Regression.py
chunish/tfboy-is-on-the-way
7cd4c1f7c0c1dd94189377ee0751f2c232a1e98c
[ "Apache-2.0" ]
null
null
null
SoftMax_Regression.py
chunish/tfboy-is-on-the-way
7cd4c1f7c0c1dd94189377ee0751f2c232a1e98c
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot = True) sess = tf.InteractiveSession() x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) y_ = tf.placeholder(tf.float32, [None, 10]) # 真实概率 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices = [1])) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) tf.global_variables_initializer().run() for i in range(10000): batch_xs, batch_ys = mnist.train.next_batch(100) train_step.run({x: batch_xs, y_: batch_ys}) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))
31.655172
87
0.734205
149
918
4.33557
0.483221
0.041796
0.04644
0.068111
0.080495
0
0
0
0
0
0
0.037713
0.104575
918
28
88
32.785714
0.748175
0.004357
0
0
0
0
0.012061
0
0
0
0
0
0
1
0
false
0
0.111111
0
0.111111
0.055556
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b5fd841b1005516ab298b5be16fb1dd41b071b3
3,190
py
Python
taehyoungram/images/views.py
TaeHyoungKwon/taehyoungram
055c9effdaa718d60e7627196754ea6b48dded20
[ "MIT" ]
null
null
null
taehyoungram/images/views.py
TaeHyoungKwon/taehyoungram
055c9effdaa718d60e7627196754ea6b48dded20
[ "MIT" ]
7
2020-02-12T01:23:48.000Z
2022-03-11T23:26:02.000Z
taehyoungram/images/views.py
TaeHyoungKwon/taehyoungram
055c9effdaa718d60e7627196754ea6b48dded20
[ "MIT" ]
null
null
null
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from .models import Image, Comment, Like from .serializers import ImageSerializer, CommentSerializer, LikeSerializer class Feed(APIView): def get(self, request, format=None): user = request.user follwoing_users = user.following.all() image_list = [] for following_user in follwoing_users: user_images = following_user.images.all()[:2] for image in user_images: image_list.append(image) sorted_list = sorted(image_list, key=lambda image:image.created_at, reverse=True) serializer = ImageSerializer(sorted_list, many=True) return Response(serializer.data) class LikeImage(APIView): def post(self, request, image_id, format=None): try: found_image = Image.objects.get(id=image_id) except Image.DoesNotExist : return Response(status=status.HTTP_404_NOT_FOUND) try: pre_exisiting_like = Like.objects.get( creator=request.user, image=found_image ) return Response(status=status.HTTP_304_NOT_MODIFIED) except Like.DoesNotExist: new_like = Like.objects.create( creator=request.user, image=found_image ) new_like.save() return Response(status=status.HTTP_201_CREATED) class UnLikeImage(APIView): def delete(self, request, image_id, format=None): user = request.user try: found_image = Image.objects.get(id=image_id) except: return Response(status=status.HTTP_404_NOT_FOUND) try: pre_existing_like = Like.objects.get( creator=user, image=found_image ) pre_existing_like.delete() return Response(status=status.HTTP_204_NO_CONTENT) except Like.DoesNotExist: return Response(status=status.HTTP_304_NOT_MODIFIED) class CommentOnImage(APIView): def post(self, request, image_id, format=None): user = request.user try: found_image = Image.objects.get(id=image_id) except Image.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) serializer = CommentSerializer(data=request.data) if serializer.is_valid(): serializer.save(creator=user, image=found_image) return Response(data=serializer.data, status=status.HTTP_201_CREATED) else: return Response(data=serializer.errors, status=status.HTTP_400_BAD_REQUEST) class Comment(APIView): def delete(self, request, comment_id, format=None): s user = request.user try: comment = Comment.objects.get(id=comment_id, creator=user) comment.delete() return Response(status=status.HTTP_204_NO_CONTENT) except Comment.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND)
27.73913
89
0.626646
354
3,190
5.449153
0.228814
0.087092
0.091239
0.121306
0.519959
0.414723
0.35718
0.35718
0.31156
0.255054
0
0.015138
0.295925
3,190
114
90
27.982456
0.843722
0
0
0.426667
0
0
0
0
0
0
0
0
0
1
0.066667
false
0
0.066667
0
0.36
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b65eb4040ecf11e53140f9d3ec6fb5084fff907
6,298
py
Python
src/utilities/download_bc.py
geoschem/integrated_methane_inversion
0615e3b76c111beadaf0d7fb5b9fa99aa782f403
[ "MIT" ]
null
null
null
src/utilities/download_bc.py
geoschem/integrated_methane_inversion
0615e3b76c111beadaf0d7fb5b9fa99aa782f403
[ "MIT" ]
3
2022-02-14T20:42:35.000Z
2022-03-29T18:11:40.000Z
src/utilities/download_bc.py
geoschem/integrated_methane_inversion
0615e3b76c111beadaf0d7fb5b9fa99aa782f403
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Description: ------------ This Python script (assumes Python3) downloads boundary conditions files from AWS S3 to a target directory for the requested date range. Remarks: -------- (1) Jiawei Zhuang found that it is much faster to issue aws s3 cp commands from a bash script than a Python script. Therefore, in this routine we create a bash script with all of the download commands that will be executed by the main routine. """ # Imports import os import sys import subprocess # Exit with error if we are not using Python3 assert sys.version_info.major >= 3, "ERROR: Python 3 is required to run download_bc.py!" # Define global variables DATA_DOWNLOAD_SCRIPT = "./auto_generated_download_script.sh" def list_missing_files(start_date, end_date, destination): """ Creates list of BC files in date range that do not already exist at destination. Args: ----- start_date : str Initial date of simulation. end_date : str Final date of simulation. destination : str Target directory for downloaded files """ missing_files = [] start_str = str(start_date) start_year = start_str[:4] start_month = start_str[4:6] start_day = start_str[6:8] end_str = str(end_date) end_year = end_str[:4] end_month = end_str[4:6] end_day = end_str[6:8] month_days = [31, [28, 29], 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] file_prefix = "GEOSChem.BoundaryConditions." file_suffix = "_0000z.nc4" for year in range(int(start_year), int(end_year) + 1): # skip years with definite no data if year < 2018: print( "Skipping BC data download for ", str(year), ": no data from this year" ) continue init_month = 1 final_month = 12 if year == int(start_year): # only get desired months from incomplete years init_month = int(start_month) if year == int(end_year): final_month = int(end_month) for month in range(init_month, final_month + 1): # skip months with definite no data if year == 2018 and month < 4: print( "Skipping BC data download for ", str(year), "/0", str(month), ": no data from this month", ) continue # add 0 to month string if necessary month_prefix = "0" if month < 10 else "" init_day = 1 final_day = month_days[month - 1] # leap day if month == 2: if year % 4 == 0: final_day = final_day[1] else: final_day = final_day[0] if month == int(start_month) and year == int(start_year): # only get desired days from incomplete months init_day = int(start_day) if month == int(end_month) and year == int(end_year): final_day = int(end_day) for day in range(init_day, final_day + 1): # add 0 to day string if necessary day_prefix = "0" if day < 10 else "" # check if file for this day already exists file_name = ( file_prefix + str(year) + month_prefix + str(month) + day_prefix + str(day) + file_suffix ) # add file to download list if needed if not os.path.exists(destination + "/" + file_name): missing_files.append(file_name) return missing_files def create_download_script(paths, destination): """ Creates a data download script to obtain missing files Args: ----- paths : dict Output of function list_missing_files. """ # Create the data download script with open(DATA_DOWNLOAD_SCRIPT, "w") as f: # Write shebang line to script print("#!/bin/bash\n", file=f) print("# This script was generated by download_bc.py\n", file=f) cmd_prefix = "aws s3 cp --only-show-errors --request-payer=requester " remote_root = "s3://imi-boundary-conditions/" # make destination if needed if not os.path.exists(destination): os.mkdir(destination) # Write download commands for only the missing data files for path in paths: cmd = cmd_prefix + remote_root + path + " " + destination print(cmd, file=f) print(file=f) # Close file and make it executable f.close() os.chmod(DATA_DOWNLOAD_SCRIPT, 0o755) def download_the_data(start_date, end_date, destination): """ Downloads required boundary conditions files from AWS. Args: ----- start_date : str Initial date of simulation. end_date : str Final date of simulation. destination : str Target directory for downloaded files """ # Get a list of missing data paths paths = list_missing_files(start_date, end_date, destination) # Create script to download missing files from AWS S3 create_download_script(paths, destination) # Run the data download script and return the status # Remove the file afterwards status = subprocess.call(DATA_DOWNLOAD_SCRIPT) os.remove(DATA_DOWNLOAD_SCRIPT) # Raise an exception if the data was not successfully downloaded if status != 0: err_msg = "Error downloading data from AWS!" raise Exception(err_msg) def main(): """ Main program. Gets command-line arguments and calls function download_the_data to initiate a data-downloading process. Calling sequence: ----------------- ./download_data.py start_date end_date destination Example call: ------------- ./download_data.py 20200501 20200531 /home/ubuntu/ExtData/BoundaryConditions """ download_the_data(sys.argv[1], sys.argv[2], sys.argv[3]) if __name__ == "__main__": main()
30.872549
88
0.580343
790
6,298
4.473418
0.258228
0.043577
0.040747
0.01811
0.233729
0.164686
0.164686
0.131862
0.066214
0.066214
0
0.025549
0.335027
6,298
203
89
31.024631
0.81829
0.355668
0
0.043478
0
0
0.109699
0.030342
0
0
0
0
0.01087
1
0.043478
false
0
0.032609
0
0.086957
0.065217
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b6add180192d528e3ed133e29c757a81886beb8
483
py
Python
NoteBooks/Curso de Python/Python/Paradigmas/Object Oriented Programming/Modelando Objetos_2.py
Alejandro-sin/Learning_Notebooks
161d6bed4c7b1d171b45f61c0cc6fa91e9894aad
[ "MIT" ]
1
2021-02-26T13:12:22.000Z
2021-02-26T13:12:22.000Z
NoteBooks/Curso de Python/Python/Paradigmas/Object Oriented Programming/Modelando Objetos_2.py
Alejandro-sin/Learning_Notebooks
161d6bed4c7b1d171b45f61c0cc6fa91e9894aad
[ "MIT" ]
null
null
null
NoteBooks/Curso de Python/Python/Paradigmas/Object Oriented Programming/Modelando Objetos_2.py
Alejandro-sin/Learning_Notebooks
161d6bed4c7b1d171b45f61c0cc6fa91e9894aad
[ "MIT" ]
null
null
null
""" Ejercicio para operación entre currencies """ """ Representación del currency""" class Curency: def __init__(self, name, symbol, factor): self.name = name self.symbol = symbol self.factor = factor # No me queda muy claro el uso de esta función, sirve para mostrar puntualmente qué? # def __repr__(self): # info = self.name # info2 = self.symbol # return info, info2 euro = Curency("Euro","EU","3.2") print(euro)
17.888889
84
0.621118
60
483
4.866667
0.65
0.082192
0
0
0
0
0
0
0
0
0
0.011299
0.267081
483
26
85
18.576923
0.813559
0.459627
0
0
0
0
0.042453
0
0
0
0
0
0
1
0.142857
false
0
0
0
0.285714
0.142857
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b6f1aec2b3a7aa82fa7792516bb55e9223b7c08
1,063
py
Python
bot.py
federicosapienza/InboxNotionTelegramBot
031d5e78cd352dfb692b93f3e0b421695f1dc18e
[ "MIT" ]
null
null
null
bot.py
federicosapienza/InboxNotionTelegramBot
031d5e78cd352dfb692b93f3e0b421695f1dc18e
[ "MIT" ]
null
null
null
bot.py
federicosapienza/InboxNotionTelegramBot
031d5e78cd352dfb692b93f3e0b421695f1dc18e
[ "MIT" ]
null
null
null
from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, ConversationHandler import logging from utils import TELEGRAM_TOKEN from handlers import start, ask_new_url, get_url, get_description, cancel from handlers import URL_URL, URL_DESCRIPTION logging.basicConfig(format='%(levelname)s - %(message)s', level=logging.DEBUG) logger = logging.getLogger(__name__) updater = None def start_bot(): global updater updater = Updater(TELEGRAM_TOKEN, use_context=True) dispatcher = updater.dispatcher dispatcher.add_handler(CommandHandler('start', start)) conversation_url_handler = ConversationHandler( entry_points=[CommandHandler('url', ask_new_url)], states={ URL_URL: [MessageHandler(Filters.text, get_url)], URL_DESCRIPTION: [MessageHandler(Filters.text, get_description)], }, fallbacks=[MessageHandler(Filters.command, cancel)] ) dispatcher.add_handler(conversation_url_handler) updater.start_polling(timeout=30) updater.idle() start_bot()
25.926829
94
0.739417
118
1,063
6.415254
0.432203
0.110964
0.047556
0.073976
0
0
0
0
0
0
0
0.002257
0.16651
1,063
40
95
26.575
0.852144
0
0
0
0
0
0.032926
0
0
0
0
0
0
1
0.04
false
0
0.2
0
0.24
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b6fc4e98137fcd105847298b470d6ad64f71618
841
py
Python
examples/face.py
birkenfeld/python-gr
1d6cd36616a73c8e569b8348869e6e30f3830ec4
[ "RSA-MD" ]
null
null
null
examples/face.py
birkenfeld/python-gr
1d6cd36616a73c8e569b8348869e6e30f3830ec4
[ "RSA-MD" ]
null
null
null
examples/face.py
birkenfeld/python-gr
1d6cd36616a73c8e569b8348869e6e30f3830ec4
[ "RSA-MD" ]
null
null
null
#!/usr/bin/env python """ Simple surface plot example """ from gr import * from math import * x = [-2 + i * 0.5 for i in range(0, 29)] y = [-7 + i * 0.5 for i in range(0, 29)] z = list(range(0, 841)) for i in range(0, 29): for j in range(0, 29): r1 = sqrt((x[j] - 5)**2 + y[i]**2) r2 = sqrt((x[j] + 5)**2 + y[i]**2) z[i * 29 - 1 + j] = (exp(cos(r1)) + exp(cos(r2)) - 0.9) * 25 setcharheight(24.0/500) settextalign(TEXT_HALIGN_CENTER, TEXT_VALIGN_TOP) textext(0.5, 0.9, "Surface Example") (tbx, tby) = inqtextext(0.5, 0.9, "Surface Example") fillarea(tbx, tby) setwindow(-2, 12, -7, 7) setspace(-80, 200, 45, 70) setcharheight(14.0/500) axes3d(1, 0, 20, -2, -7, -80, 2, 0, 2, -0.01) axes3d(0, 1, 0, 12, -7, -80, 0, 2, 0, 0.01) titles3d("X-Axis", "Y-Axis", "Z-Axis") surface(x, y, z, 3) surface(x, y, z, 1) updatews()
22.72973
64
0.567182
171
841
2.766082
0.374269
0.063425
0.067653
0.084567
0.224101
0.224101
0.118393
0.118393
0.071882
0
0
0.156805
0.196195
841
36
65
23.361111
0.542899
0.057075
0
0
0
0
0.061147
0
0
0
0
0
0
1
0
false
0
0.083333
0
0.083333
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b714a892a0b336d54d129baf723bfd26bcf8c4a
1,495
py
Python
app/core.py
antmicro/raw-image-data-previewer
1fc14848a27ce628047cf3e473a9f30f83c9892d
[ "Apache-2.0" ]
5
2021-06-08T15:37:23.000Z
2021-06-10T15:41:21.000Z
app/core.py
antmicro/raw-image-data-previewer
1fc14848a27ce628047cf3e473a9f30f83c9892d
[ "Apache-2.0" ]
37
2021-03-12T12:48:56.000Z
2021-12-09T11:41:05.000Z
app/core.py
antmicro/raw-image-data-previewer
1fc14848a27ce628047cf3e473a9f30f83c9892d
[ "Apache-2.0" ]
9
2021-03-22T14:03:37.000Z
2021-12-31T07:22:04.000Z
"""Main functionalities.""" from .image.image import (Image, RawDataContainer) from .image.color_format import AVAILABLE_FORMATS from .parser.factory import ParserFactory import cv2 as cv import os def load_image(file_path, color_format, width): try: image = Image.from_file(file_path) parser = ParserFactory.create_object( determine_color_format(color_format)) except Exception as e: print(type(e).__name__, e) image = parser.parse(image.data_buffer, determine_color_format(color_format), width) return image def get_displayable(image): if image.color_format is None: raise Exception("Image should be already parsed!") parser = ParserFactory.create_object(image.color_format) return parser.get_displayable(image) def determine_color_format(format_string): if format_string in AVAILABLE_FORMATS.keys(): return AVAILABLE_FORMATS[format_string] else: raise NotImplementedError( "Provided string is not name of supported format.") def save_image_as_file(image, file_path): directory = file_path.replace('\\', '/') if directory.rfind('/') == -1: directory = './' else: directory = directory[:directory.rfind("/")] if not os.path.isdir(directory): os.makedirs(directory) try: cv.imwrite(file_path, cv.cvtColor(image, cv.COLOR_RGB2BGR)) except Exception as e: print(type(e).__name__, e)
26.22807
69
0.681605
182
1,495
5.368132
0.357143
0.101331
0.04913
0.06346
0.131013
0.067554
0.067554
0.067554
0.067554
0
0
0.002571
0.219398
1,495
56
70
26.696429
0.834619
0.014047
0
0.210526
0
0
0.058583
0
0
0
0
0
0
1
0.105263
false
0
0.131579
0
0.315789
0.052632
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b7544498643883f50311519a373ed59f4faa469
3,478
py
Python
app/urls.py
etihadprime/etihadwebclass
3b46d9068afeb0806198ef08fe26849ab9a09bb9
[ "Apache-2.0" ]
null
null
null
app/urls.py
etihadprime/etihadwebclass
3b46d9068afeb0806198ef08fe26849ab9a09bb9
[ "Apache-2.0" ]
6
2021-03-19T03:55:20.000Z
2021-09-22T19:06:06.000Z
app/urls.py
etihadprime/etihadwebclass
3b46d9068afeb0806198ef08fe26849ab9a09bb9
[ "Apache-2.0" ]
null
null
null
from django.urls import path from .views import teacherregister,studentregister,login_view,logout from . import views from .views import ( ClassroomCreateView,ClassroomListView,ClassroomDetailView,ClassroomUpdateView,ClassroomDeleteView, SubjectCreateView,SubjectListView,SubjectDetailView,SubjectUpdateView,SubjectDeleteView, ClassMemberCreateView,ClassMemberListView,ClassMemberDetailView,ClassMemberUpdateView,ClassMemberDeleteView, TimetableCreateView,TimetableListView,TimetableDetailView,TimetableUpdateView,TimetableDeleteView,CrudView,chatroom ) urlpatterns = [ path('', views.index, name='index'), path('health', views.health, name='health'), path('404', views.handler404, name='404'), path('500', views.handler500, name='500'), path('signup/teacher', teacherregister,name='register-teacher'), path('signup/student', studentregister,name='register-student'), path('accounts/login/', login_view, name='login'), path('logout/', logout,name='logout'), #Classroom path('classroom/new', ClassroomCreateView.as_view(),name='classroom-create'), path('classroom_list', ClassroomListView.as_view(),name='classroom-list'), path('classroom/<str:pk>/', ClassroomDetailView.as_view(),name='classroom-detail'), path('classroom/<str:pk>/update', ClassroomUpdateView.as_view(),name='classroom-update'), path('classroom/<str:pk>/delete', ClassroomDeleteView.as_view(),name='classroom-delete'), #path('Classroom/<int:pk>/image',ChildImageUpdateView.as_view(),name='Classroom-image'), #Subject path('subject/new', SubjectCreateView.as_view(),name='subject-create'), path('subject_list', SubjectListView.as_view(),name='subject-list'), path('subject/<int:pk>/', SubjectDetailView.as_view(),name='subject-detail'), path('subject/<int:pk>/update', SubjectUpdateView.as_view(),name='subject-update'), path('subject/<int:pk>/delete', SubjectDeleteView.as_view(),name='subject-delete'), # Class Members path('classmember/new', ClassMemberCreateView.as_view(),name='classmember-create'), path('classmember_list', ClassMemberListView.as_view(),name='classmember-list'), path('classmember/<str:pk>/', ClassMemberDetailView.as_view(),name='classmember-detail'), path('classmember/<str:pk>/update', ClassMemberUpdateView.as_view(),name='classmember-update'), path('classmember/<str:pk>/delete', ClassMemberDeleteView.as_view(),name='classmember-delete'), # TimeTable path('timetable/new', TimetableCreateView.as_view(),name='timetable-create'), path('timetable_list', TimetableListView.as_view(),name='timetable-list'), path('timetable/<int:pk>/', TimetableDetailView.as_view(),name='timetable-detail'), path('timetable/<int:pk>/update', TimetableUpdateView.as_view(),name='timetable-update'), path('timetable/<int:pk>/delete', TimetableDeleteView.as_view(),name='timetable-delete'), # chatroom path('chat/new',chatroom,name='chatroom'), path('crud/',CrudView.as_view(), name='crud_ajax'), ]
70.979592
115
0.648074
322
3,478
6.909938
0.208075
0.082697
0.098876
0.051236
0
0
0
0
0
0
0
0.006494
0.20299
3,478
49
116
70.979592
0.796176
0.039103
0
0
0
0
0.25412
0.066227
0
0
0
0
0
1
0
false
0
0.097561
0
0.097561
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b76dabace6084b6df07b8d27c9db12c437ca835
44,634
py
Python
qaboard/qa.py
Samsung/qaboard
a2290f33da2bbd87cacf95822e1c85376083dfa1
[ "Apache-2.0" ]
51
2019-12-02T07:25:58.000Z
2022-03-23T13:27:11.000Z
qaboard/qa.py
Samsung/qaboard
a2290f33da2bbd87cacf95822e1c85376083dfa1
[ "Apache-2.0" ]
25
2020-01-20T16:13:49.000Z
2022-02-19T17:07:38.000Z
qaboard/qa.py
Samsung/qaboard
a2290f33da2bbd87cacf95822e1c85376083dfa1
[ "Apache-2.0" ]
15
2020-01-17T21:21:17.000Z
2022-02-23T10:13:48.000Z
#!/usr/bin/env python """ CLI tool to runs various tasks related to QA. """ import os import time from pathlib import Path import sys import traceback import json import yaml import uuid import datetime import click from .run import RunContext from .runners import runners, Job, JobGroup from .runners.lsf import LsfPriority from .conventions import batch_dir, batch_dir, make_batch_dir, make_batch_conf_dir, make_hash from .conventions import serialize_config, deserialize_config, get_settings from .utils import PathType, entrypoint_module, load_tuning_search from .utils import save_outputs_manifest, total_storage from .utils import redirect_std_streams from .utils import getenvs from .api import url_to_dir, print_url from .api import get_outputs, notify_qa_database, serialize_paths from .iterators import iter_inputs, iter_parameters from .config import config_has_error, ignore_config_errors from .config import project, project_root, subproject, config from .config import default_batches_files, get_default_database, default_batch_label, default_platform from .config import get_default_configuration, default_input_type from .config import commit_id, outputs_commit, artifacts_commit, root_qatools, artifacts_commit_root, outputs_commit_root from .config import user, is_ci, on_windows @click.group() @click.pass_context @click.option('--platform', default=default_platform) @click.option('--configuration', '--config', '-c', 'configurations', multiple=True, help="Will be passed to the run function") @click.option('--label', '-l', default=default_batch_label, help="Gives tuning experiments a name.") @click.option('--tuning', default=None, help="Extra parameters for tuning (JSON)") @click.option('--tuning-filepath', type=PathType(), default=None, help="File with extra parameters for tuning") @click.option('--dryrun', is_flag=True, help="Only show the commands that would be executed") @click.option('--share', is_flag=True, help="Show outputs in QA-Board, doesn't just save them locally.") @click.option('--database', type=PathType(), help="Input database location") @click.option('--type', 'input_type', default=default_input_type, help="How we define inputs") @click.option('--offline', is_flag=True, help="Do not notify QA-Board about run statuses.") def qa(ctx, platform, configurations, label, tuning, tuning_filepath, dryrun, share, database, input_type, offline): """Entrypoint to running your algo, launching batchs...""" # We want all paths to be relative to top-most qaboard.yaml # it should be located at the root of the git repository if config_has_error and not ignore_config_errors: click.secho('Please fix the error(s) above in qaboard.yaml', fg='red', err=True, bold=True) exit(1) # Click passes `ctx.obj` to downstream commands, we can use it as a scratchpad # http://click.pocoo.org/6/complex/ ctx.obj = {} will_show_help = '-h' in sys.argv or '--help' in sys.argv noop_command = 'get' in sys.argv or 'init' in sys.argv if root_qatools and root_qatools != Path().resolve() and not will_show_help and not noop_command: ctx.obj['previous_cwd'] = os.getcwd() click.echo(click.style("Working directory changed to: ", fg='blue') + click.style(str(root_qatools), fg='blue', bold=True), err=True) os.chdir(root_qatools) # We want open permissions on outputs and artifacts # it makes collaboration among mutliple users / automated tools so much easier... os.umask(0) ctx.obj['project'] = project ctx.obj['project_root'] = project_root ctx.obj['subproject'] = subproject ctx.obj['HOST'] = os.environ.get('HOST', os.environ.get('HOSTNAME')) ctx.obj['user'] = user ctx.obj['dryrun'] = dryrun ctx.obj['share'] = share ctx.obj['offline'] = offline ctx.obj['outputs_commit'] = outputs_commit ctx.obj['artifacts_commit'] = artifacts_commit # Note: to support multiple databases per project, # either use / as database, or somehow we need to hash the db in the output path. ctx.obj['raw_batch_label'] = label ctx.obj['batch_label'] = label if not share else f"@{user}| {label}" ctx.obj['platform'] = platform ctx.obj['input_type'] = input_type ctx.obj['inputs_settings'] = get_settings(input_type, config) ctx.obj['database'] = database if database else get_default_database(ctx.obj['inputs_settings']) # configuration singular is for backward compatibility to a time where there was a single str config ctx.obj['configuration'] = ':'.join(configurations) if configurations else get_default_configuration(ctx.obj['inputs_settings']) # we should refactor the str configuration away completly, and do a much simpler parsing, like # deserialize_config = lambda configurations: return [maybe_json_loads(c) for c in configurations] ctx.obj['configurations'] = deserialize_config(ctx.obj['configuration']) ctx.obj['extra_parameters'] = {} if tuning: ctx.obj['extra_parameters'] = json.loads(tuning) elif tuning_filepath: ctx.obj['tuning_filepath'] = tuning_filepath with tuning_filepath.open('r') as f: if tuning_filepath.suffix == '.yaml': ctx.obj['extra_parameters'] = yaml.load(f, Loader=yaml.SafeLoader) elif tuning_filepath.suffix == '.cde': from cde import Config ctx.obj['extra_parameters'] = Config.loads(f.read()).asdict() else: ctx.obj['extra_parameters'] = json.load(f) # batch runs will override this since batches may have different configurations ctx.obj['batch_conf_dir'] = make_batch_conf_dir(outputs_commit, ctx.obj['batch_label'], platform, ctx.obj['configurations'], ctx.obj['extra_parameters'], share) ctx.obj['batch_dir'] = make_batch_dir(outputs_commit, ctx.obj['batch_label'], platform, ctx.obj['configurations'], ctx.obj['extra_parameters'], share) # For convenience, we allow users to change environment variables using {ENV: {VAR: value}} # in configurations or tuning parameters environment_variables = {} for c in ctx.obj['configurations']: if not isinstance(c, dict): continue if 'ENV' in c: environment_variables.update(c['ENV']) if 'ENV' in ctx.obj['extra_parameters']: environment_variables.update(ctx.obj['extra_parameters']['ENV']) os.environ.update(environment_variables) # we manage stripping ansi color codes ourselfs since we redirect std streams # to both the original stream and a log file ctx.color = True # colors in log files colors will be interpreted in the UIs ctx.obj['color'] = is_ci or share @qa.command() @click.option('-i', '--input', 'input_path', type=PathType(), help='Path of the input/recording/test we should work on, relative to the database directory.') @click.option('-o', '--output', 'output_path', type=PathType(), default=None, help='Custom output directory path. If not provided, defaults to ctx.obj["batch_conf_dir"] / input_path.with_suffix('')') @click.argument('variable') @click.pass_context def get(ctx, input_path, output_path, variable): """Prints the value of the requested variable. Mostly useful for debug.""" try: output_directory = ctx.obj['batch_conf_dir'] / input_path.with_suffix('') if not output_path else output_path except: pass from .config import outputs_commit, commit_branch, artifacts_branch_root # backward compatibility if variable == "branch_ci_dir": variable = "artifacts_branch_root" if variable == "commit_ci_dir": variable = "outputs_commit" locals().update(globals()) locals().update(ctx.obj) if variable in locals(): print(locals().get(variable)) else: click.secho(f"Could not find {variable}", err=True, fg='red') exit(1) @qa.command(context_settings=dict( ignore_unknown_options=True, allow_interspersed_args=False, )) @click.pass_context @click.option('-i', '--input', 'input_path', required=True, type=PathType(), help='Path of the input/recording/test we should work on, relative to the database directory.') @click.option('-o', '--output', 'output_path', type=PathType(), default=None, help='Custom output directory path. If not provided, defaults to ctx.obj["batch_conf_dir"] / input_path.with_suffix('')') @click.option('--keep-previous', is_flag=True, help="Don't clean previous outputs before the run.") @click.option('--no-postprocess', is_flag=True, help="Don't do the postprocessing.") @click.option('--save-manifests-in-database', is_flag=True, help="Save the input and outputs manifests in the database.") @click.argument('forwarded_args', nargs=-1, type=click.UNPROCESSED) def run(ctx, input_path, output_path, keep_previous, no_postprocess, forwarded_args, save_manifests_in_database): """ Runs over a given input/recording/test and computes various success metrics and outputs. """ run_context = RunContext.from_click_run_context(ctx, config) # Usually we want to remove any files already present in the output directory. # It avoids issues with remaining state... This said, # In some cases users want to debug long, multi-stepped runs, for which they have their own caching if not keep_previous: import shutil shutil.rmtree(run_context.output_dir, ignore_errors=True) run_context.output_dir.mkdir(parents=True, exist_ok=True) with (run_context.output_dir / 'run.json').open('w') as f: json.dump({ # run_context.database is always made absolute, we keep it relative if given so "database": str(ctx.obj["database"]), "input_path": str(run_context.rel_input_path), "input_type": run_context.type, "configurations": run_context.configurations, "extra_parameters": run_context.extra_parameters, "platform": run_context.platform, }, f, sort_keys=True, indent=2, separators=(',', ': ')) # Without this, we can only log runs from `qa batch`, on linux, via LSF # this redirect is not 100% perfect, we don't get stdout from C calls # if not 'LSB_JOBID' in os.environ: # When using LSF, we usally already have incremental logs with redirect_std_streams(run_context.output_dir / 'log.txt', color=ctx.obj['color']): # Help reproduce qa runs with something copy-pastable in the logs if is_ci: from shlex import quote click.secho(' '.join(['qa', *map(quote, sys.argv[1:])]), fg='cyan', bold=True) click.echo(click.style("Outputs: ", fg='cyan') + click.style(str(run_context.output_dir), fg='cyan', bold=True), err=True) print_url(ctx) if not ctx.obj['offline']: notify_qa_database(**ctx.obj, is_pending=True, is_running=True) start = time.time() cwd = os.getcwd() try: runtime_metrics = entrypoint_module(config).run(run_context) except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() click.secho(f'[ERROR] Your `run` function raised an exception: {e}', fg='red', bold=True) try: exc_type, exc_value, exc_traceback = sys.exc_info() click.secho(''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)), fg='red') except Exception as e: # debug strange stale file errors, ideally remove this... print(f"ERROR: {e}") runtime_metrics = {'is_failed': True} if not runtime_metrics: click.secho('[WARNING] Your `run` function should return a dict with a least {"is_failed": False}', fg='yellow') runtime_metrics = {"is_failed": False} if not isinstance(runtime_metrics, dict): click.secho(f'[ERROR] Your `run` function did not return a dict, but {runtime_metrics}', fg='red', bold=True) runtime_metrics = {'is_failed': True} runtime_metrics['compute_time'] = time.time() - start # avoid issues if code in run() changes cwd if os.getcwd() != cwd: os.chdir(cwd) metrics = postprocess_(runtime_metrics, run_context, skip=no_postprocess or runtime_metrics['is_failed'], save_manifests_in_database=save_manifests_in_database) if not metrics: metrics = runtime_metrics if metrics['is_failed']: click.secho('[ERROR] The run has failed.', fg='red', err=True) click.secho(str(metrics), fg='red', bold=True) exit(1) else: click.secho(str(metrics), fg='green') def postprocess_(runtime_metrics, run_context, skip=False, save_manifests_in_database=False): """Computes computes various success metrics and outputs.""" from .utils import file_info try: if not skip: try: entrypoint_postprocess = entrypoint_module(config).postprocess except: metrics = runtime_metrics else: metrics = entrypoint_postprocess(runtime_metrics, run_context) else: metrics = runtime_metrics except: exc_type, exc_value, exc_traceback = sys.exc_info() # TODO: in case of import error because postprocess was not defined, just ignore it...? # TODO: we should provide a default postprocess function, that reads metrics.json and returns {**previous, **runtime_metrics} exc_type, exc_value, exc_traceback = sys.exc_info() click.secho(f'[ERROR] Your `postprocess` function raised an exception:', fg='red', bold=True) click.secho(''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)), fg='red') metrics = {**runtime_metrics, 'is_failed': True} if 'is_failed' not in metrics: click.secho("[Warning] The result of the `postprocess` function misses a key `is_failed` (bool)", fg='yellow') metrics['is_failed'] = False if (run_context.output_dir / 'metrics.json').exists(): with (run_context.output_dir / 'metrics.json').open('r') as f: previous_metrics = json.load(f) metrics = { **previous_metrics, **metrics, } with (run_context.output_dir / 'metrics.json').open('w') as f: json.dump(metrics, f, sort_keys=True, indent=2, separators=(',', ': ')) # To help identify if input files change, we compute and save some metadata. if is_ci or save_manifests_in_database: manifest_inputs = run_context.obj.get('manifest-inputs', [run_context.input_path]) input_files = {} for manifest_input in manifest_inputs: manifest_input = Path(manifest_input) if manifest_input.is_dir(): for idx, path in enumerate(manifest_input.rglob('*')): if idx >= 200: break if not path.is_file(): continue input_files[path.as_posix()] = file_info(path, config=config) elif manifest_input.is_file(): input_files.update({manifest_input.as_posix(): file_info(manifest_input, config=config)}) with (run_context.output_dir / 'manifest.inputs.json').open('w') as f: json.dump(input_files, f, indent=2) outputs_manifest = save_outputs_manifest(run_context.output_dir, config=config) output_data = { 'storage': total_storage(outputs_manifest), } if save_manifests_in_database: if run_context.input_path.is_file(): click.secho('WARNING: saving the manifests in the database is only implemented for inputs that are *folders*.', fg='yellow', err=True) else: from .utils import copy copy(run_context.output_dir / 'manifest.inputs.json', run_context.input_path / 'manifest.inputs.json') copy(run_context.output_dir / 'manifest.outputs.json', run_context.input_path / 'manifest.outputs.json') if not run_context.obj.get('offline') and not run_context.obj.get('dryrun'): notify_qa_database(**run_context.obj, metrics=metrics, data=output_data, is_pending=False, is_running=False) return metrics @qa.command(context_settings=dict( ignore_unknown_options=True, )) @click.pass_context @click.option('-i', '--input', 'input_path', required=True, type=PathType(), help='Path of the input/recording/test we should work on, relative to the database directory.') @click.option('-o', '--output', 'output_path', type=PathType(), default=None, help='Custom output directory path. If not provided, defaults to ctx.obj["batch_conf_dir"] / input_path.with_suffix('')') @click.argument('forwarded_args', nargs=-1, type=click.UNPROCESSED) def postprocess(ctx, input_path, output_path, forwarded_args): """Run only the post-processing, assuming results already exist.""" run_context = RunContext.from_click_run_context(ctx, config) with redirect_std_streams(run_context.output_dir / 'log.txt', color=ctx.obj['color']): click.echo(click.style("Outputs: ", fg='cyan') + click.style(str(run_context.output_dir), fg='cyan', bold=True), err=True) print_url(ctx) metrics = postprocess_({}, run_context) if metrics['is_failed']: click.secho('[ERROR] The run has failed.', fg='red', err=True, bold=True) click.secho(str(metrics), fg='red') else: click.secho(str(metrics), fg='green') @qa.command(context_settings=dict( ignore_unknown_options=True, )) @click.pass_context @click.option('-i', '--input', 'input_path', required=True, type=PathType(), help='Path of the input/recording/test we should work on, relative to the database directory.') @click.option('-o', '--output', 'output_path', type=PathType(), default=None, help='Custom output directory path. If not provided, defaults to ctx.obj["batch_conf_dir"] / input_path.with_suffix('')') def sync(ctx, input_path, output_path): """Updates the database metrics using metrics.json""" run_context = RunContext.from_click_run_context(ctx, config) if (run_context.output_dir / 'metrics.json').exists(): with (run_context.output_dir / 'metrics.json').open('r') as f: metrics = json.load(f) notify_qa_database(**ctx.obj, metrics=metrics, is_pending=False, is_running=False) click.secho(str(metrics), fg='green') @qa.command(context_settings=dict( ignore_unknown_options=True, )) @click.pass_context @click.option('--output-id', 'output_id', help='Custom output directory path. If not provided, defaults to ctx.obj["batch_conf_dir"] / input_path.with_suffix('')') def wait(ctx, output_id): from .api import get_output while True: output = get_output(output_id) click.secho("...waiting") if output["is_pending"]: time.sleep(5) continue break exit(0 if not output["is_failed"] else 1) runners_config = config.get('runners', {}) if 'default' in runners_config: default_runner = runners_config['default'] else: task_runners = [r for r in runners_config if r not in ['default', 'local']] default_runner = task_runners[0] if task_runners else 'local' lsf_config = config['lsf'] if 'lsf' in config else config.get('runners', {}).get('lsf', {}) if 'lsf' in config: default_runner = 'lsf' if default_runner == 'lsf' and os.name=='nt': default_runner = 'local' local_config = config.get('runners', {}).get('local', {}) @qa.command(context_settings=dict( ignore_unknown_options=True, )) @click.option('--batch', '-b', 'batches', multiple=True, help="We run over all inputs+configs+database in those batches") @click.option('--batches-file', 'batches_files', type=PathType(), default=default_batches_files, multiple=True, help="YAML files listing batches of inputs+configs+database.") @click.option('--tuning-search', 'tuning_search_dict', help='string containing JSON describing the tuning parameters to explore') @click.option('--tuning-search-file', type=PathType(), default=None, help='tuning file describing the tuning parameters to explore') @click.option('--no-wait', is_flag=True, help="If true, returns as soon as the jobs are sent, otherwise waits for completion.") @click.option('--list', 'list_contexts', is_flag=True, help="Print as JSON details about each run we would do.") @click.option('--list-output-dirs', is_flag=True, help="Only print the prefixes for the results of each batch we run on.") @click.option('--list-inputs', is_flag=True, help="Print to stdout a JSON with a list of the inputs we would call qa run on.") @click.option('--runner', default=default_runner, help="Run runs locally or using a task queue like Celery, LSF...") @click.option('--local-concurrency', default=os.environ.get('QA_BATCH_CONCURRENCY', local_config.get('concurrency')), type=int, help="joblib's n_jobs: 0=unlimited, 2=2 at a time, -1=#cpu-1") @click.option('--lsf-threads', default=lsf_config.get('threads', 0), type=int, help="restrict number of lsf threads to use. 0=no restriction") @click.option('--lsf-memory', default=lsf_config.get('memory', 0), help="restrict memory (MB) to use. 0=no restriction") @click.option('--lsf-queue', default=lsf_config.get('queue'), help="LSF queue (-q)") @click.option('--lsf-fast-queue', default=lsf_config.get('fast_queue', lsf_config.get('queue')), help="Fast LSF queue, for interactive jobs") @click.option('--lsf-resources', default=lsf_config.get('resources', None), help="LSF resources restrictions (-R)") @click.option('--lsf-priority', default=lsf_config.get('priority', 0), type=int, help="LSF priority (-sp)") @click.option('--action-on-existing', default=config.get('outputs', {}).get('action_on_existing', "run"), help="When there are already finished successful runs, whether to do run / postprocess (only) / sync (re-use results) / skip") @click.option('--action-on-pending', default=config.get('outputs', {}).get('action_on_pending', "wait"), help="When there are already pending runs, whether to do wait (then run) / sync (use those runs' results) / skip (don't run) / continue (run as usual, can cause races)") @click.option('--prefix-outputs-path', type=PathType(), default=None, help='Custom prefix for the outputs; they will be at $prefix/$output_path') @click.argument('forwarded_args', nargs=-1, type=click.UNPROCESSED) @click.pass_context def batch(ctx, batches, batches_files, tuning_search_dict, tuning_search_file, no_wait, list_contexts, list_output_dirs, list_inputs, runner, local_concurrency, lsf_threads, lsf_memory, lsf_queue, lsf_fast_queue, lsf_resources, lsf_priority, action_on_existing, action_on_pending, prefix_outputs_path, forwarded_args): """Run on all the inputs/tests/recordings in a given batch using the LSF cluster.""" if not batches_files: click.secho(f'WARNING: Could not find how to identify input tests.', fg='red', err=True, bold=True) click.secho(f'Consider adding to qaboard.yaml somelike like:\n```\ninputs:\n batches: batches.yaml\n```', fg='red', err=True) click.secho(f'Where batches.yaml is formatted like in http://qa-docs/docs/batches-running-on-multiple-inputs', fg='red', err=True) return if not batches: if not len(forwarded_args): click.secho(f'ERROR: you must provide a batch', fg='red', err=True, bold=True) click.secho(f'Use either `qa batch BATCH`, or `qa batch --batch BATCH_2 --batch BATCH_2`', fg='red', err=True) exit(1) single_batch, *forwarded_args = forwarded_args batches = [single_batch] print_url(ctx) existing_outputs = get_outputs(ctx.obj) command_id = str(uuid.uuid4()) # unique IDs for triggered runs makes it easier to wait/cancel them os.environ['QA_BATCH']= 'true' # triggered runs will be less verbose than with just `qa run` os.environ['QA_BATCHES_FILES'] = json.dumps([str(b) for b in batches_files]) dryrun = ctx.obj['dryrun'] or list_output_dirs or list_inputs or list_contexts should_notify_qa_database = (is_ci or ctx.obj['share']) and not (dryrun or ctx.obj['offline']) if should_notify_qa_database: command_data = { "command_created_at_datetime": datetime.datetime.utcnow().isoformat(), "argv": sys.argv, "runner": runner, **ctx.obj, } job_url = getenvs(('BUILD_URL', 'CI_JOB_URL', 'CIRCLE_BUILD_URL', 'TRAVIS_BUILD_WEB_URL')) # jenkins, gitlabCI, cirlceCI, travisCI if job_url: command_data['job_url'] = job_url if not os.environ.get('QA_BATCH_COMMAND_HIDE_LOGS'): notify_qa_database(object_type='batch', command={command_id: command_data}, **ctx.obj) tuning_search, filetype = load_tuning_search(tuning_search_dict, tuning_search_file) default_runner_options = { "type": runner, "command_id": command_id, } # Each runner should add what it cares about... # TODO: Having --runner-X prefixes makes it all a mess, but still the help text is useful # TODO: It would be nice to generate the CLI help depending on the runner that's choosen, then we could use if runner == 'lsf': default_runner_options.update({ "project": lsf_config.get('project', str(project) if project else "qaboard"), "max_threads": lsf_threads, "max_memory": lsf_memory, 'resources': lsf_resources, "queue": lsf_queue, "fast_queue": lsf_fast_queue, "user": ctx.obj['user'], }) if runner == "local": default_runner_options["concurrency"] = local_concurrency if runner == 'local' or runner == 'celery': default_runner_options["cwd"] = ctx.obj['previous_cwd'] if 'previous_cwd' in ctx.obj else os.getcwd() jobs = JobGroup(job_options=default_runner_options) inputs_iter = iter_inputs(batches, batches_files, ctx.obj['database'], ctx.obj['configurations'], ctx.obj['platform'], default_runner_options, config, ctx.obj['inputs_settings']) for run_context in inputs_iter: input_configuration_str = serialize_config(run_context.configurations) for tuning_file, tuning_hash, tuning_params in iter_parameters(tuning_search, filetype=filetype, extra_parameters=ctx.obj['extra_parameters']): if not prefix_outputs_path: batch_conf_dir = make_batch_conf_dir( outputs_commit, ctx.obj["batch_label"], run_context.platform, run_context.configurations, tuning_params, ctx.obj['share'] ) else: batch_conf_dir = outputs_commit / prefix_outputs_path if tuning_file: batch_conf_dir = batch_conf_dir / Path(tuning_file).stem from qaboard.conventions import slugify_hash input_dir = run_context.rel_input_path.with_suffix('') if len(input_dir.as_posix()) > 90: input_dir = Path(slugify_hash(input_dir.as_posix(), maxlength=90)) run_context.output_dir = batch_conf_dir / input_dir if forwarded_args: run_forwarded_args = [a for a in forwarded_args if not a in ("--keep-previous", "--no-postprocess", "--save-manifests-in-database")] if run_forwarded_args: run_context.extra_parameters = {"forwarded_args": run_forwarded_args, **tuning_params} else: run_context.extra_parameters = tuning_params else: run_context.extra_parameters = tuning_params if list_output_dirs: print(run_context.output_dir) break if list_inputs: print(run_context.input_path) break matching_existing_outputs = [o for o in existing_outputs.values() if url_to_dir(o['output_dir_url']) == run_context.output_dir] matching_existing_output = matching_existing_outputs[0] if matching_existing_outputs else None # at most 1, garanteed by database constaints is_pending = matching_existing_output['is_pending'] if matching_existing_output else False is_failed = matching_existing_output['is_failed'] if matching_existing_output else run_context.is_failed() ran_before = True if matching_existing_output else run_context.ran() should_run = not is_pending and (action_on_existing=='run' or is_failed or not ran_before) if not should_run and action_on_existing=='skip': continue if is_pending and action_on_pending == 'skip': continue if not forwarded_args: forwarded_args_cli = None else: if not on_windows: # FIXME: we assume no single quotes... forwarded_args_cli = ' '.join(f"'{a}'" for a in forwarded_args) else: from .compat import escaped_for_cli forwarded_args_cli = ' '.join(escaped_for_cli(a) for a in forwarded_args) if input_configuration_str == get_default_configuration(ctx.obj['inputs_settings']): configuration_cli = None else: # We can't use --config, or "-c A -c B" until we ensure all clients updated a version supporting it if not on_windows: configuration = input_configuration_str.replace("'", "'\"'\"'") # support single-quotes configuration_cli = f"--configuration '{configuration}'" else: from .compat import escaped_for_cli configuration_cli = f'--configuration {escaped_for_cli(input_configuration_str)}' # We could serialize properly the run_context/runner_options, and e.g. call "qa --pickled-cli" and use the CLI command below just for logs... args = [ f"qa", f'--share' if ctx.obj["share"] else None, f'--offline' if ctx.obj['offline'] else None, f'--label "{ctx.obj["raw_batch_label"]}"' if ctx.obj["raw_batch_label"] != default_batch_label else None, f'--platform "{run_context.platform}"' if run_context.platform != default_platform else None, # TODO: make it customizable in batches f'--type "{run_context.type}"' if run_context.type != default_input_type else None, f'--database "{run_context.database.as_posix()}"' if run_context.database != get_default_database(ctx.obj['inputs_settings']) else None, configuration_cli, f'--tuning-filepath "{tuning_file}"' if tuning_params else None, 'run' if should_run else action_on_existing, f'--input "{run_context.rel_input_path}"', f'--output "{run_context.output_dir}"' if prefix_outputs_path else None, forwarded_args_cli if forwarded_args_cli else None, ] command = ' '.join([arg for arg in args if arg is not None]) click.secho(command, fg='cyan', err=True) click.secho(f" {run_context.output_dir if run_context.output_dir.is_absolute else run_context.output_dir.relative_to(subproject)}", fg='blue', err=True) import re if 'QA_TESTING' in os.environ: # we want to make sure we test the current code command = re.sub('^qa', 'python -m qaboard', command) if str(subproject) != '.': command = f"cd {subproject} && {command}" run_context.command = command run_context.job_options['command_id'] = command_id job = Job(run_context) if should_notify_qa_database and not is_pending: # TODO: accumulate and send all at once to avoid 100s of requests? db_output = notify_qa_database(**{ **ctx.obj, **run_context.obj, # for now we don't want to worry about backward compatibility, and input_path being abs vs relative... "is_pending": True, }) if db_output: # Note: the ID is already in the matching job above job.id = db_output["id"] if is_pending: wait_command = f"qa wait --output-id {matching_existing_output['id']}" if action_on_pending=="sync": job.id = matching_existing_output['id'] job.run_context.command = wait_command elif action_on_pending=="wait": job.run_context.command = f"{wait_command} || {job.run_context.command}" else: assert action_on_pending=="continue" jobs.append(job) if list_contexts: print(json.dumps([serialize_paths(j.run_context.asdict()) for j in jobs], indent=2)) return if not dryrun: is_failed = jobs.start( blocking=not no_wait, qa_context=ctx.obj, ) from .gitlab import gitlab_token, update_gitlab_status if gitlab_token and jobs and is_ci and 'QABOARD_TUNING' not in os.environ: update_gitlab_status(commit_id, 'failed' if is_failed else 'success', ctx.obj["batch_label"], f"{len(jobs)} results") if is_failed and not no_wait: del os.environ['QA_BATCH'] # restore verbosity print_url(ctx, status="failure") exit(1) @qa.command() # Do we want this? we could simply use groups not defined in qatools.yaml:artifacts as paths @click.option('--file', '-f', 'files', multiple=True, help="Save specific files instead of artifacts indicated by yaml file") @click.option('--exclude', 'excluded_groups', multiple=True, help="Exclude specific artifact groups") # Do we use this? yes in the API, but let's deprecate and remove for other uses... @click.option('--out', '-o', 'artifacts_path', default='', help="Path to save artifacts in case of specified files") @click.argument('groups', nargs=-1, type=click.UNPROCESSED, default=None) @click.pass_context def save_artifacts(ctx, files, excluded_groups, artifacts_path, groups): """Save the results at a standard location""" import filecmp from .config import is_in_git_repo, qatools_config_paths from .utils import copy, file_info from .compat import cased_path click.secho(f"Saving artifacts in: {artifacts_commit}", bold=True, underline=True) artifacts = {} if files: artifacts = {f"__{f}": {"glob": f} for f in files} else: if 'artifacts' not in config: config['artifacts'] = {} # We support both qaboard.yaml and qaboard.yaml for backward compatibility with SIRC's projects # Default artifacts config['artifacts']['__qaboard.yaml'] = {"glob": ['qaboard.yaml', 'qatools.yaml']} config['artifacts']['__qatools'] = {"glob": ['qatools/*', 'qa/*']} # Handle sub-projects config['artifacts']['__sub-qaboard.yaml'] = {"glob": [str(p.relative_to(root_qatools).parent / 'qaboard.yaml') for p in qatools_config_paths]} config['artifacts']['__sub-qaboard.yaml'] = {"glob": [str(p.relative_to(root_qatools).parent / 'qatools.yaml') for p in qatools_config_paths]} config['artifacts']['__metrics.yaml'] = {"glob": config.get('outputs', {}).get('metrics')} config['artifacts']['__batches.yaml'] = {"glob": default_batches_files} config['artifacts']['__envrc'] = {"glob": ['.envrc', '**/*.envrc']} if groups: if excluded_groups: groups = [g for g in groups if g not in excluded_groups] artifacts = {g: config['artifacts'][g] for g in groups if g in config['artifacts'].keys()} else: artifacts = config['artifacts'] if 'QA_VERBOSE_VERBOSE' in os.environ: print(artifacts) if not is_in_git_repo: click.secho( "You are not in a git repository, maybe in an artifacts folder. `save_artifacts` is unavailable.", fg='yellow', dim=True) exit(1) for artifact_name, artifact_config in artifacts.items(): click.secho(f'Saving artifacts: {artifact_name}', bold=True) manifest_path = artifacts_commit / 'manifests' / f'{artifact_name}.json' manifest_path.parent.mkdir(parents=True, exist_ok=True) if manifest_path.exists(): with manifest_path.open() as f: try: manifest = json.load(f) except: manifest = {} else: manifest = {} nb_files = 0 globs = artifact_config.get('glob') if not isinstance(globs, list): globs = [globs] for g in globs: if not g: continue for path in Path('.').glob(g): path = cased_path(path) if not path.is_file(): continue if artifacts_path: destination = artifacts_commit_root / artifacts_path / path else: destination = artifacts_commit_root / path if 'QA_VERBOSE_VERBOSE' in os.environ: print(destination) if destination.exists() and filecmp.cmp(str(path), str(destination), shallow=True): # when working on subprojects, the artifact might be copied already, # but manifests are saved per-subproject if path.as_posix() not in manifest: manifest[path.as_posix()] = file_info(path, config=config) continue if 'QA_VERBOSE' in os.environ or ctx.obj['dryrun']: click.secho(str(path), dim=True) if not ctx.obj['dryrun']: copy(path, destination) manifest[path.as_posix()] = file_info(path, config=config) if not ctx.obj['dryrun']: with manifest_path.open('w') as f: json.dump(manifest, f) if nb_files > 0: click.secho(f"{nb_files} files copied") if os.name == "nt" and not ctx.obj['dryrun']: # [Samsung-SIRC specific] print("... Fixing linux file permissions") try: # Windows does not set file permissions correctly on the shared storage, # it does not respect umask 0: files are not world-writable. # Trying to each_file.chmod(0o777) does not work either # The only option is to make the call from linux. # We could save a list of paths and chmod them with their parent directories... # but to make things faster to code, we just "ssh linux chmod everything" # from qaboard.compat import windows_to_linux_path # # We can assume SSH to be present on Windows10 # ssh = f"ssh -i \\\\networkdrive\\home\\{user}\\.ssh\\id_rsa -oStrictHostKeyChecking=no" # chmod = f'{ssh} {user}@{user}-srv \'chmod -R 777 "{windows_to_linux_path(artifacts_commit)}"\'' # print(chmod) # os.system(chmod) pass except Exception as e: print(f'WARNING: {e}') # if the commit was deleted, this notification will mark it as good again notify_qa_database(object_type='commit', **ctx.obj) @qa.command() @click.pass_context @click.option('--batch', '-b', 'batches', required=True, multiple=True, help="Only check bit-accuracy for this batch of inputs+configs+database.") @click.option('--batches-file', 'batches_files', type=PathType(), default=default_batches_files, multiple=True, help="YAML file listing batches of inputs+config+database selected from the database.") def check_bit_accuracy_manifest(ctx, batches, batches_files): """ Checks the bit accuracy of the results in the current ouput directory versus the latest commit on origin/develop. """ from .bit_accuracy import is_bit_accurate commit_dir = outputs_commit if is_ci else Path() all_bit_accurate = True nb_compared = 0 for run_context in iter_inputs(batches, batches_files, ctx.obj['database'], ctx.obj['configurations'], default_platform, {}, config, ctx.obj['inputs_settings']): nb_compared += 1 if run_context.input_path.is_file(): click.secho('ERROR: check_bit_accuracy_manifest only works for inputs that are folders', fg='red', err=True) # otherwise the manifest is at # * input_path.parent / 'manifest.json' in the database # * input_path.with_suffix('') / 'manifest.json' in the results # # reference_output_directory = run_context.input_path if run_context.input_path.is_folder() else run_context.input_path.parent exit(1) batch_conf_dir = make_batch_conf_dir(Path(), ctx.obj['batch_label'], ctx.obj["platform"], run_context.configurations, ctx.obj['extra_parameters'], ctx.obj['share']) input_is_bit_accurate = is_bit_accurate(commit_dir / batch_conf_dir, run_context.database, [run_context.rel_input_path]) all_bit_accurate = all_bit_accurate and input_is_bit_accurate if not all_bit_accurate: click.secho("\nError: you are not bit-accurate versus the manifest.", fg='red', underline=True, bold=True) click.secho("Reminder: the manifest lists the expected inputs/outputs for each test. It acts as an explicit gatekeeper against changes", fg='red', dim=True) if not run_context.database.is_absolute(): click.secho("If that's what you wanted, update and commit all manifests.", fg='red') # click.secho("If that's what you wanted, update all manifests using:", fg='red') # click.secho("$ qa batch * --save-manifests-in-database", fg='red') # click.secho("$ git add # your changes", fg='red') # click.secho("$ git commit # now retry your CI", fg='red') else: click.secho("To update the manifests for all tests, run:", fg='red') click.secho("$ qa batch --save-manifests --batch *", fg='red') exit(1) if not nb_compared: click.secho("\nWARNING: Nothing was compared! It's not likely to be what you expected...", fg='yellow', underline=True, bold=True) @qa.command() @click.pass_context @click.option( "--reference", default=config.get('project', {}).get('reference_branch', 'master'), help="Branch, tag or commit used as reference." ) @click.option('--batch', '-b', 'batches', multiple=True, help="Only check bit-accuracy for those batches of inputs+configs+database.") @click.option('--batches-file', 'batches_files', type=PathType(), default=default_batches_files, multiple=True, help="YAML file listing batches of inputs+config+database selected from the database.") @click.option('--reference-platform', help="Compare against a difference platform.") def check_bit_accuracy(ctx, reference, batches, batches_files, reference_platform): """ Checks the bit accuracy of the results in the current ouput directory versus the latest commit on origin/develop. """ from .config import is_in_git_repo, commit_branch, is_ci, outputs_project_root, repo_root from .bit_accuracy import is_bit_accurate from .gitlab import lastest_successful_ci_commit from .conventions import get_commit_dirs from .git import latest_commit, git_show, git_parents if not is_in_git_repo: click.secho("You are not in a git repository, maybe in an artifacts folder. `check_bit_accuracy` is unavailable.", fg='yellow', dim=True) exit(1) if is_ci and commit_branch == reference: click.secho(f'We are on branch {reference}', fg='cyan', bold=True, err=True) click.secho(f"Comparing bit-accuracy against this commit's ({commit_id[:8]}) parents.", fg='cyan', bold=True, err=True) # It will work until we try to rebase merge requests. # We really should use Gitlab' API (or our database) to ask about previous pipelines on the branch reference_commits = git_parents(commit_id) else: click.secho(f'Comparing bit-accuracy versus the latest remote commit of {reference}', fg='cyan', bold=True, err=True) reference_commits = [latest_commit(reference)] click.secho(f"{commit_id[:8]} versus {reference_commits}.", fg='cyan', err=True) # This where the new results are located commit_dir = outputs_commit_root if is_ci else Path() if not batches: output_directories = list(p.parent.relative_to(commit_dir) for p in (commit_dir / subproject / 'output').rglob('manifest.outputs.json')) else: output_directories = [] for run_context in iter_inputs(batches, batches_files, ctx.obj['database'], ctx.obj['configurations'], default_platform, {}, config, ctx.obj['inputs_settings']): batch_conf_dir = make_batch_conf_dir(subproject, ctx.obj['batch_label'], ctx.obj["platform"], run_context.configurations, ctx.obj["extra_parameters"], ctx.obj['share']) input_path = run_context.input_path.relative_to(run_context.database) output_directory = batch_conf_dir / input_path.with_suffix('') output_directories.append(output_directory) for reference_commit in reference_commits: # if the reference commit is pending or failed, we wait or maybe pick a parent reference_commit = lastest_successful_ci_commit(reference_commit) click.secho(f'Current directory : {commit_dir}', fg='cyan', bold=True, err=True) reference_rootproject_ci_dir = outputs_project_root / get_commit_dirs(reference_commit, repo_root) click.secho(f"Reference directory: {reference_rootproject_ci_dir}", fg='cyan', bold=True, err=True) all_bit_accurate = True for o in output_directories: all_bit_accurate = is_bit_accurate(commit_dir, reference_rootproject_ci_dir, [o], reference_platform) and all_bit_accurate if not all_bit_accurate: click.secho(f"\nERROR: results are not bit-accurate to {reference_commits}.", bg='red', bold=True) if is_ci: click.secho(f"\nTo investigate, go to", fg='red', underline=True) for reference_commit in reference_commits: click.secho(f"https://qa/{project.as_posix()}/commit/{commit_id}?reference={reference_commit}&selected_views=bit_accuracy", fg='red') exit(1) from .optimize import optimize qa.add_command(optimize) # TODO: split more... # from .bit_accuracy import check_bit_accuracy, check_bit_accuracy_manifest # qa.add_command(check_bit_accuracy) # qa.add_command(check_bit_accuracy_manifest) @qa.command() @click.pass_context def init(ctx): """Provide a sample qaboard.yaml configuration.""" from .init import qa_init qa_init(ctx) def main(): from .compat import ensure_cli_backward_compatibility ensure_cli_backward_compatibility() qa(obj={}, auto_envvar_prefix='QA') if __name__ == '__main__': main()
50.720455
318
0.703992
6,337
44,634
4.772921
0.117721
0.019639
0.012167
0.014448
0.32077
0.260762
0.2277
0.184818
0.165113
0.136646
0
0.001866
0.171663
44,634
879
319
50.778157
0.816212
0.139759
0
0.251852
0
0.035556
0.252898
0.026664
0
0
0
0.002275
0.001481
1
0.019259
false
0.020741
0.078519
0
0.102222
0.022222
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b77f58f441974f14bdaad4bde4687feee866e3a
5,838
py
Python
20210220_simulation_sample/data_handler.py
3x3x3/Presentations
3c31b136ed4d9214bb3730fa41a4a575da38edc9
[ "MIT" ]
null
null
null
20210220_simulation_sample/data_handler.py
3x3x3/Presentations
3c31b136ed4d9214bb3730fa41a4a575da38edc9
[ "MIT" ]
null
null
null
20210220_simulation_sample/data_handler.py
3x3x3/Presentations
3c31b136ed4d9214bb3730fa41a4a575da38edc9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import threading import time import global_def as gd from db_reader import DbReaderDef, DbReaer from queue import Queue, Empty class DataHandlerThd(threading.Thread): def __init__(self, req_queue: Queue, rcv_queue: Queue, db_host: str, db_port: int, db_user: str, db_pw: str, db_name: str, db_char_set: str = 'utf8'): threading.Thread.__init__(self) self._db_host = db_host self._db_port = db_port self._db_user = db_user self._db_pw = db_pw self._db_name = db_name self._db_char_set = db_char_set self._req_queue = req_queue self._rcv_queue = rcv_queue self.is_run = False def _send_err_msg(self, msg: str) -> None: self._rcv_queue.put({ gd.KEY_NM_EVT: gd.EVT_TYPE_ERR, gd.KEY_NM_MSG: msg }) def _read_db(self, req: dict) -> bool: req_date = int(req.get(gd.KEY_NM_DATE, 0)) tbl_infos = req.get(gd.KEY_NM_TBL_INFOS, None) if 19900101 > req_date or 30000101 < req_date: self._send_err_msg('Invalid Date') return False if list != type(tbl_infos) or 0 == len(tbl_infos): self._send_err_msg('Invalid Table Infos1') return False db_readers = [] for reader_idx, tbl_info in enumerate(tbl_infos): tbl_nm = tbl_info.get(gd.KEY_NM_TBL_NM, None) col_nms = tbl_info.get(gd.KEY_NM_COL_NMS, []) if tbl_nm is None or 0 == len(col_nms): self._send_err_msg('Invalid Table Infos2') return False db_reader = DbReaer(reader_idx, req_date, tbl_nm, col_nms, self._db_host, self._db_port, self._db_user, self._db_pw, self._db_name, self._db_char_set) db_readers.append(db_reader) for db_reader in db_readers: db_reader.read_thd.start() is_st_read = False is_error = False while not is_st_read: for db_reader in db_readers: thd_state: int = db_reader.get_thd_state() if DbReaderDef.STATE_ERROR == thd_state: is_st_read = True is_error = True break elif DbReaderDef.STATE_READY == thd_state: break else: is_st_read = True time.sleep(0.5) if is_error: for db_reader in db_readers: db_reader.set_stop_thd() time.sleep(1) self._send_err_msg('Error in DbReaderThd1') return False # 처음에 하나씩 데이터를 읽는다 empty_reader_idxs = [] for reader_idx, db_reader in enumerate(db_readers): if not db_reader.read_next_data(): empty_reader_idxs.append(reader_idx) # 텅빈 Reader들을 목록에서 제거 for reader_idx in empty_reader_idxs: del db_readers[reader_idx] reader_cnt = len(db_readers) fin_readers = [] while 0 < reader_cnt: min_rtime_idx = -1 min_rtime = 9999999999999 find_min_ts = False is_exist_fin_readers = False for idx, db_reader in enumerate(db_readers): row: list = db_reader.last_data # 마지막 데이터가 비었을때 if row is None: thd_state = db_reader.get_thd_state() if DbReaderDef.STATE_WORKING == thd_state: time.sleep(0.5) db_reader.read_next_data() find_min_ts = False break elif DbReaderDef.STATE_FINISHED == thd_state: fin_readers.append(idx) is_exist_fin_readers = True continue elif DbReaderDef.STATE_ERROR == thd_state: self._send_err_msg('Error in DbReaderThd2') fin_readers.append(idx) is_exist_fin_readers = True continue pk_rtime = row[0] if min_rtime > pk_rtime: min_rtime = pk_rtime min_rtime_idx = idx find_min_ts = True # 가장 과거의 값을 찾았다면 if find_min_ts: target_reader: DbReaer = db_readers[min_rtime_idx] self._rcv_queue.put({ gd.KEY_NM_EVT: gd.EVT_TYPE_READ_DB, gd.KEY_NM_IDX: target_reader.reader_idx, gd.KEY_NM_DATA: target_reader.last_data }) target_reader.read_next_data() # 종료된 Reader가 생겼다면 if is_exist_fin_readers: fin_readers.sort(reverse=True) for fin_reader_idx in fin_readers: del db_readers[fin_reader_idx] reader_cnt = len(db_readers) fin_readers.clear() self._rcv_queue.put({ gd.KEY_NM_EVT: gd.EVT_TYPE_FIN }) return True def run(self): self.is_run = True while self.is_run: try: req = self._req_queue.get(True, 1) evt_type = req.get(gd.KEY_NM_EVT) if gd.EVT_TYPE_READ_DB == evt_type: print(f'Read DB Start!, data: {req}') self._read_db(req) print(f'Read DB End!, data: {req}') elif gd.EVT_TYPE_FIN == evt_type: break except Empty as em: pass except Exception as e: self.is_run = False break
32.797753
162
0.52381
725
5,838
3.838621
0.194483
0.043119
0.027668
0.017966
0.348904
0.252964
0.185411
0.148042
0.099892
0.071146
0
0.013576
0.406989
5,838
177
163
32.983051
0.790295
0.017814
0
0.255639
0
0
0.026192
0
0
0
0
0
0
1
0.030075
false
0.007519
0.037594
0
0.112782
0.015038
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b7a04ca06d8701872be7f11c6588abbce31dce4
16,294
py
Python
hypothesis/_settings.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
hypothesis/_settings.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
hypothesis/_settings.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
# coding=utf-8 # # This file is part of Hypothesis (https://github.com/DRMacIver/hypothesis) # # Most of this work is copyright (C) 2013-2015 David R. MacIver # ([email protected]), but it contains contributions by others. See # https://github.com/DRMacIver/hypothesis/blob/master/CONTRIBUTING.rst for a # full list of people who may hold copyright, and consult the git log if you # need to determine who owns an individual contribution. # # This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at http://mozilla.org/MPL/2.0/. # # END HEADER """A module controlling settings for Hypothesis to use in falsification. Either an explicit settings object can be used or the default object on this module can be modified. """ from __future__ import division, print_function, absolute_import import os import inspect import warnings import threading from collections import namedtuple from hypothesis.errors import InvalidArgument, HypothesisDeprecationWarning from hypothesis.configuration import hypothesis_home_dir from hypothesis.utils.conventions import not_set from hypothesis.utils.dynamicvariables import DynamicVariable __all__ = [ 'settings', ] all_settings = {} _db_cache = {} class SettingsProperty(object): def __init__(self, name): self.name = name def __get__(self, obj, type=None): if obj is None: return self else: try: return obj.__dict__[self.name] except KeyError: raise AttributeError(self.name) def __set__(self, obj, value): obj.__dict__[self.name] = value def __delete__(self, obj): try: del obj.__dict__[self.name] except KeyError: raise AttributeError(self.name) @property def __doc__(self): return '\n'.join(( all_settings[self.name].description, 'default value: %r' % (getattr(settings.default, self.name),) )) default_variable = DynamicVariable(None) class SettingsMeta(type): def __init__(self, *args, **kwargs): super(SettingsMeta, self).__init__(*args, **kwargs) @property def default(self): return default_variable.value @default.setter def default(self, value): if default_variable.value is not None: raise AttributeError('Cannot assign settings.default') self._assign_default_internal(value) def _assign_default_internal(self, value): default_variable.value = value class settings(SettingsMeta('settings', (object,), {})): """A settings object controls a variety of parameters that are used in falsification. These may control both the falsification strategy and the details of the data that is generated. Default values are picked up from the settings.default object and changes made there will be picked up in newly created settings. """ _WHITELISTED_REAL_PROPERTIES = [ '_database', '_construction_complete', 'storage' ] __definitions_are_locked = False _profiles = {} def __getattr__(self, name): if name in all_settings: d = all_settings[name].default if inspect.isfunction(d): d = d() return d else: raise AttributeError('settings has no attribute %s' % (name,)) def __init__( self, parent=None, **kwargs ): self._construction_complete = False self._database = kwargs.pop('database', not_set) explicit_kwargs = list(kwargs) defaults = parent or settings.default if defaults is not None: for setting in all_settings.values(): if kwargs.get(setting.name, not_set) is not_set: kwargs[setting.name] = getattr(defaults, setting.name) if self._database is not_set: self._database = defaults.database for name, value in kwargs.items(): if name not in all_settings: raise InvalidArgument( 'Invalid argument %s' % (name,)) setattr(self, name, value) self.storage = threading.local() self._construction_complete = True for k in explicit_kwargs: deprecation = all_settings[k].deprecation if deprecation: note_deprecation(deprecation, self) def defaults_stack(self): try: return self.storage.defaults_stack except AttributeError: self.storage.defaults_stack = [] return self.storage.defaults_stack def __call__(self, test): test._hypothesis_internal_use_settings = self return test @classmethod def define_setting( cls, name, description, default, options=None, deprecation=None, ): """Add a new setting. - name is the name of the property that will be used to access the setting. This must be a valid python identifier. - description will appear in the property's docstring - default is the default value. This may be a zero argument function in which case it is evaluated and its result is stored the first time it is accessed on any given settings object. """ if settings.__definitions_are_locked: from hypothesis.errors import InvalidState raise InvalidState( 'Settings have been locked and may no longer be defined.' ) if options is not None: options = tuple(options) if default not in options: raise InvalidArgument( 'Default value %r is not in options %r' % ( default, options ) ) all_settings[name] = Setting( name, description.strip(), default, options, deprecation) setattr(settings, name, SettingsProperty(name)) @classmethod def lock_further_definitions(cls): settings.__definitions_are_locked = True def __setattr__(self, name, value): if name in settings._WHITELISTED_REAL_PROPERTIES: return object.__setattr__(self, name, value) elif name == 'database': if self._construction_complete: raise AttributeError( 'Settings objects are immutable and may not be assigned to' ' after construction.' ) else: return object.__setattr__(self, '_database', value) elif name in all_settings: if self._construction_complete: raise AttributeError( 'Settings objects are immutable and may not be assigned to' ' after construction.' ) else: setting = all_settings[name] if ( setting.options is not None and value not in setting.options ): raise InvalidArgument( 'Invalid %s, %r. Valid options: %r' % ( name, value, setting.options ) ) return object.__setattr__(self, name, value) else: raise AttributeError('No such setting %s' % (name,)) def __repr__(self): bits = [] for name in all_settings: value = getattr(self, name) bits.append('%s=%r' % (name, value)) bits.sort() return 'settings(%s)' % ', '.join(bits) @property def database(self): """An ExampleDatabase instance to use for storage of examples. May be None. If this was explicitly set at settings instantiation then that value will be used (even if it was None). If not and the database_file setting is not None this will be lazily loaded as an SQLite backed ExampleDatabase using that file the first time this property is accessed on a particular thread. """ try: if self._database is not_set and self.database_file is not None: from hypothesis.database import ExampleDatabase from hypothesis.database.backend import SQLiteBackend if self.database_file not in _db_cache: _db_cache[self.database_file] = ( ExampleDatabase( backend=SQLiteBackend(self.database_file))) return _db_cache[self.database_file] if self._database is not_set: self._database = None return self._database except AttributeError: import traceback traceback.print_exc() assert False def __enter__(self): default_context_manager = default_variable.with_value(self) self.defaults_stack().append(default_context_manager) default_context_manager.__enter__() return self def __exit__(self, *args, **kwargs): default_context_manager = self.defaults_stack().pop() return default_context_manager.__exit__(*args, **kwargs) @staticmethod def register_profile(name, settings): """registers a collection of values to be used as a settings profile. These settings can be loaded in by name. Enable different defaults for different settings. - settings is a settings object """ settings._profiles[name] = settings @staticmethod def get_profile(name): """Return the profile with the given name. - name is a string representing the name of the profile to load A InvalidArgument exception will be thrown if the profile does not exist """ try: return settings._profiles[name] except KeyError: raise InvalidArgument( "Profile '{0}' has not been registered".format( name ) ) @staticmethod def load_profile(name): """Loads in the settings defined in the profile provided If the profile does not exist an InvalidArgument will be thrown. Any setting not defined in the profile will be the library defined default for that setting """ settings._assign_default_internal(settings.get_profile(name)) Setting = namedtuple( 'Setting', ( 'name', 'description', 'default', 'options', 'deprecation')) settings.define_setting( 'min_satisfying_examples', default=5, description=""" Raise Unsatisfiable for any tests which do not produce at least this many values that pass all assume() calls and which have not exhaustively covered the search space. """ ) settings.define_setting( 'max_examples', default=200, description=""" Once this many satisfying examples have been considered without finding any counter-example, falsification will terminate. """ ) settings.define_setting( 'max_iterations', default=1000, description=""" Once this many iterations of the example loop have run, including ones which failed to satisfy assumptions and ones which produced duplicates, falsification will terminate. """ ) settings.define_setting( 'max_shrinks', default=500, description=""" Once this many successful shrinks have been performed, Hypothesis will assume something has gone a bit wrong and give up rather than continuing to try to shrink the example. """ ) settings.define_setting( 'timeout', default=60, description=""" Once this many seconds have passed, falsify will terminate even if it has not found many examples. This is a soft rather than a hard limit - Hypothesis won't e.g. interrupt execution of the called function to stop it. If this value is <= 0 then no timeout will be applied. """ ) settings.define_setting( 'derandomize', default=False, description=""" If this is True then hypothesis will run in deterministic mode where each falsification uses a random number generator that is seeded based on the hypothesis to falsify, which will be consistent across multiple runs. This has the advantage that it will eliminate any randomness from your tests, which may be preferable for some situations . It does have the disadvantage of making your tests less likely to find novel breakages. """ ) settings.define_setting( 'strict', default=os.getenv('HYPOTHESIS_STRICT_MODE') == 'true', description=""" If set to True, anything that would cause Hypothesis to issue a warning will instead raise an error. Note that new warnings may be added at any time, so running with strict set to True means that new Hypothesis releases may validly break your code. You can enable this setting temporarily by setting the HYPOTHESIS_STRICT_MODE environment variable to the string 'true'. """ ) settings.define_setting( 'database_file', default=lambda: ( os.getenv('HYPOTHESIS_DATABASE_FILE') or os.path.join(hypothesis_home_dir(), 'examples.db') ), description=""" database: An instance of hypothesis.database.ExampleDatabase that will be used to save examples to and load previous examples from. May be None in which case no storage will be used. """ ) class Verbosity(object): def __repr__(self): return 'Verbosity.%s' % (self.name,) def __init__(self, name, level): self.name = name self.level = level def __eq__(self, other): return isinstance(other, Verbosity) and ( self.level == other.level ) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return self.level def __lt__(self, other): return self.level < other.level def __le__(self, other): return self.level <= other.level def __gt__(self, other): return self.level > other.level def __ge__(self, other): return self.level >= other.level @classmethod def by_name(cls, key): result = getattr(cls, key, None) if isinstance(result, Verbosity): return result raise InvalidArgument('No such verbosity level %r' % (key,)) Verbosity.quiet = Verbosity('quiet', 0) Verbosity.normal = Verbosity('normal', 1) Verbosity.verbose = Verbosity('verbose', 2) Verbosity.debug = Verbosity('debug', 3) Verbosity.all = [ Verbosity.quiet, Verbosity.normal, Verbosity.verbose, Verbosity.debug ] ENVIRONMENT_VERBOSITY_OVERRIDE = os.getenv('HYPOTHESIS_VERBOSITY_LEVEL') if ENVIRONMENT_VERBOSITY_OVERRIDE: DEFAULT_VERBOSITY = Verbosity.by_name(ENVIRONMENT_VERBOSITY_OVERRIDE) else: DEFAULT_VERBOSITY = Verbosity.normal settings.define_setting( 'verbosity', options=Verbosity.all, default=DEFAULT_VERBOSITY, description='Control the verbosity level of Hypothesis messages', ) settings.define_setting( name='stateful_step_count', default=50, description=""" Number of steps to run a stateful program for before giving up on it breaking. """ ) settings.define_setting( 'perform_health_check', default=True, description=u""" If set to True, Hypothesis will run a preliminary health check before attempting to actually execute your test. """ ) settings.lock_further_definitions() settings.register_profile('default', settings()) settings.load_profile('default') assert settings.default is not None def note_deprecation(message, s=None): # If *either* self or the current default are non-strict # then this should be an error. This is to handle e.g. the case # where defining a new setting while non-strict updates a # profile which is strict. This should not be an error, but # using the profile here would cause it to be one. if s is None: s = settings.default assert s is not None strict = settings.default.strict and s.strict verbosity = s.verbosity warning = HypothesisDeprecationWarning(message) if strict: raise warning elif verbosity > Verbosity.quiet: warnings.warn(warning, stacklevel=3)
31.334615
79
0.650669
1,949
16,294
5.283222
0.238584
0.013985
0.022434
0.009226
0.098378
0.07643
0.063417
0.050403
0.033019
0.033019
0
0.002965
0.275562
16,294
519
80
31.39499
0.869366
0.167178
0
0.228883
0
0
0.228496
0.013117
0
0
0
0
0.008174
1
0.092643
false
0.00545
0.038147
0.027248
0.220708
0.00545
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b7c945d6b1d560f6d85d5ab876aed99787d4072
1,989
py
Python
code/MergeTrack/print_max_reid_distance.py
MTonyM/PReMVOS
3d01f0c6156628083a4c8441b4b57622c500e04e
[ "MIT" ]
140
2018-10-25T11:58:34.000Z
2022-01-18T15:29:38.000Z
code/MergeTrack/print_max_reid_distance.py
MTonyM/PReMVOS
3d01f0c6156628083a4c8441b4b57622c500e04e
[ "MIT" ]
18
2018-11-21T04:48:03.000Z
2020-09-14T09:30:56.000Z
code/MergeTrack/print_max_reid_distance.py
MTonyM/PReMVOS
3d01f0c6156628083a4c8441b4b57622c500e04e
[ "MIT" ]
32
2018-10-25T11:58:57.000Z
2021-12-27T06:13:45.000Z
import glob from numpy.linalg import norm import numpy as np from copy import deepcopy as copy from MergeTrack.merge_functions import read_ann,read_props from MergeTrack.ReID_net_functions import ReID_net_init, add_ReID input_images = "DAVIS/val17/" input_proposals = "DAVIS/ReID_props/" first_frame_anns = "DAVIS/val17-ff/" output_images = "DAVIS/final_results/" output_proposals = "DAVIS/final_props/" ReID_net = ReID_net_init() dataset_max_distances = [] for video_fn in sorted(glob.glob(input_images+"*/")): video_proposals = [] templates = [] for image_fn in sorted(glob.glob(video_fn+"*")): ann_fn = image_fn.replace(input_images,first_frame_anns).replace('.jpg','.png') if glob.glob(ann_fn): new_templates = read_ann(ann_fn) new_templates = add_ReID(new_templates, image_fn, ReID_net) # import json # ff_fn = image_fn.replace(input_images, "DAVIS/ff_test/").replace('.jpg', '.json') # with open(ff_fn, "r") as f: # new_templates = json.load(f) # for id, templ in enumerate(new_templates): # templ['ReID'] = np.array(templ['ReID']) # templ['id'] = id templates = templates + new_templates prop_fn = image_fn.replace(input_images,input_proposals).replace('.jpg','.json') proposals = read_props(prop_fn) video_proposals.append(proposals) ReIDs = [[prop['ReID'] for prop in props] for props in video_proposals] template_ReIDs = [templ['ReID'] for templ in templates] all_reid_distances = [np.array([[norm(c_reid - gt_reid) for c_reid in curr] for gt_reid in template_ReIDs]) for curr in ReIDs] all_reid_distances_no_inf = copy(all_reid_distances) for mat in all_reid_distances_no_inf: mat[np.isinf(mat)] = 0 max_distances = np.array([mat.max(axis=1) if mat.shape[1]>0 else np.zeros((mat.shape[0])) for mat in all_reid_distances_no_inf]).max(axis=0) print(max_distances) dataset_max_distances.append(max_distances.max()) print(np.array(dataset_max_distances).max())
38.25
142
0.723479
307
1,989
4.407166
0.250814
0.053215
0.059128
0.035477
0.144863
0.102735
0.042868
0.042868
0
0
0
0.005914
0.149824
1,989
52
143
38.25
0.794205
0.128708
0
0
0
0
0.063731
0
0
0
0
0
0
1
0
false
0
0.171429
0
0.171429
0.057143
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b7e597bab0f3442569b2c0f944ee9a51ebdc5c8
5,004
py
Python
tests/unit/html/test_search_page.py
tttgm/basketball_reference_web_scraper
2dbd9d7bacbcfee17f08bcf8629bd7d50893761d
[ "MIT" ]
325
2015-10-27T03:15:49.000Z
2022-03-16T06:49:12.000Z
tests/unit/html/test_search_page.py
tttgm/basketball_reference_web_scraper
2dbd9d7bacbcfee17f08bcf8629bd7d50893761d
[ "MIT" ]
173
2018-10-16T04:11:05.000Z
2022-03-29T17:52:08.000Z
tests/unit/html/test_search_page.py
tttgm/basketball_reference_web_scraper
2dbd9d7bacbcfee17f08bcf8629bd7d50893761d
[ "MIT" ]
97
2016-04-09T19:11:28.000Z
2022-03-21T09:57:50.000Z
from unittest import TestCase from unittest.mock import patch, MagicMock, PropertyMock from basketball_reference_web_scraper.html import SearchPage, PlayerSearchResult class TestSearchPage(TestCase): def test_nba_aba_baa_players_content_query(self): self.assertEqual( SearchPage(html=MagicMock()).nba_aba_baa_players_content_query, '//div[@id="searches"]/div[@id="players"]', ) @patch.object(SearchPage, 'nba_aba_baa_players_content_query', new_callable=PropertyMock) def test_nba_aba_baa_players_pagination_links_query(self, mocked_query): mocked_query.return_value = "some query" self.assertEqual( SearchPage(html=MagicMock()).nba_aba_baa_players_pagination_links_query, 'some query/div[@class="search-pagination"]/a', ) @patch.object(SearchPage, 'nba_aba_baa_players_content_query', new_callable=PropertyMock) def test_nba_aba_baa_player_search_items_query(self, mocked_query): mocked_query.return_value = "some query" self.assertEqual( SearchPage(html=MagicMock()).nba_aba_baa_player_search_items_query, 'some query/div[@class="search-item"]', ) @patch.object(SearchPage, 'nba_aba_baa_players_pagination_links_query', new_callable=PropertyMock) def test_nba_aba_baa_players_pagination_links(self, mocked_query): mocked_query.return_value = "some query" html = MagicMock() links = [MagicMock(return_value="some"), MagicMock(return_value="links")] html.xpath = MagicMock(return_value=links) self.assertEqual( SearchPage(html=html).nba_aba_baa_players_pagination_links, links, ) html.xpath.asset_called_once_with("some query") @patch.object(SearchPage, 'nba_aba_baa_players_pagination_links', new_callable=PropertyMock) def test_nba_aba_baa_players_pagination_url_is_none_when_no_pagination_links(self, mocked_links): mocked_links.return_value = [] self.assertIsNone(SearchPage(html=MagicMock()).nba_aba_baa_players_pagination_url) @patch.object(SearchPage, 'nba_aba_baa_players_pagination_links', new_callable=PropertyMock) def test_nba_aba_baa_players_pagination_url_is_first_link_href_attrib_when_single_link_is_not_at_end_of_results( self, mocked_links ): link = MagicMock() link.text_content = MagicMock(return_value="jaebaebae") link.attrib = MagicMock() link.attrib.__getitem__ = MagicMock(return_value="some text content") mocked_links.return_value = [link] self.assertEqual( SearchPage(html=MagicMock()).nba_aba_baa_players_pagination_url, "some text content", ) link.attrib.__getitem__.assert_called_once_with("href") @patch.object(SearchPage, 'nba_aba_baa_players_pagination_links', new_callable=PropertyMock) def test_nba_aba_baa_players_pagination_url_is_none_when_single_link_is_at_end_of_results( self, mocked_links ): link = MagicMock() link.text_content = MagicMock(return_value="Previous 100 Results") mocked_links.return_value = [link] self.assertIsNone(SearchPage(html=MagicMock()).nba_aba_baa_players_pagination_url) link.text_content.assert_called_once_with() @patch.object(SearchPage, 'nba_aba_baa_players_pagination_links', new_callable=PropertyMock) def test_nba_aba_baa_players_pagination_url_is_second_link_href_attrib_when_multiple_links( self, mocked_links ): first_link = MagicMock() first_link.attrib = MagicMock() first_link.attrib.__getitem__ = MagicMock(return_value="some text content") second_link = MagicMock() second_link.attrib = MagicMock() second_link.attrib.__getitem__ = MagicMock(return_value="some other text content") mocked_links.return_value = [first_link, second_link] self.assertEqual( SearchPage(html=MagicMock()).nba_aba_baa_players_pagination_url, "some other text content", ) second_link.attrib.__getitem__.assert_called_once_with("href") @patch.object(SearchPage, 'nba_aba_baa_player_search_items_query', new_callable=PropertyMock) def test_nba_aba_baa_players(self, mocked_query): mocked_query.return_value = "some query" first_result = MagicMock(name="first html result") second_result = MagicMock(name="second html result") third_result = MagicMock(name="third html result") html = MagicMock() html.xpath = MagicMock(return_value=[first_result, second_result, third_result]) self.assertEqual( SearchPage(html=html).nba_aba_baa_players, [ PlayerSearchResult(html=first_result), PlayerSearchResult(html=second_result), PlayerSearchResult(html=third_result), ] )
42.40678
116
0.711631
590
5,004
5.567797
0.130508
0.047489
0.071233
0.112024
0.700761
0.683105
0.625571
0.592998
0.592998
0.471233
0
0.000751
0.202038
5,004
117
117
42.769231
0.821938
0
0
0.375
0
0
0.130695
0.079736
0
0
0
0
0.125
1
0.09375
false
0
0.03125
0
0.135417
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b7fad07fb9954bb150ff9b9a3fc6a0e8f2cf560
19,891
py
Python
cave/com.raytheon.viz.gfe/localization/gfe/userPython/smartTools/WindGustFromAlgorithm.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
null
null
null
cave/com.raytheon.viz.gfe/localization/gfe/userPython/smartTools/WindGustFromAlgorithm.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
null
null
null
cave/com.raytheon.viz.gfe/localization/gfe/userPython/smartTools/WindGustFromAlgorithm.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
1
2021-10-30T00:03:05.000Z
2021-10-30T00:03:05.000Z
## # This software was developed and / or modified by Raytheon Company, # pursuant to Contract DG133W-05-CQ-1067 with the US Government. # # U.S. EXPORT CONTROLLED TECHNICAL DATA # This software product contains export-restricted data whose # export/transfer/disclosure is restricted by U.S. law. Dissemination # to non-U.S. persons whether in the United States or abroad requires # an export license or other authorization. # # Contractor Name: Raytheon Company # Contractor Address: 6825 Pine Street, Suite 340 # Mail Stop B8 # Omaha, NE 68106 # 402.291.0100 # # See the AWIPS II Master Rights File ("Master Rights File.pdf") for # further licensing information. ## # ---------------------------------------------------------------------------- # This software is in the public domain, furnished "as is", without technical # support, and with no warranty, express or implied, as to its usefulness for # any purpose. # # New_WindGust_Tool # # Authors: Tom Mazza NWS Charleston, WV Created: 04/25/03 # Matthew H. Belk NWS Taunton, MA Last Modified: 06/16/03 # Mathewson FSL Modified: 3/30/04 # -change in model names to OB3 names #---------------------------------------------------------------------------- # # SOFTWARE HISTORY # # Date Ticket# Engineer Description # ------------ ---------- ----------- -------------------------- # 02/10/2016 5283 nabowle Remove NGM support. # ---------------------------------------------------------------------------- ## # This is an absolute override file, indicating that a higher priority version # of the file will completely replace a lower priority version of the file. ## ToolType = "numeric" WeatherElementEdited = "WindGust" from numpy import * # without this, the builtin max() is used from numpy import max import LogStream # You can screen the elements for which your tool will appear by using # a ScreenList. For example: #ScreenList = ["MixHgt","WindGust", "TransWind"] # Set up variables to be solicited from the user: VariableList = [ ("Momentum algorithm:", "RUC", "radio", ["RUC", "Power"]), ("Use BL Winds:", "No", "radio", ["Yes", "No"]), ("Model:", "NAM12", "radio", ["GFS80", "NAM12", "gfsLR", "RAP40"]) ] #Set up Class import SmartScript ## For available commands, see SmartScript toolName = 'WindGustFromAlgorithm' class Tool (SmartScript.SmartScript): def __init__(self, dbss): SmartScript.SmartScript.__init__(self, dbss) # Define your site ID self._SITEID = "BOX" # Required Method: Execute # Called once for each grid # Fill in the arguments you want to use -- WeatherElement1, WeatherElement2... def execute(self, Wind, MixHgt, Topo, GridTimeRange): "Determines WindGust using one of two algorithms, one from the RUC or a power relationship. This tool assumes your mixing height has already been adjusted for your surface temperatures." sounding = self.makeNumericSounding(self._model, "wind", self._modelCube, GridTimeRange, noDataError=0) ######################################################################## # If we don't have a model sounding at this point in time, or the # size of the grids do not match if sounding is None: # or sounding[0].shape != Topo.shape: LogStream.logProblem(toolName, ': cannot obtain a Wind sounding') return None # leaves current WindGust grid alone ######################################################################## # If we made it this far, split up the sounding into its component # cubes of height and wind (gh_Cube, wind_Cube) = sounding if gh_Cube is None: LogStream.logProblem(toolName, 'gh_Cube is None') return None if wind_Cube is None: LogStream.logProblem(toolName, 'wind_Cube is None') return None ######################################################################## # Convert topography from feet to meters self._topo = self.ftToM(Topo) ######################################################################## # Initialize a cube to hold BL wind grids bl_WindCube = {} ######################################################################## # Cycle through all the BL levels we have for this model for lvl in self._blCube: #################################################################### # Initialize BL wind grid for this level grid = None #################################################################### # If this is the NAM40/20 model if self._model.find('NAM40') != -1: ################################################################ # Get BL winds from other NAM40/NAM20 file tempModel = self._model.replace('NAM40', 'NAM20') ################################################################ # Try to get model BL winds for this time grid = self.getGrids(tempModel, "wind", lvl, GridTimeRange, noDataError=0) #################################################################### # Otherwise else: ################################################################ # Try to get model BL winds for this time grid = self.getGrids(self._model, "Wind", lvl, GridTimeRange, noDataError=0) #################################################################### # Add this grid to the BL wind cube - if it is valid if grid != None: ################################################################ # Store the wind speeds at this BL level bl_WindCube[lvl] = grid[0] #################################################################### # Otherwise else: ################################################################ # Store a placeholder bl_WindCube[lvl] = None ######################################################################## # Convert mixing height from ft ASL to m ASL mixHgt_m = self.ftToM(MixHgt) ######################################################################## # Make a 3D mask where the model sounding level is ABOVE the ground, # but below the Mixing Height self._mixedLayer = (gh_Cube >= self._topo) & (gh_Cube <= mixHgt_m) ######################################################################## # Method to compute WindGust using a version of the RUC technique # adapted by Matthew H. Belk (BOX). ######################################################################## # Initialize WindGust using current 10m Wind speeds - (mag, dir) WindGust = Wind[0] ######################################################################## # Move vertically through the model BL cube for lvl in self._blCube: #################################################################### # Make a mask where this BL surface is at or below the MixHgt blMask = MixHgt <= self._blHgt[lvl] #################################################################### # If there are any points in the mixed layer at this surface, and # there actually is a wind grid if any(blMask) and bl_WindCube[lvl] != None: ################################################################ # Get wind magnitude at current level - remember model winds # are in m/s and need to be in kts for comparison curMag = self.mpsToKt(bl_WindCube[lvl]) ################################################################ # Compute difference between wind at this level and SFC wind # where points are in the mixed layer deltaSpd = curMag - Wind[0] ################################################################ # Get the depth of the mixed layer to this point (m AGL) deltaZ = self._blHgt[lvl] ################################################################ # Adjust change in wind speed by a coefficient - using the # lesser of 0.5 or (deltaZ / 2000) # First get the factor, which will range from 0.5 to 1.0, # higher closer to the ground delta = max(1.0 - deltaZ/2000.0, 0.5) ################################################################ # Employ the power relationship if selected: it focuses in on # how much lower than one this factor will be (it ranges from # no less than 1 just above the surface to 0.5 lower than 1 # 1000 or more feet from the surface). The power relationship # takes this small number (between 0 and 0.5) to the second # power, which makes it smaller still. It actually first # doubles it, then squares it, then halves it again. This # causes a difference of 0 to stay 0, a difference of 0.5 to # stay at 0.5, but a difference of 0.25 will become 0.125. # This difference is then subtracted from one, to get a new, # equal or larger factor by which to multiply the potential # wind gust, to arrive at a gust potential that decreases more # slowly at first with height, then more rapidly later on, to # arrive at the same factor up at 1000 m and more above the # surface. The resulting wind gust is always equal to or # greater than using the RUC algorthm straight up. if self._algorithm == 'Power': delta = 1 - (pow((2 * (1 - delta)), 2)) / 2 ################################################################ # Adjust wind speed difference by chosen coefficient deltaSpd *= delta gustV = Wind[0] + deltaSpd ################################################################ # Make a mask where this WindGust is > current WindGust newGust = gustV > WindGust ################################################################ # Assign new WindGust where new WindGust is greater and the # surface is still within the mixed layer WindGustMask = newGust & blMask WindGust[WindGustMask] = gustV[WindGustMask] ######################################################################## # Move vertically through the model cube for i in xrange(gh_Cube.shape[0]): #################################################################### # If there are any points in the mixed layer at this surface if any(self._mixedLayer[i]): ################################################################ # Get wind magnitude at current level - remember model winds # are in m/s and need to be in kts for comparison curMag = self.mpsToKt(wind_Cube[0][i]) ################################################################ # Compute difference between wind at this level and SFC wind # where points are in the mixed layer deltaSpd = curMag - Wind[0] ################################################################ # Get the depth of the mixed layer to this point (m AGL) deltaZ = gh_Cube[i] - self._topo ################################################################ # Adjust change in wind speed by a coefficient - using the # lesser of 0.5 or (deltaZ / 2000) # First get the factor, which will range from 0.5 to 1.0, # higher closer to the ground delta = max(1.0-deltaZ/2000.0,0.5) ################################################################ # Employ the power relationship if selected: it focuses in on # how much lower than one this factor will be (it ranges from # no less than 1 just above the surface to 0.5 lower than 1 # 1000 or more feet from the surface). The power relationship # takes this small number (between 0 and 0.5) to the second # power, which makes it smaller still. It actually first # doubles it, then squares it, then halves it again. This # causes a difference of 0 to stay 0, a difference of 0.5 to # stay at 0.5, but a difference of 0.25 will become 0.125. # This difference is then subtracted from one, to get a new, # equal or larger factor by which to multiply the potential # wind gust, to arrive at a gust potential that decreases more # slowly at first with height, then more rapidly later on, to # arrive at the same factor up at 1000 feet and more above the # surface. The resulting wind gust is always equal to or # greater than using the RUC algorthm straight up. if self._algorithm == 'Power': delta = 1 - (pow((2 * (1 - delta)), 2)) / 2 ################################################################ # Adjust wind speed difference by chosen coefficient deltaSpd *= delta gustV = Wind[0] + deltaSpd ################################################################ # Make a mask where this WindGust is > current WindGust newGust = gustV > WindGust ################################################################ # Assign new WindGust where new WindGust is greater and the # surface is still within the mixed layer WindGustMask = newGust & self._mixedLayer[i] WindGust[WindGustMask] = gustV[WindGustMask] ######################################################################## # Return the computed WindGust return WindGust # Optional Methods # These methods can have the additional argument: # ToolTimeRange -- selected time range over which we are running the tool def preProcessTool(self, varDict): # Called once at beginning of Tool # Cannot have WeatherElement or Grid arguments ######################################################################## # Get site ID try: siteID=self.mutableID().siteID() except: siteID=self._SITEID ######################################################################## # Get name of chosen model - and fix it up so we can use it later on. # This will grab the latest version of the chosen model from the D2D # netCDF files. self._model = "%s_D2D_%s" % (siteID, varDict["Model:"]) ######################################################################## # Get chosen algorithm self._algorithm = varDict["Momentum algorithm:"] ######################################################################## # Get answer if we should use BL winds useBLwinds = varDict["Use BL Winds:"] ######################################################################## # Initialize a list of model levels self._modelCube = [] ######################################################################## # Determine model levels available for each model if self._model.find( 'GFS80') != -1 or \ self._model.find( 'GFS') != -1: self._modelCube = ["MB850", "MB700", "MB500", "MB400", "MB300"] self._blCube = [] elif self._model.find( 'NAM12') != -1: self._modelCube = ["MB1000", "MB950", "MB900", "MB850", "MB800", "MB750", "MB700", "MB650", "MB600", "MB550", "MB500", "MB450", "MB400", "MB350"] self._blCube = ["BL030", "BL03060", "BL6090", "BL90120", "BL12015"] elif self._model.find( 'NAM40') != -1 or \ self._model.find( 'NAM20') != -1: self._modelCube = ["MB975", "MB950", "MB925", "MB900", "MB875", "MB850", "MB825", "MB800", "MB775", "MB750", "MB725", "MB700", "MB675", "MB650", "MB625", "MB600", "MB550", "MB500", "MB450", "MB400", "MB350", "MB300"] self._blCube = ["BL030", "BL03060", "BL6090", "BL90120", "BL120150"] elif self._model.find( 'gfsLR') != -1: self._modelCube = ["MB1000", "MB850", "MB700", "MB500", "MB300"] self._blCube = [] elif self._model.find( 'RAP40') != -1: self._modelCube = ["MB1000", "MB950", "MB900", "MB850", "MB800", "MB750", "MB700", "MB650", "MB600", "MB550", "MB500", "MB450", "MB400", "MB350", "MB300"] self._blCube = ["BL030", "BL6090", "BL15018"] ######################################################################## # If we should not use the BL winds if useBLwinds is 'No': #################################################################### # Reset the levels in the BL cube so we don't do anything self._blCube = [] ######################################################################## # Determine height of all possible BL levels available for each model. # If level is not at a fixed height AGL, use the hydrostatic equation. # Assume the density of the air is 1 kg/m3 and gravity is 9.80 m/s^2. # The height will be in m AGL at the center of the layer. Remember # there are 100 Pa per 1 mb. self._blHgt = {'BL030' : (15.0 * 100.0/ 9.8), 'BL3060' : (45.0 * 100.0 / 9.8), 'BL03060' : (45.0 * 100.0 / 9.8), 'BL6090' : (75.0 * 100.0 / 9.8), 'BL90120' : (105.0 * 100.0 / 9.8), 'BL12015' : (135.0 * 100.0 / 9.8), 'BL120150': (135.0 * 100.0 / 9.8), 'BL15018' : (165.0 * 100.0 / 9.8), 'FH1829' : 1829.0, 'FH2743' : 2743.0, 'FH3658' : 3658.0 } LogStream.logDebug(toolName, ': preProcessTool complete.')
48.045894
195
0.42934
1,904
19,891
4.448004
0.26208
0.003306
0.01228
0.005668
0.459558
0.414571
0.388003
0.380446
0.380446
0.380446
0
0.045883
0.32286
19,891
413
196
48.162228
0.582894
0.394902
0
0.259843
0
0.007874
0.114477
0.002428
0
0
0
0
0
1
0.023622
false
0
0.031496
0
0.094488
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b7fd5f816b4e255d1e40adf591dc8b3e21efaa2
2,291
py
Python
CH04_Iterators_and_Generators/4.4.Implementing_the_iterator_protocol.py
Chang-Liu-TAMU/Python-Cookbook-reading
7b974c32f77b4b3d7cfeed30d1671081057c566f
[ "MIT" ]
null
null
null
CH04_Iterators_and_Generators/4.4.Implementing_the_iterator_protocol.py
Chang-Liu-TAMU/Python-Cookbook-reading
7b974c32f77b4b3d7cfeed30d1671081057c566f
[ "MIT" ]
null
null
null
CH04_Iterators_and_Generators/4.4.Implementing_the_iterator_protocol.py
Chang-Liu-TAMU/Python-Cookbook-reading
7b974c32f77b4b3d7cfeed30d1671081057c566f
[ "MIT" ]
null
null
null
# @Time: 2022/4/12 20:50 # @Author: chang liu # @Email: [email protected] # @File:4.4.Implementing_the_iterator_protocol.py ################ clean version ######################### # class Node: # def __init__(self, val): # self._value = val # self._children = [] # # def __repr__(self): # return "Node({!r})".format(self._value) # # def add_child(self, node): # self._children.append(node) # # def __iter__(self): # return iter(self._children) # # def depth_first(self): # yield self # for c in self: # yield from c.depth_first() ############# some messy version #################### class Node: def __init__(self, value): self._value = value self._children = [] def __repr__(self): return "Node({!r})".format(self._value) def add_child(self, node): self._children.append(node) def __iter__(self): return iter(self._children) # def iter(self): # return iter(self._children) def depth_first(self): return DepthFirstIterator(self) # def __iter__(self): # return DepthFirstIterator(self) class DepthFirstIterator: ''' DFS traversal ''' def __init__(self, start_node): self._node = start_node self._children_iter = None self._child_iter = None def __iter__(self): return self def __next__(self): if self._children_iter == None: self._children_iter = iter(self._node) # self._children_iter = self._node.iter() return self._node elif self._child_iter: try: following = next(self._child_iter) return following except StopIteration: self._child_iter = None return next(self) else: self._child_iter = next(self._children_iter).depth_first() return next(self) # return next(self._child_iter) root = Node(0) left = Node(1) right = Node(2) left.add_child(Node(3)) left.add_child(Node(4)) right.add_child(Node(5)) right.add_child(Node(6)) root.add_child(left) root.add_child(right) for i in root.depth_first(): print(i) # for i in root: # print(i)
22.91
70
0.572676
274
2,291
4.434307
0.255474
0.118519
0.064198
0.069959
0.341564
0.302058
0.257613
0.257613
0.257613
0.257613
0
0.01218
0.283282
2,291
100
71
22.91
0.727771
0.338717
0
0.136364
0
0
0.007158
0
0
0
0
0
0
1
0.181818
false
0
0
0.090909
0.409091
0.022727
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b800dc76b871db39c746e292171f32b25ee44ff
29,762
py
Python
FGPVAE_model.py
metodj/FGP-VAE
607559ab465b29878f10a5d95b8e3c6ec8d94e0c
[ "MIT" ]
3
2021-01-27T14:06:01.000Z
2021-09-09T12:10:34.000Z
FGPVAE_model.py
metodj/FGP-VAE
607559ab465b29878f10a5d95b8e3c6ec8d94e0c
[ "MIT" ]
null
null
null
FGPVAE_model.py
metodj/FGP-VAE
607559ab465b29878f10a5d95b8e3c6ec8d94e0c
[ "MIT" ]
null
null
null
import tensorflow as tf import tensorflow_probability as tfp import numpy as np import pickle import random from utils import gauss_cross_entropy tfk = tfp.math.psd_kernels def _add_diagonal_jitter(matrix, jitter=1e-6): return tf.linalg.set_diag(matrix, tf.linalg.diag_part(matrix) + jitter) class FGP: dtype = np.float64 def __init__(self, init_amplitude, init_length_scale, GP_joint, L_w, object_vectors_init=None, object_prior_corr=False, K_obj_normalize=False): """ GP class for FGPVAE. :param init_amplitude: :param init_length_scale: :param GP_joint: :param L_w: number of local latent channels :param object_vectors_init: initizalition for object vectors (GP-LVM) :param object_prior_corr: whether or not correlated object priors are used :param K_obj_normalize: whether or not to normalize object kernel (linear kernel) """ self.object_prior_corr = object_prior_corr self.K_obj_normalize = K_obj_normalize if GP_joint: self.amplitude = tf.Variable(initial_value=init_amplitude, name="GP_amplitude", trainable=True, dtype=self.dtype) self.length_scale = tf.Variable(initial_value=init_length_scale, name="GP_length_scale", trainable=True, dtype=self.dtype) else: self.amplitude = tf.constant(init_amplitude, dtype=self.dtype) self.length_scale = tf.constant(init_length_scale, dtype=self.dtype) # kernels self.kernel_local = tfk.ExpSinSquared(amplitude=self.amplitude, length_scale=self.length_scale, period=2*np.pi) self.kernel_global = tfk.Linear() # GP-LVM, object vectors if object_vectors_init is not None: self.object_vectors = tf.Variable(initial_value=object_vectors_init, name="GP_LVM_object_vectors", dtype=self.dtype) else: self.object_vectors = None # number of local (views/angles) channels self.L_w = L_w def build_1d_gp_local(self, X, Y, varY, X_test): """ Fits GP for local latent channels. Takes input-output dataset and returns post mean, var, marginal lhood. This is standard GP regression with heteroscedastic noise. :param X: inputs tensor (batch, npoints) :param Y: outputs tensor (batch, npoints) :param varY: outputs tensor (batch, npoints) :param X_test: (batch, ns) input points to compute post mean + var Returns: p_m: (batch, ns) post mean at X_test p_v: (batch, ns) post var at X_test logZ: (batch) marginal lhood of each dataset in batch """ # Prepare all constants batch = tf.shape(X)[0] n = tf.shape(X)[1] ns = tf.shape(X_test)[1] # K_x + \sigma_x^* K = self.kernel_local.matrix(tf.expand_dims(X, 2), tf.expand_dims(X, 2)) # (batch, n n) K = K + tf.matrix_diag(varY) # (batch, n, n) chol_K = tf.linalg.cholesky(K) # (batch, n, n) # lhood term 1/3 lhood_pi_term = tf.cast(n, dtype=self.dtype) * np.log(2 * np.pi) # lhood term 2/3 lhood_logdet_term = 2 * tf.reduce_sum(tf.log(tf.matrix_diag_part(chol_K)), 1) # (batch) # lhood term 3/3 Y = tf.expand_dims(Y, 2) iKY = tf.cholesky_solve(chol_K, Y) # (batch, n, 1) lh_quad_term = tf.matmul(tf.transpose(Y, (0,2,1)), iKY) # (batch, 1, 1) lh_quad_term = tf.reshape(lh_quad_term, [batch]) # log P(Y|X) = -1/2 * ( n log(2 pi) + Y inv(K+noise) Y + log det(K+noise)) gp_lhood = -0.5 * (lhood_pi_term + lh_quad_term + lhood_logdet_term) # Compute posterior mean and variances Ks = self.kernel_local.matrix(tf.expand_dims(X, 2), tf.expand_dims(X_test, 2)) # (batch, n, ns) Ks_t = tf.transpose(Ks, (0, 2, 1)) # (batch, ns, n) # posterior mean p_m = tf.matmul(Ks_t, iKY) p_m = tf.reshape(p_m, (batch, ns)) # posterior variance iK_Ks = tf.cholesky_solve(chol_K, Ks) # (batch, n, ns) Ks_iK_Ks = tf.reduce_sum(Ks * iK_Ks, axis=1) # (batch, ns) p_v = 1 - Ks_iK_Ks # (batch, ns) p_v = tf.reshape(p_v, (batch, ns)) return p_m, p_v, gp_lhood, K def build_1d_gp_global(self, means, vars): """ Fits GP for global latent channels. :param Y: encoder means (batch, npoints) :param varY: encoder vars (batch, npoints) Returns: p_m: (batch) posterior means p_v: (batch) post vars logZ: (batch) product of Gaussians terms """ n = tf.shape(means)[1] sigma_squared_bar = 1 / (tf.reduce_sum(tf.math.reciprocal_no_nan(vars), axis=1) + 1) mu_bar = sigma_squared_bar * tf.reduce_sum(means * tf.math.reciprocal_no_nan(vars), axis=1) lhood = tf.log(tf.sqrt(sigma_squared_bar)) + 0.5*tf.math.reciprocal_no_nan(sigma_squared_bar)*mu_bar**2 - \ 0.5*tf.cast(n, dtype=self.dtype)*tf.log(2.0*tf.cast(np.pi, dtype=self.dtype)) - \ tf.reduce_sum(tf.log(tf.sqrt(vars)), axis=1) - 0.5*tf.reduce_sum(tf.math.reciprocal_no_nan(vars)*means**2) return mu_bar, sigma_squared_bar, lhood @staticmethod def preprocess_1d_gp_global_correlated_object_priors(means, vars): """ Product of Gaussians for each global latent channel. See 2.9 in FGPVAE.tex N = nr. of digits N_t = nr. of angles for digit t :param means: (N, N_t) :param vars: (N, N_t) Returns: bar_means: \Bar{\mu} (1, N,) bar_vars: \Bar{\sigma}^2 (1, N,) C_tilde: \Tilde{C} (1, N,) """ N_t = tf.shape(means)[1] N_t = tf.cast(N_t, dtype=tf.float64) alpha = tf.reduce_sum(tf.math.reciprocal_no_nan(vars), axis=1) beta = tf.reduce_sum(means / vars, axis=1) bar_means = tf.expand_dims(beta / alpha, 0) # expand_dims to make it compatible with batching latter on bar_vars = tf.expand_dims(1 / alpha, 0) # expand_dims to make it compatible with batching latter on # C_1 = (2.0 * np.pi)**(-0.5 * N_t) * tf.reduce_prod(vars**(-0.5), axis=1) C_1 = (2.0 * np.pi) ** (-0.5 * N_t) * tf.reduce_prod(tf.sqrt(tf.math.reciprocal_no_nan(vars)), axis=1) C_2 = tf.exp(-0.5*tf.reduce_sum(means**2/vars, axis=1)) C_3 = tf.exp(0.5*beta**2 / alpha) C_4 = tf.sqrt(2*np.pi/alpha) C_tilde = tf.expand_dims(C_1*C_2*C_3*C_4, 0) # expand_dims to make it compatible with batching latter on # C_tilde = tf.clip_by_value(C_tilde, 1e-90, 100) bar_vars = tf.clip_by_value(bar_vars, 1e-3, 100) return bar_means, bar_vars, C_tilde def kernel_matrix_correlated_object_priors(self, x, y): """ Computes object kernel matrix in case correlated object priors are used. See 2.9 in FGPVAE.tex :param x: (1, N, 10) :param y: (1, N, 10) :param K_obj_normalized: whether or not to normalize (between -1 and 1) object kernel matrix (linear kernel) :return: object kernel matrix (1, N, N) """ # unpack auxiliary data if self.object_vectors is None: x_object, y_object =x[:, :, 2:], y[:, :, 2:] else: x_object = tf.gather(self.object_vectors, tf.cast(x[:, :, 0], dtype=tf.int64)) y_object = tf.gather(self.object_vectors, tf.cast(y[:, :, 0], dtype=tf.int64)) # compute kernel matrix object_matrix = self.kernel_global.matrix(x_object, y_object) if self.K_obj_normalize: # normalize object matrix obj_norm = 1 / tf.matmul(tf.math.reduce_euclidean_norm(x_object, axis=2, keepdims=True), tf.transpose(tf.math.reduce_euclidean_norm(y_object, axis=2, keepdims=True), perm=[0, 2, 1])) object_matrix = object_matrix * obj_norm return object_matrix def X_matrix(self, x): """ Computes X matrix. We need this function (instead of working directly with X) in order to support GP-LVM vectors joint optimization. :param x: (1, N, 10) :param normalized: whether or not to normalize object vectors (so that every object vector has norm 1) :return: """ # unpack auxiliary data if self.object_vectors is None: x_object = x[:, :, 2:] else: x_object = tf.gather(self.object_vectors, tf.cast(x[:, :, 0], dtype=tf.int64)) if self.K_obj_normalize: x_object = x_object / tf.math.reduce_euclidean_norm(x_object, axis=2, keepdims=True) return x_object def build_1d_gp_global_correlated_object_priors(self, X, Y, varY, X_test, C_tilde, omit_C_tilde, bayesian_reg_view, EPSILON=1e-6): """ See 2.9 in FGPVAE.tex Since using build_1d_gp_global_correlated_object_priors leads to numerical issues, we add support for fitting global GP using Bayesian linear regression view. :param X: auxiliary data, train points of GP (1, N, 10) :param Y: encoded and processed means for train points (1, N) :param varY: encoded and processed vars for train points (1, N) :param X_test: auxiliary data, test points of GP (1, N_s, 10) :param C_tilde: (1, N) :param omit_C_tilde: omit C_tilde from derivation and modify cross-entropy term instead :param bayesian_reg_view: whether or not to use Bayesian regression view to fit global GP. :param EPSILON: for numerical stability in log() :return: """ if bayesian_reg_view: p = 8 # dimension of object vectors N = tf.shape(X)[1] # get (and normalize) X and X_test X = self.X_matrix(X) # (1, N, p) X_T = tf.transpose(X, (0, 2, 1)) # (1, p, N) X_test = self.X_matrix(X_test) # (1, N_s, p) X_test_T = tf.transpose(X_test, (0, 2, 1)) # (1, p, N_s) # posterior params A = tf.matmul(X_T, tf.matmul(tf.linalg.diag(tf.math.reciprocal_no_nan(varY)), X)) + \ tf.expand_dims(tf.eye(p, dtype=tf.float64), 0) # (1, p, p) A_inv = tf.linalg.inv(_add_diagonal_jitter(A)) # (1, p, p) w_bar = tf.linalg.matvec(A_inv, tf.linalg.matvec(X_T, tf.math.reciprocal_no_nan(varY) * Y)) # (1, p) p_m = tf.linalg.matvec(X_test, w_bar) # (1, N) p_v = tf.linalg.diag_part(tf.matmul(X_test, tf.matmul(A_inv, X_test_T))) # (1, N) p_v = tf.clip_by_value(p_v, 1e-6, 100) # log GPML (marginal likelihood) lhood_pi_term = tf.cast(N, dtype=tf.float64) * np.log(2 * np.pi) # () mid_mat = tf.linalg.diag(varY) - tf.matmul(X, tf.matmul(A_inv, X_T)) # (1, N, N) Y_tilde = tf.math.reciprocal_no_nan(varY) * Y # (1, N) lhood_quad_term = tf.reduce_sum(Y_tilde * tf.linalg.matvec(mid_mat, Y_tilde), axis=1) # (1, ) A_chol = tf.linalg.cholesky(_add_diagonal_jitter(A)) # (1, p, p) lhood_logdet_term = tf.reduce_sum(tf.math.log(tf.math.sqrt(varY)), axis=1) + \ 2 * tf.reduce_sum(tf.log(tf.matrix_diag_part(A_chol)), axis=1) # (1, ) gp_lhood = -0.5 * (lhood_pi_term + lhood_quad_term + lhood_logdet_term) # (1, ) # add C_tilde terms if not omit_C_tilde: gp_lhood = gp_lhood + tf.reduce_sum(tf.log(C_tilde + EPSILON)) # (1, ) else: # Prepare all constants batch = tf.shape(X)[0] n = tf.shape(X)[1] ns = tf.shape(X_test)[1] # K_x + \sigma_x^* K = self.kernel_matrix_correlated_object_priors(X, X) # (batch, n n) K = K + tf.matrix_diag(varY) # (batch, n, n) chol_K = tf.linalg.cholesky(K) # (batch, n, n) # no cholesky_solve implementation # inv_K = tf.linalg.inv(_add_diagonal_jitter(K, 1e-2)) # lhood term 1/3 lhood_pi_term = tf.cast(n, dtype=self.dtype) * np.log(2 * np.pi) # lhood term 2/3 lhood_logdet_term = 2 * tf.reduce_sum(tf.log(tf.matrix_diag_part(chol_K)), 1) # (batch) # lhood term 3/3 Y = tf.expand_dims(Y, 2) # (batch, n, 1) iKY = tf.cholesky_solve(_add_diagonal_jitter(chol_K), Y) # (batch, n, 1) lh_quad_term = tf.matmul(tf.transpose(Y, (0, 2, 1)), iKY) # (batch, 1, 1) lh_quad_term = tf.reshape(lh_quad_term, [batch]) # no cholesky_solve implementation # iKY = tf.linalg.matvec(inv_K, Y) # lh_quad_term = tf.matmul(iKY, tf.transpose(Y, (1, 0))) # (batch, 1, 1) # lh_quad_term = tf.reshape(lh_quad_term, [batch]) # log P(Y|X) = -1/2 * ( n log(2 pi) + Y inv(K+noise) Y + log det(K+noise)) gp_lhood = -0.5 * (lhood_pi_term + lh_quad_term + lhood_logdet_term) # add C_tilde terms if not omit_C_tilde: gp_lhood = gp_lhood + tf.reduce_sum(tf.log(C_tilde + EPSILON)) # Compute posterior mean and variances Ks = self.kernel_matrix_correlated_object_priors(X, X_test) # (batch, n, ns) Ks_t = tf.transpose(Ks, (0, 2, 1)) # (batch, ns, n) # posterior mean p_m = tf.matmul(Ks_t, iKY) # no cholesky_solve implementation # p_m = tf.matmul(Ks_t, tf.expand_dims(iKY, 2)) p_m = tf.reshape(p_m, (batch, ns)) # posterior variance iK_Ks = tf.cholesky_solve(_add_diagonal_jitter(chol_K), Ks) # (batch, n, ns) Ks_iK_Ks = tf.reduce_sum(Ks * iK_Ks, axis=1) # (batch, ns) # no cholesky_solve implementation # Ks_iK_Ks = 1 - tf.linalg.diag_part(tf.matmul(Ks, tf.matmul(inv_K, Ks))) p_v = 1 - Ks_iK_Ks # (batch, ns) p_v = tf.reshape(p_v, (batch, ns)) p_v = tf.clip_by_value(p_v, 1e-6, 100) # drop first axis p_m = tf.squeeze(p_m) p_v = tf.squeeze(p_v) gp_lhood = tf.squeeze(gp_lhood) return p_m, p_v, gp_lhood def forward_pass_FGPVAE_rotated_mnist(data_batch, beta, vae, GP, N_t, clipping_qs, bayes_reg_view, omit_C_tilde, C_ma, lagrange_mult, alpha, kappa, GECO=False): """ :param data_batch: :param beta: :param vae: :param GP: :param N_t: :param clipping_qs: :param bayes_reg_view: whether or not to use Bayesian regresion view for linear kernel in global channels :param omit_C_tilde: omit C_tilde from derivation and modify cross-entropy term instead :param C_ma: average constraint from t-1 step (GECO) :param lagrange_mult: lambda from t-1 step (GECO) :param kappa: reconstruction level parameter for GECO :param alpha: moving average parameter for GECO :param GECO: whether or not to use GECO algorithm for training :return: """ images, aux_data = data_batch aux_data = tf.reshape(aux_data, (-1, N_t, 10)) L = vae.L L_w = GP.L_w w = tf.shape(images)[1] h = tf.shape(images)[2] K = tf.cast(w, dtype=tf.float64) * tf.cast(h, dtype=tf.float64) b = tf.cast(tf.shape(images)[0], dtype=tf.float64) # batch_size # ENCODER NETWORK qnet_mu, qnet_var = vae.encode(images) qnet_mu = tf.reshape(qnet_mu, (-1, N_t, L)) qnet_var = tf.reshape(qnet_var, (-1, N_t, L)) # clipping of VAE posterior variance if clipping_qs: qnet_var = tf.clip_by_value(qnet_var, 1e-3, 100) # GP p_m, p_v, lhoods_local, lhoods_global = [], [], [], [] for i in range(L_w): # fit local GPs p_m_i, p_v_i, lhood_i, K_local = GP.build_1d_gp_local(X=aux_data[:, :, 1], Y=qnet_mu[:, :, i], varY=qnet_var[:, :, i], X_test=aux_data[:, :, 1]) p_m.append(p_m_i) p_v.append(p_v_i) lhoods_local.append(lhood_i) ce_global_arr = [] for i in range(L_w, L): # fit global GPs if GP.object_prior_corr: object_aux_data_filtered = tf.transpose(aux_data[:, ::N_t, :], perm=[1, 0, 2]) bar_means, bar_vars, C_tilde = GP.preprocess_1d_gp_global_correlated_object_priors(qnet_mu[:, :, i], qnet_var[:, :, i]) p_m_i, p_v_i, lhood_i = GP.build_1d_gp_global_correlated_object_priors(object_aux_data_filtered, bar_means, bar_vars, object_aux_data_filtered, C_tilde, bayesian_reg_view=bayes_reg_view, omit_C_tilde=omit_C_tilde) if omit_C_tilde: ce_global_i = gauss_cross_entropy(p_m_i, p_v_i, bar_means, bar_vars) ce_global_arr.append(ce_global_i) else: p_m_i, p_v_i, lhood_i = GP.build_1d_gp_global(means=qnet_mu[:, :, i], vars=qnet_var[:, :, i]) # repeat p_m_i and p_v_i N_t times, since those are shared across all images within one object dataset D_t p_m_i = tf.tile(tf.expand_dims(p_m_i, 1), [1, N_t]) p_v_i = tf.tile(tf.expand_dims(p_v_i, 1), [1, N_t]) p_m.append(p_m_i) p_v.append(p_v_i) lhoods_global.append(lhood_i) p_m = tf.stack(p_m, axis=2) p_v = tf.stack(p_v, axis=2) if GP.object_prior_corr: # for local channels sum over latent channels and over digits' datasets # for global channels we only sum over latent channels (as there is only one global GP per channel) lhoods = tf.reduce_sum(lhoods_local, axis=(0, 1)) + tf.reduce_sum(lhoods_global, axis=0) # CE (cross-entropy) if omit_C_tilde: ce_global = tf.reduce_sum(ce_global_arr) ce_local = gauss_cross_entropy(p_m[:, :, :L_w], p_v[:, :, :L_w], qnet_mu[:, :, :L_w], qnet_var[:, :, :L_w]) ce_local = tf.reduce_sum(ce_local, (0, 1, 2)) # sum also over digits' datasets ce_term = ce_global + ce_local else: ce_term = gauss_cross_entropy(p_m, p_v, qnet_mu, qnet_var) ce_term = tf.reduce_sum(ce_term, (0, 1, 2)) # sum also over digits' datasets # KL part elbo_kl_part = lhoods - ce_term else: lhoods = lhoods_global + lhoods_local lhoods = tf.reduce_sum(lhoods, axis=0) # CE (cross-entropy) ce_term = gauss_cross_entropy(p_m, p_v, qnet_mu, qnet_var) ce_term = tf.reduce_sum(ce_term, (1, 2)) # KL part elbo_kl_part = lhoods - ce_term # SAMPLE epsilon = tf.random.normal(shape=tf.shape(p_m), dtype=tf.float64) latent_samples = p_m + epsilon * tf.sqrt(p_v) # DECODER NETWORK (Gaussian observational likelihood, MSE) recon_images = vae.decode(tf.reshape(latent_samples, (-1, L))) if GP.object_prior_corr: if GECO: recon_loss = tf.reduce_sum((tf.reshape(images, (-1, N_t, w, h)) - tf.reshape(recon_images, (-1, N_t, w, h))) ** 2, axis=[2, 3]) recon_loss = tf.reduce_sum(recon_loss/K - kappa**2) C_ma = alpha * C_ma + (1 - alpha) * recon_loss / b # elbo = - (1/L) * KL_term + lagrange_mult * C_ma # elbo = - (1/b) * KL_term + lagrange_mult * C_ma # elbo = - KL_term + lagrange_mult * C_ma elbo = - elbo_kl_part + lagrange_mult * (recon_loss / b + tf.stop_gradient(C_ma - recon_loss / b)) lagrange_mult = lagrange_mult * tf.exp(C_ma) else: recon_loss = tf.reduce_sum((tf.reshape(images, (-1, N_t, w, h)) - tf.reshape(recon_images, (-1, N_t, w, h))) ** 2, axis=[1, 2, 3]) recon_loss = tf.reduce_sum(recon_loss) / K elbo = -recon_loss + (beta / L) * elbo_kl_part else: if GECO: recon_loss = tf.reduce_mean((tf.reshape(images, (-1, N_t, w, h)) - tf.reshape(recon_images, (-1, N_t, w, h))) ** 2, axis=[2, 3]) N_t = tf.cast(N_t, dtype=tf.float64) C_ma = alpha * C_ma + (1 - alpha) * tf.reduce_mean(recon_loss - kappa ** 2) recon_loss = tf.reduce_sum(recon_loss - kappa ** 2) # elbo = - (1/L) * elbo_kl_part + lagrange_mult * C_ma # elbo = - (1/b) * elbo_kl_part + lagrange_mult * C_ma # elbo = - elbo_kl_part + lagrange_mult * C_ma elbo = - elbo_kl_part + lagrange_mult * (recon_loss / N_t + tf.stop_gradient(C_ma - recon_loss / N_t)) lagrange_mult = lagrange_mult * tf.exp(C_ma) else: recon_loss = tf.reduce_sum((tf.reshape(images, (-1, N_t, w, h)) - tf.reshape(recon_images, (-1, N_t, w, h))) ** 2, axis=[1, 2, 3]) # ELBO # beta plays role of sigma_gaussian_decoder here (\lambda(\sigma_y) in Casale paper) # K and L are not part of ELBO. They are used in loss objective to account for the fact that magnitudes of # reconstruction and KL terms depend on number of pixels (K) and number of latent GPs used (L), respectively recon_loss = recon_loss / K elbo = -recon_loss + (beta/L) * elbo_kl_part # average across object datasets elbo = tf.reduce_sum(elbo) elbo_kl_part = tf.reduce_sum(elbo_kl_part) recon_loss = tf.reduce_sum(recon_loss) return elbo, recon_loss, elbo_kl_part, p_m, p_v, qnet_mu, qnet_var, recon_images, latent_samples, C_ma, lagrange_mult def predict_FGPVAE_rotated_mnist(test_images, test_aux_data, train_images, train_aux_data, vae, GP, bayes_reg_view, omit_C_tilde, N_t=15, clipping_qs=False): """ Get FGPVAE predictions for rotated MNIST test data. :param test_data_batch: :param train_images: :param train_aux_data: :param vae: :param GP: :param N_t: :param clipping_qs: :return: """ L = vae.L L_w = GP.L_w w = tf.shape(train_images)[1] h = tf.shape(train_images)[2] train_aux_data = tf.reshape(train_aux_data, (-1, N_t, 10)) test_aux_data = tf.expand_dims(test_aux_data, 1) # encode train images qnet_mu, qnet_var = vae.encode(train_images) qnet_mu = tf.reshape(qnet_mu, (-1, N_t, L)) qnet_var = tf.reshape(qnet_var, (-1, N_t, L)) # clipping of VAE posterior variance if clipping_qs: qnet_var = tf.clip_by_value(qnet_var, 1e-3, 100) # GP, get latent embeddings for test images p_m, p_v = [], [] for i in range(L_w): # fit local GPs p_m_i, p_v_i, _ , _= GP.build_1d_gp_local(X=train_aux_data[:, :, 1], Y=qnet_mu[:, :, i], varY=qnet_var[:, :, i], X_test=test_aux_data[:, :, 1]) p_m.append(p_m_i) p_v.append(p_v_i) for i in range(L_w, L): # fit global GPs if GP.object_prior_corr: object_aux_data_filtered = tf.transpose(train_aux_data[:, ::N_t, :], perm=[1, 0, 2]) bar_means, bar_vars, C_tilde = GP.preprocess_1d_gp_global_correlated_object_priors(qnet_mu[:, :, i], qnet_var[:, :, i]) p_m_i, p_v_i, _ = GP.build_1d_gp_global_correlated_object_priors(object_aux_data_filtered, bar_means, bar_vars, object_aux_data_filtered, C_tilde, omit_C_tilde=omit_C_tilde, bayesian_reg_view=bayes_reg_view) else: p_m_i, p_v_i, _ = GP.build_1d_gp_global(means=qnet_mu[:, :, i], vars=qnet_var[:, :, i]) p_m.append(tf.expand_dims(p_m_i, 1)) p_v.append(tf.expand_dims(p_v_i, 1)) p_m = tf.stack(p_m, axis=2) p_v = tf.stack(p_v, axis=2) # SAMPLE epsilon = tf.random.normal(shape=tf.shape(p_m), dtype=tf.float64) latent_samples = p_m + epsilon * tf.sqrt(p_v) # decode, calculate error (Gaussian observational likelihood, MSE) recon_images = vae.decode(tf.reshape(latent_samples, (-1, L))) recon_loss = tf.reduce_mean((test_images - recon_images) ** 2) return recon_images, recon_loss def extrapolate_experiment_eval_data(mnist_path, digit, N_t, pred_angle_id=7, nr_angles=16): """ Prepare validation dataset for the extrapolate experiment. :param mnist_path: :param digit: :param N_t: how many angles do we observe for each image in test set :param pred_angle_id: which angle to leave out for prediction :param nr_angles: size of object dataset :return: """ eval_data_dict = pickle.load(open(mnist_path + 'eval_data{}_not_shuffled.p'.format(digit), 'rb')) eval_images, eval_aux_data = eval_data_dict["images"], eval_data_dict["aux_data"] pred_angle_mask = [pred_angle_id + i * nr_angles for i in range(int(len(eval_aux_data) / nr_angles))] not_pred_angle_mask = [i for i in range(len(eval_images)) if i not in pred_angle_mask] observed_images = eval_images[not_pred_angle_mask] observed_aux_data = eval_aux_data[not_pred_angle_mask] # randomly drop some observed angles if N_t < 15: digit_mask = [True]*N_t + [False]*(15-N_t) mask = [random.sample(digit_mask, len(digit_mask)) for _ in range(int(len(eval_aux_data)/nr_angles))] flatten = lambda l: [item for sublist in l for item in sublist] mask = flatten(mask) observed_images = observed_images[mask] observed_aux_data = observed_aux_data[mask] test_images = eval_images[pred_angle_mask] test_aux_data = eval_aux_data[pred_angle_mask] return observed_images, observed_aux_data, test_images, test_aux_data def latent_samples_FGPVAE(train_images, train_aux_data, vae, GP, N_t, clipping_qs=False): """ Get latent samples for training data. For t-SNE plots :) :param train_images: :param train_aux_data: :param vae: :param GP: :param clipping_qs: :return: """ train_aux_data = tf.reshape(train_aux_data, (-1, N_t, 10)) L = vae.L L_w = GP.L_w # ENCODER NETWORK qnet_mu, qnet_var = vae.encode(train_images) qnet_mu = tf.reshape(qnet_mu, (-1, N_t, L)) qnet_var = tf.reshape(qnet_var, (-1, N_t, L)) # clipping of VAE posterior variance if clipping_qs: qnet_var = tf.clip_by_value(qnet_var, 1e-3, 100) # GP p_m, p_v = [], [] for i in range(L_w): # fit local GPs p_m_i, p_v_i, _, _ = GP.build_1d_gp_local(X=train_aux_data[:, :, 1], Y=qnet_mu[:, :, i], varY=qnet_var[:, :, i], X_test=train_aux_data[:, :, 1]) p_m.append(p_m_i) p_v.append(p_v_i) for i in range(L_w, L): # fit global GPs p_m_i, p_v_i, lhood_i = GP.build_1d_gp_global(means=qnet_mu[:, :, i], vars=qnet_var[:, :, i]) # repeat p_m_i and p_v_i N_t times, since those are shared across all images within one object dataset D_t p_m_i = tf.tile(tf.expand_dims(p_m_i, 1), [1, N_t]) p_v_i = tf.tile(tf.expand_dims(p_v_i, 1), [1, N_t]) p_m.append(p_m_i) p_v.append(p_v_i) p_m = tf.stack(p_m, axis=2) p_v = tf.stack(p_v, axis=2) # SAMPLE epsilon = tf.random.normal(shape=tf.shape(p_m), dtype=tf.float64) latent_samples = p_m + epsilon * tf.sqrt(p_v) return latent_samples
42.456491
123
0.556145
4,318
29,762
3.562297
0.091014
0.007801
0.022884
0.003641
0.584319
0.520869
0.475166
0.436354
0.390131
0.38012
0
0.019712
0.335226
29,762
700
124
42.517143
0.757746
0.247799
0
0.47076
0
0
0.004329
0.00226
0
0
0
0
0
1
0.035088
false
0.002924
0.017544
0.002924
0.090643
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b849b209996da99ee667a5b45419939d4653d3a
9,495
py
Python
tests/test_protocols/test_generator.py
cyenyxe/agents-aea
c2aec9127028ae13def3f69fbc80d35400de1565
[ "Apache-2.0" ]
null
null
null
tests/test_protocols/test_generator.py
cyenyxe/agents-aea
c2aec9127028ae13def3f69fbc80d35400de1565
[ "Apache-2.0" ]
1
2020-02-21T14:28:13.000Z
2020-03-05T14:53:53.000Z
tests/test_protocols/test_generator.py
cyenyxe/agents-aea
c2aec9127028ae13def3f69fbc80d35400de1565
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the tests for the protocol generator.""" import inspect import os import shutil import tempfile import yaml from aea.configurations.base import ProtocolSpecification from aea.configurations.loader import ConfigLoader from aea.protocols.generator import ProtocolGenerator CUR_PATH = os.path.dirname(inspect.getfile(inspect.currentframe())) # type: ignore class TestGenerateProtocol: """Test that the generating a protocol works correctly in correct preconditions.""" @classmethod def setup_class(cls): """Set the test up.""" # Specification cls.protocol_name = "two_party_negotiation" cls.specification_file_name = "spec.yaml" correct_specification = { "name": cls.protocol_name, "author": "fetchai", "version": "0.1.0", "license": "Apache-2.0", "description": "A protocol for negotiation over a fixed set of resources involving two parties.", "speech_acts": { "cfp": {"query": "DataModel"}, "propose": {"query": "DataModel", "price": "float"}, "accept": {}, "decline": {}, "match_accept": {}, }, } # Dump the config cls.cwd = os.getcwd() # os.mkdir(os.path.join(CUR_PATH, "temp")) cls.t = tempfile.mkdtemp() os.chdir(cls.t) # cls.path_to_specification = os.path.join(".", cls.specification_file_name) cls.path_to_specification = os.path.join(cls.t, cls.specification_file_name) yaml.safe_dump(correct_specification, open(cls.path_to_specification, "w")) # Load the config cls.config_loader = ConfigLoader( "protocol-specification_schema.json", ProtocolSpecification ) cls.protocol_specification = cls.config_loader.load( open(cls.path_to_specification) ) # Generate the protocol cls.protocol_generator = ProtocolGenerator(cls.protocol_specification, cls.t) cls.protocol_generator.generate() # Add as module # dotted_path = "packages.fetchai.protocols." + cls.protocol_name # import pdb;pdb.set_trace() # module_object = load_module(dotted_path, Path(os.path.join(cls.t, cls.protocol_name))) # import_module(dotted_path, module_object) # sys.modules[dotted_path] = module_object # def test_exit_code_equal_to_0(self): # """Test that the exit code is equal to 0.""" # from packages.fetchai.protocols.two_party_negotiation.message import TwoPartyNegotiationMessage # # from two_party_negotiation.serialization import TwoPartyNegotiationSerializer # # from two_party_negotiation.message import DataModel # assert 0 == 0 @classmethod def teardown_class(cls): """Tear the test down.""" os.chdir(cls.cwd) try: shutil.rmtree(cls.t) # os.remove(os.path.join(cls.t, cls.protocol_name)) except (OSError, IOError): pass # class TestCases(TestCase): # """Test class for the light protocol generator.""" # # def test_all_custom_data_types(self): # """Test all custom data types.""" # test_protocol_specification_path = os.path.join(CUR_PATH, "data", "all_custom.yaml") # test_protocol_template = ProtocolTemplate(test_protocol_specification_path) # test_protocol_template.load() # test_protocol_generator = ProtocolGenerator(test_protocol_template, 'tests') # test_protocol_generator.generate() # # from two_party_negotiation_protocol.message import TwoPartyNegotiationMessage # from two_party_negotiation_protocol.serialization import TwoPartyNegotiationSerializer # from two_party_negotiation_protocol.message import DataModel # from two_party_negotiation_protocol.message import Signature # # data_model = DataModel() # signature = Signature() # content_list = [data_model, signature] # # message = TwoPartyNegotiationMessage(message_id=5, target=4, performative="propose", contents=content_list) # print(str.format("message is {}", message)) # message.check_consistency() # serialized_message = TwoPartyNegotiationSerializer().encode(msg=message) # print(str.format("serialized message is {}", serialized_message)) # deserialised_message = TwoPartyNegotiationSerializer().decode(obj=serialized_message) # print(str.format("deserialized message is {}", deserialised_message)) # # assert message == deserialised_message, "Failure" # # def test_correct_functionality(self): # """End to end test of functionality.""" # test_protocol_specification_path = os.path.join(CUR_PATH, "data", "correct_spec.yaml") # test_protocol_template = ProtocolTemplate(test_protocol_specification_path) # test_protocol_template.load() # test_protocol_generator = ProtocolGenerator(test_protocol_template, 'tests') # test_protocol_generator.generate() # # from two_party_negotiation_protocol.message import TwoPartyNegotiationMessage # from two_party_negotiation_protocol.serialization import TwoPartyNegotiationSerializer # from two_party_negotiation_protocol.message import DataModel # # data_model = DataModel() # content_list = [data_model, 10.5] # # message = TwoPartyNegotiationMessage(message_id=5, target=4, performative="propose", contents=content_list) # print(str.format("message is {}", message)) # message.check_consistency() # serialized_message = TwoPartyNegotiationSerializer().encode(msg=message) # print(str.format("serialized message is {}", serialized_message)) # deserialised_message = TwoPartyNegotiationSerializer().decode(obj=serialized_message) # print(str.format("deserialized message is {}", deserialised_message)) # # assert message == deserialised_message, "Failure" # # def test_missing_name(self): # """Test missing name handling.""" # test_protocol_specification_path = os.path.join(CUR_PATH, "data", "missing_name.yaml") # test_protocol_template = ProtocolTemplate(test_protocol_specification_path) # # self.assertRaises(ProtocolSpecificationParseError, test_protocol_template.load) # # def test_missing_description(self): # """Test missing description handling.""" # test_protocol_specification_path = os.path.join(CUR_PATH, "data", "missing_description.yaml") # test_protocol_template = ProtocolTemplate(test_protocol_specification_path) # # assert test_protocol_template.load(), "Failure" # # def test_missing_speech_acts(self): # """Test missing speech acts handling.""" # test_protocol_specification_path = os.path.join(CUR_PATH, "data", "missing_speech_acts.yaml") # test_protocol_template = ProtocolTemplate(test_protocol_specification_path) # # self.assertRaises(ProtocolSpecificationParseError, test_protocol_template.load) # # def test_extra_fields(self): # """Test extra fields handling.""" # test_protocol_specification_path = os.path.join(CUR_PATH, "data", "extra_fields.yaml") # test_protocol_template = ProtocolTemplate(test_protocol_specification_path) # # assert test_protocol_template.load(), "Failure" # # def test_one_document(self): # """Test one document handling.""" # test_protocol_specification_path = os.path.join(CUR_PATH, "data", "one_document.yaml") # test_protocol_template = ProtocolTemplate(test_protocol_specification_path) # # self.assertRaises(ProtocolSpecificationParseError, test_protocol_template.load) # # def test_wrong_speech_act_type_sequence_performatives(self): # """Test wrong speech act handling.""" # test_protocol_specification_path = os.path.join(CUR_PATH, "data", "wrong_speech_act_type_sequence_performatives.yaml") # test_protocol_template = ProtocolTemplate(test_protocol_specification_path) # # self.assertRaises(ProtocolSpecificationParseError, test_protocol_template.load) # # def test_wrong_speech_act_type_dictionary_contents(self): # """Test wrong speech act dictionary contents handling.""" # test_protocol_specification_path = os.path.join(CUR_PATH, "data", "wrong_speech_act_type_dictionary_contents.yaml") # test_protocol_template = ProtocolTemplate(test_protocol_specification_path) # # self.assertRaises(ProtocolSpecificationParseError, test_protocol_template.load)
45.214286
128
0.685519
1,011
9,495
6.18002
0.22453
0.080666
0.06402
0.083547
0.601312
0.571063
0.557939
0.529609
0.509123
0.509123
0
0.003816
0.199579
9,495
209
129
45.430622
0.818289
0.758189
0
0.041667
0
0
0.133615
0.025785
0
0
0
0
0
1
0.041667
false
0.020833
0.166667
0
0.229167
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b86ef7acd08f81f39f9fde4c5d2779a3995da3e
6,981
py
Python
tabfkioskgoogledrive/MyGDTest3.py
isalan06/myflaskapiserver
2922f62c9b9ede2b6cba2db774e924b226a120f7
[ "MIT" ]
null
null
null
tabfkioskgoogledrive/MyGDTest3.py
isalan06/myflaskapiserver
2922f62c9b9ede2b6cba2db774e924b226a120f7
[ "MIT" ]
null
null
null
tabfkioskgoogledrive/MyGDTest3.py
isalan06/myflaskapiserver
2922f62c9b9ede2b6cba2db774e924b226a120f7
[ "MIT" ]
null
null
null
import os.path import os from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from google.oauth2.credentials import Credentials from datetime import datetime # If modifying these scopes, delete the file token.json. SCOPES = ['https://www.googleapis.com/auth/drive'] def main(): """Shows basic usage of the Drive v3 API. Prints the names and ids of the first 10 files the user has access to. """ creds = None # The file token.json stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token.json'): creds = Credentials.from_authorized_user_file('token.json', SCOPES) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: print("Refresh Creds") creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'client_secrets.json', SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open('token.json', 'w') as token: token.write(creds.to_json()) service = build('drive', 'v3', credentials=creds) # Call the Drive v3 API results = service.files().list( q="mimeType = 'application/vnd.google-apps.folder' and '0ALNhV0hP-QYDUk9PVA' in parents", pageSize=100, fields="nextPageToken, files(id, name, parents)").execute() items = results.get('files', []) pic_id = '' if not items: print('No files found.') else: print('1st Files:') for item in items: if item['name']=='KIOSK Picture': pic_id = item['id'] print(u'{0} ({1}) - {2}'.format(item['name'], item['id'], item['parents'])) #print(pic_id) # Check Machine ID q_str = "mimeType = 'application/vnd.google-apps.folder' and '" + str(pic_id) +"' in parents" #print(q_str) results = service.files().list( q=q_str, #"mimeType = 'application/vnd.google-apps.folder' and '" + str(pic_id) +"' in parents", pageSize=10, fields="nextPageToken, files(id, name, parents)").execute() items = results.get('files', []) bHasBaseFolder = False sMachineID = 'Test_MachineID' sMachineID_ID = '' if not items: print('No files found.') else: print('2nd Files:') for item in items: if item['name']==sMachineID: bHasBaseFolder = True sMachineID_ID = item['id'] print(u'{0} ({1}) - {2}'.format(item['name'], item['id'], item['parents'])) if bHasBaseFolder == False: file_metadata = { 'name': sMachineID, 'mimeType': 'application/vnd.google-apps.folder', 'parents': [str(pic_id)] } file = service.files().create(body=file_metadata, fields='id').execute() sMachineID_ID = str(file.get('id')) print('Folder ID: %s' % file.get('id')) #print(sMachineID_ID) # Check Date Folder sTodayDateString = datetime.now().strftime("%Y%m%d") sTodayDate_ID = '' bHasBaseFolder = False q_str = "mimeType = 'application/vnd.google-apps.folder' and '" + str(sMachineID_ID) +"' in parents" results = service.files().list( q=q_str, pageSize=10, fields="nextPageToken, files(id, name, parents)").execute() items = results.get('files', []) if not items: print('No files found.') else: print('3nd Files:') for item in items: if item['name']==sTodayDateString: bHasBaseFolder = True sTodayDate_ID = item['id'] print(u'{0} ({1}) - {2}'.format(item['name'], item['id'], item['parents'])) if bHasBaseFolder == False: file_metadata = { 'name': sTodayDateString, 'mimeType': 'application/vnd.google-apps.folder', 'parents': [str(sMachineID_ID)] } file = service.files().create(body=file_metadata, fields='id').execute() sTodayDate_ID = str(file.get('id')) print('Folder ID: %s' % file.get('id')) #Check Test Location sTestLocation='我是測試考場(真的是測試用)' sTestLocation_ID = '' bHasBaseFolder = False q_str = "mimeType = 'application/vnd.google-apps.folder' and '" + str(sTodayDate_ID) +"' in parents" results = service.files().list( q=q_str, pageSize=10, fields="nextPageToken, files(id, name, parents)").execute() items = results.get('files', []) if not items: print('No files found.') else: print('4nd Files:') for item in items: if item['name']==sTestLocation: bHasBaseFolder = True sTestLocation_ID = item['id'] print(u'{0} ({1}) - {2}'.format(item['name'], item['id'], item['parents'])) if bHasBaseFolder == False: file_metadata = { 'name': sTestLocation, 'mimeType': 'application/vnd.google-apps.folder', 'parents': [str(sTodayDate_ID)] } file = service.files().create(body=file_metadata, fields='id').execute() sTestLocation_ID = str(file.get('id')) print('Folder ID: %s' % file.get('id')) sTestLocation_ID = CreateGoogleDriveFolder(service, sTestLocation, sTodayDate_ID) print('Check Function') print(sTestLocation_ID) def CreateGoogleDriveFolder(service, titlestring, folderid): returnfolderid='' bHasFolder = False q_str = "mimeType = 'application/vnd.google-apps.folder' and '" + str(folderid) +"' in parents" results = service.files().list( q=q_str, pageSize=10, fields="nextPageToken, files(id, name, parents)").execute() items = results.get('files', []) if not items: print('No files found.') else: for item in items: if item['name']==titlestring: bHasFolder = True returnfolderid = item['id'] print(u'{0} ({1}) - {2}'.format(item['name'], item['id'], item['parents'])) if bHasFolder == False: try: file_metadata = { 'name': titlestring, 'mimeType': 'application/vnd.google-apps.folder', 'parents': [str(folderid)] } file = service.files().create(body=file_metadata, fields='id').execute() returnfolderid = str(file.get('id')) print('Folder ID: %s' % file.get('id')) except Exception as ex: print(ex) return returnfolderid if __name__ == '__main__': main()
37.331551
104
0.578284
792
6,981
5.018939
0.207071
0.019371
0.055346
0.07044
0.52956
0.523522
0.523522
0.501132
0.423648
0.423648
0
0.007974
0.281478
6,981
187
105
37.331551
0.78449
0.091391
0
0.480263
0
0.006579
0.207885
0.053357
0
0
0
0
0
1
0.013158
false
0
0.046053
0
0.065789
0.144737
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b88bb3938cbed6bd9ddf6e52090c0d588399179
2,631
py
Python
clustering/conditional_probs.py
griffij/QuakeRates
70069bb271a1987e72fcbdf3aa0c0a8a79591580
[ "Apache-2.0" ]
null
null
null
clustering/conditional_probs.py
griffij/QuakeRates
70069bb271a1987e72fcbdf3aa0c0a8a79591580
[ "Apache-2.0" ]
null
null
null
clustering/conditional_probs.py
griffij/QuakeRates
70069bb271a1987e72fcbdf3aa0c0a8a79591580
[ "Apache-2.0" ]
null
null
null
"""Calculate conditional probability of a short interevent time being followed by another short interevent time, compared with the unconditional probability. This is used to test whether fault records have memory """ import os, sys from glob import glob import numpy as np import matplotlib.pyplot as plt from QuakeRates.dataman.parse_params import parse_param_file, \ get_event_sets # Define parameter files filepath = '../params' param_file_list = glob(os.path.join(filepath, '*.txt')) n_samples = 500 # Number of Monte Carlo samples of the eq chronologies half_n = int(n_samples/2) plot_dir = './plots_conditional_probs' if not os.path.exists(plot_dir): os.makedirs(plot_dir) # Define subset to take #faulting_styles = ['Reverse'] #faulting_styles = ['Normal'] #faulting_styles = ['Strike_slip'] faulting_styles = ['all'] tectonic_regions = ['all'] #tectonic_regions = ['Plate_boundary_master', 'Plate_boundary_network'] min_number_events = 10 names, event_sets, event_certainties, num_events = \ get_event_sets(param_file_list, tectonic_regions, faulting_styles, min_number_events) # Now loop over paleo-earthquake records for i, event_set in enumerate(event_sets): # Generate some chronologies event_set.gen_chronologies(n_samples, observation_end=2019, min_separation=1) print(num_events[i]) event_set.calculate_cov() # Calculate interevent times and mean as part of this # Lists to store results uncond_probs = [] cond_probs = [] for j, sample in enumerate(event_set.interevent_times.T): num_less_mean = len(np.argwhere(sample < event_set.means[j])) uncond_prob_less_mean = num_less_mean/event_set.num_events count_short = 0 for k, ie_time in enumerate(sample): if k==0: ie_time_0 = ie_time else: if ie_time < event_set.means[i] and \ ie_time_0 < event_set.means[i]: count_short += 1 ie_time_0 = ie_time cond_prob_less_mean = count_short/num_less_mean uncond_probs.append(uncond_prob_less_mean) cond_probs.append(cond_prob_less_mean) print(uncond_probs) print(cond_probs) uncond_probs = np.array(uncond_probs) cond_probs = np.array(cond_probs) probs_ratio = cond_probs/uncond_probs print(probs_ratio) plt.clf() plt.hist(probs_ratio, bins = 10, facecolor='0.6', edgecolor='0.2', density=True) figname = 'conditional_prob_ratio_histogram_%s.png' % names[i] fig_filename = os.path.join(plot_dir, figname) plt.savefig(fig_filename)
36.541667
84
0.707336
373
2,631
4.697051
0.412869
0.03653
0.027397
0.022831
0.01484
0
0
0
0
0
0
0.010984
0.204105
2,631
71
85
37.056338
0.825692
0.232231
0
0.038462
0
0
0.044933
0.031952
0
0
0
0
0
1
0
false
0
0.096154
0
0.096154
0.076923
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b8e4f10e68bbf6b6e9801bf943ec3cb8b4d1bf7
3,120
py
Python
src/dynamic_programming/basic_scripts/value_iteration.py
johannesharmse/move_37_course
a2060129cbc6fb651113aa18f1a6ea2673845182
[ "MIT" ]
1
2019-03-13T06:29:54.000Z
2019-03-13T06:29:54.000Z
src/dynamic_programming/basic_scripts/value_iteration.py
johannesharmse/move_37_course
a2060129cbc6fb651113aa18f1a6ea2673845182
[ "MIT" ]
null
null
null
src/dynamic_programming/basic_scripts/value_iteration.py
johannesharmse/move_37_course
a2060129cbc6fb651113aa18f1a6ea2673845182
[ "MIT" ]
null
null
null
# From The School of AI's Move 37 Course https://www.theschool.ai/courses/move-37-course/ # Coding demo by Colin Skow # Forked from https://github.com/lazyprogrammer/machine_learning_examples/tree/master/rl # Credit goes to LazyProgrammer from __future__ import print_function, division from builtins import range # Note: you may need to update your version of future # sudo pip install -U future import numpy as np from grid_world import standard_grid from utils import print_values, print_policy # SMALL_ENOUGH is referred to by the mathematical symbol theta in equations SMALL_ENOUGH = 1e-3 GAMMA = 0.9 ALL_POSSIBLE_ACTIONS = ('U', 'D', 'L', 'R') def best_action_value(grid, V, s): # finds the highest value action (max_a) from state s, returns the action and value best_a = None best_value = float('-inf') grid.set_state(s) # loop through all possible actions to find the best current action for a in ALL_POSSIBLE_ACTIONS: transititions = grid.get_transition_probs(a) expected_v = 0 expected_r = 0 for (prob, r, state_prime) in transititions: expected_r += prob * r expected_v += prob * V[state_prime] v = expected_r + GAMMA * expected_v if v > best_value: best_value = v best_a = a return best_a, best_value def calculate_values(grid): # initialize V(s) V = {} states = grid.all_states() for s in states: V[s] = 0 # repeat until convergence # V[s] = max[a]{ sum[s',r] { p(s',r|s,a)[r + gamma*V[s']] } } while True: # biggest_change is referred to by the mathematical symbol delta in equations biggest_change = 0 for s in grid.non_terminal_states(): old_v = V[s] _, new_v = best_action_value(grid, V, s) V[s] = new_v biggest_change = max(biggest_change, np.abs(old_v - new_v)) if biggest_change < SMALL_ENOUGH: break return V def initialize_random_policy(): # policy is a lookup table for state -> action # we'll randomly choose an action and update as we learn policy = {} for s in grid.non_terminal_states(): policy[s] = np.random.choice(ALL_POSSIBLE_ACTIONS) return policy def calculate_greedy_policy(grid, V): policy = initialize_random_policy() # find a policy that leads to optimal value function for s in policy.keys(): grid.set_state(s) # loop through all possible actions to find the best current action best_a, _ = best_action_value(grid, V, s) policy[s] = best_a return policy if __name__ == '__main__': # this grid gives you a reward of -0.1 for every non-terminal state # we want to see if this will encourage finding a shorter path to the goal grid = standard_grid(obey_prob=0.8, step_cost=-0.5) # print rewards print("rewards:") print_values(grid.rewards, grid) # calculate accurate values for each square V = calculate_values(grid) # calculate the optimum policy based on our values policy = calculate_greedy_policy(grid, V) # our goal here is to verify that we get the same answer as with policy iteration print("values:") print_values(V, grid) print("policy:") print_policy(policy, grid)
31.515152
89
0.709936
501
3,120
4.243513
0.351297
0.008467
0.042333
0.026811
0.176388
0.151929
0.122295
0.06397
0.06397
0.06397
0
0.007235
0.202564
3,120
98
90
31.836735
0.847267
0.400321
0
0.098361
0
0
0.020574
0
0
0
0
0
0
1
0.065574
false
0
0.081967
0
0.213115
0.131148
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b8f66af4fc844e8c289287b2a2bc4ba119f529e
19,238
py
Python
photoplace/addons/CSVImport/GTKcsvimport.py
jriguera/photoplace
93674ef8531d0e5b8f26de9ba568ed8e115b27e1
[ "Apache-2.0" ]
10
2015-02-20T19:01:19.000Z
2021-12-13T23:07:19.000Z
photoplace/addons/CSVImport/GTKcsvimport.py
jriguera/photoplace
93674ef8531d0e5b8f26de9ba568ed8e115b27e1
[ "Apache-2.0" ]
1
2020-06-16T13:23:05.000Z
2021-02-13T14:14:57.000Z
photoplace/addons/CSVImport/GTKcsvimport.py
jriguera/photoplace
93674ef8531d0e5b8f26de9ba568ed8e115b27e1
[ "Apache-2.0" ]
4
2017-03-28T23:06:14.000Z
2019-09-25T07:59:36.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # GTKcsvimport.py # # Copyright 2010-2015 Jose Riguera Lopez <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Parse a CSV to add variables or geolocate photos. GTK User Interface. """ __program__ = "photoplace.csvimport" __author__ = "Jose Riguera Lopez <[email protected]>" __version__ = "0.1.2" __date__ = "Dec 2014" __license__ = "Apache 2.0" __copyright__ ="(c) Jose Riguera" import os.path import csv import sys import codecs import warnings import gettext import locale warnings.filterwarnings('ignore', module='gtk') try: import pygtk pygtk.require("2.0") import gtk import gobject except Exception as e: warnings.resetwarnings() print("Warning: %s" % str(e)) print("You don't have the PyGTK 2.0 module installed") raise warnings.resetwarnings() from csvimport import * # I18N gettext support __GETTEXT_DOMAIN__ = __program__ __PACKAGE_DIR__ = os.path.abspath(os.path.dirname(__file__)) __LOCALE_DIR__ = os.path.join(__PACKAGE_DIR__, u"locale") try: if not os.path.isdir(__LOCALE_DIR__): print ("Error: Cannot locate default locale dir: '%s'." % (__LOCALE_DIR__)) __LOCALE_DIR__ = None locale.setlocale(locale.LC_ALL,"") #gettext.bindtextdomain(__GETTEXT_DOMAIN__, __LOCALE_DIR__) t = gettext.translation(__GETTEXT_DOMAIN__, __LOCALE_DIR__, fallback=False) _ = t.ugettext except Exception as e: print ("Error setting up the translations: %s" % (str(e))) _ = lambda s: unicode(s) class GTKCSVImport(object): def __init__(self, plugin, gui, userfacade, logger): object.__init__(self) self.plugin = gtk.VBox(False) self.logger = logger self.options = None self.userfacade = userfacade # 1st line hbox = gtk.HBox(False) label_name = gtk.Label() align = gtk.Alignment(0.01, 0.5, 0, 0) label_name.set_markup(_("CSV file:")) align.add(label_name) hbox.pack_start(align, False, False, 5) self.button_addfile = gtk.Button() image = gtk.Image() image.set_from_stock(gtk.STOCK_ADD, gtk.ICON_SIZE_BUTTON) self.button_addfile.set_image(image) self.button_addfile.set_tooltip_text(_("Select a CSV file to load photo's variables")) self.button_addfile.set_label(_("Select file")) self.button_addfile.connect('clicked', self._load_csv) align = gtk.Alignment(0.01, 0.5, 0, 0) align.add(self.button_addfile) hbox.pack_start(align, False, False, 5) self.plugin.pack_start(hbox, False, False, 5) # 3rd line hbox_headers = gtk.HBox(False) label_headers = gtk.Label() label_headers.set_markup(_("Headers:")) hbox_headers.pack_start(label_headers, False, False, 5) self.entry_headers = gtk.Entry(max=256) self.entry_headers.connect('focus-out-event', self._out_entry) self.entry_headers.connect('activate', self._set_entry) self.entry_headers.set_tooltip_text(_("List of column headers of the CSV file. Each header will be a variable for each photo")) self.entry_headers.set_sensitive(False) hbox_headers.pack_start(self.entry_headers, True, True, 2) label_headerid = gtk.Label() label_headerid.set_markup(_("where photo name is:")) hbox_headers.pack_start(label_headerid, False, False, 0) self.cb_headerid = gtk.combo_box_new_text() self.cb_headerid.connect("changed", self._combo_id) self.cb_headerid.set_tooltip_text(_("Name of the column to match with each photo file name. It must be one of the Headers")) self.cb_headerid.set_sensitive(False) self.cb_headerid.append_text(' ') hbox_headers.pack_start(self.cb_headerid, False, False, 5) self.plugin.pack_start(hbox_headers, False, False, 5) # 4st line self.checkbutton_geolocate = gtk.CheckButton(_("Geolocate photos using CSV headers")) self.checkbutton_geolocate.set_tooltip_text(_("It is active, it will assign the following headers to each photo. It will geotag the photos by using those headers, but, warning: GPX data will take precedence!")) self.checkbutton_geolocate.connect('toggled', self._geolocate) self.checkbutton_geolocate.set_sensitive(False) # Headers Variables self.frame = gtk.Frame() self.frame.set_label_widget(self.checkbutton_geolocate) table = gtk.Table(2, 4, True) label_lat = gtk.Label() label_lat.set_markup(_("Latitude:")) align = gtk.Alignment(1.00, 0.5, 0, 0) align.add(label_lat) table.attach(align, 0, 1, 0, 1, gtk.FILL) self.cb_lat = gtk.combo_box_new_text() self.cb_lat.connect("changed", self._combo_geolocate, CSVImport_CONFKEY_HEADER_LAT) self.cb_lat.set_tooltip_text(_("Latitude header name")) table.attach(self.cb_lat, 1, 2, 0, 1) label_lon = gtk.Label() label_lon.set_markup(_("Longitude:")) align = gtk.Alignment(1.00, 0.5, 0, 0) align.add(label_lon) table.attach(align, 2, 3, 0, 1, gtk.FILL) self.cb_lon = gtk.combo_box_new_text() self.cb_lon.connect("changed", self._combo_geolocate, CSVImport_CONFKEY_HEADER_LON) self.cb_lon.set_tooltip_text(_("Longitude header name")) table.attach(self.cb_lon, 3, 4, 0, 1) label_date = gtk.Label() label_date.set_markup(_("Time-Date:")) align = gtk.Alignment(1.00, 0.5, 0, 0) align.add(label_date) table.attach(align, 0, 1, 1, 2) self.cb_date = gtk.combo_box_new_text() self.cb_date.connect("changed", self._combo_geolocate, CSVImport_CONFKEY_HEADER_DATE) table.attach(self.cb_date, 1, 2, 1, 2) label_ele = gtk.Label() label_ele.set_markup(_("Elevation:")) align = gtk.Alignment(1.00, 0.5, 0, 0) align.add(label_ele) table.attach(align, 2, 3, 1, 2) self.cb_ele = gtk.combo_box_new_text() self.cb_ele.connect("changed", self._combo_geolocate, CSVImport_CONFKEY_HEADER_ELE) self.cb_ele.set_tooltip_text(_("Elevation header name")) table.attach(self.cb_ele, 3, 4, 1, 2) table.set_border_width(20) table.set_row_spacings(5) self.frame.add(table) self.frame.set_border_width(5) self.frame.set_sensitive(False) self.plugin.pack_start(self.frame, False, False, 5) # Button self.button_process = gtk.Button() self.button_process.set_label(_("Process")) image = gtk.Image() image.set_from_stock(gtk.STOCK_EXECUTE, gtk.ICON_SIZE_BUTTON) self.button_process.set_image(image) self.button_process.connect('clicked', self.process) align = gtk.Alignment(0.50, 0.5, 0.1, 0) align.add(self.button_process) self.plugin.pack_start(align, False, False, 0) self.button_process.set_sensitive(False) # Attributes self.rootplugin = plugin self.rootgui = gui self.window = gui.builder.get_object("window") self.events = True def _load_csv(self, widget): dialog = gtk.FileChooserDialog(title=_("Select CSV file ..."), parent=self.window, action=gtk.FILE_CHOOSER_ACTION_OPEN, buttons=(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL, gtk.STOCK_OPEN, gtk.RESPONSE_OK)) ffilter = gtk.FileFilter() ffilter.set_name(_("Comma Separated Values (CSV)")) ffilter.add_pattern("*.csv") dialog.add_filter(ffilter) ffilter = gtk.FileFilter() ffilter.set_name(_("All files")) ffilter.add_pattern("*") dialog.add_filter(ffilter) filename = None if dialog.run() == gtk.RESPONSE_OK: filename = dialog.get_filename() dialog.destroy() self._set_csv(filename) def _set_csv(self, filename): if filename != None and os.path.isfile(filename): if not isinstance(filename, unicode): try: filename = unicode(filename, 'UTF-8') except: pass shortfilename = " " + os.path.basename(filename) + " " if len(shortfilename) > 150: shortfilename = shortfilename[0:150] + " ... " image = self.button_addfile.get_image() image.clear() self.button_addfile.set_label(shortfilename) self.frame.set_sensitive(True) self.checkbutton_geolocate.set_sensitive(True) self.cb_headerid.set_sensitive(True) self.entry_headers.set_sensitive(True) self.button_process.set_sensitive(True) self._init_csv(filename) self._geolocate() else: self.reset() def _init_csv(self, filename): dgettext = dict() dgettext['file'] = filename try: fd = open(filename, 'rb') except Exception as e: dgettext['error'] = str(e) msg = _("Cannot read file '%(file)s': %(error)s") self.logger.error(msg % dgettext) self.rootgui.show_dialog(_("Error"), msg, _('Please check file permisions')) else: dialect = 'excel' headers = self.options[CSVImport_CONFKEY_HEADERS] delimiter = self.options[CSVImport_CONFKEY_DELIMITER] quotechar = self.options[CSVImport_CONFKEY_QUOTECHAR] if not delimiter or not quotechar: dialect = csv.Sniffer().sniff(fd.read(10240)) delimiter = dialect.delimiter quotechar = dialect.quotechar fd.seek(0) else: dgettext['delimiter'] = delimiter dgettext['quotechar'] = quotechar has_header = csv.Sniffer().has_header(fd.read(10240)) fd.seek(0) headers_defined = False if headers: headers_defined = True else: reader = csv.DictReader(fd, dialect=dialect, delimiter=delimiter, quotechar=quotechar) if has_header: reader.next() headers = reader.fieldnames headers_defined = True self.options[CSVImport_CONFKEY_FILENAME] = filename if not headers_defined: msg = _("File has no headers") tip = _('You have to define the name of the headers.') self.rootgui.show_dialog(_("Warning"), msg, tip, gtk.MESSAGE_WARNING) else: self.entry_headers.set_text(', '.join(headers)) try: index = headers.index(self.options[CSVImport_CONFKEY_HEADER_ID]) except: index = 0 self._set_combo(self.cb_headerid, headers, CSVImport_CONFKEY_HEADER_ID, index) self.rootplugin.update_headers(headers) fd.close() def process(self, widget=None): filename = self.options[CSVImport_CONFKEY_FILENAME] if filename != None: self.rootplugin.init_csv(filename) counter = self.rootplugin.process_csv(self.userfacade.state.geophotos) self.rootplugin.logger.info(_("%d photos processed with CSV data.") % counter) self.rootplugin.end_csv() self.rootgui.reload_treeviewgeophotos() def _geolocate(self, widget=None): self.events = False value = self.checkbutton_geolocate.get_active() self.cb_date.set_sensitive(value) self.cb_ele.set_sensitive(value) self.cb_lon.set_sensitive(value) self.cb_lat.set_sensitive(value) self.options[CSVImport_CONFKEY_GEOLOCATE] = value if not value: self.options[CSVImport_CONFKEY_HEADER_LAT] = '' self.options[CSVImport_CONFKEY_HEADER_LON] = '' self.options[CSVImport_CONFKEY_HEADER_ELE] = '' self.options[CSVImport_CONFKEY_HEADER_DATE] = '' self._empty_combo(self.cb_date) self._empty_combo(self.cb_ele) self._empty_combo(self.cb_lon) self._empty_combo(self.cb_lat) else: headers = [" "] + self.options[CSVImport_CONFKEY_HEADERS] try: headers.remove(self.cb_headerid.get_active_text()) except: pass self._set_combo(self.cb_date, headers) self._set_combo(self.cb_ele, headers) self._set_combo(self.cb_lon, headers) self._set_combo(self.cb_lat, headers) counter = 0 for i in headers: item = i.lower() if i == self.options[CSVImport_CONFKEY_HEADER_LAT]: self.cb_lat.set_active(counter) elif i == self.options[CSVImport_CONFKEY_HEADER_LON]: self.cb_lon.set_active(counter) elif i == self.options[CSVImport_CONFKEY_HEADER_ELE]: self.cb_ele.set_active(counter) elif i == self.options[CSVImport_CONFKEY_HEADER_DATE]: self.cb_date.set_active(counter) elif 'lat' in item: self.cb_lat.set_active(counter) self.options[CSVImport_CONFKEY_HEADER_LAT] = i elif 'lon' in item: self.cb_lon.set_active(counter) self.options[CSVImport_CONFKEY_HEADER_LON] = i elif 'ele' in item: self.cb_ele.set_active(counter) self.options[CSVImport_CONFKEY_HEADER_ELE] = i elif 'date' in item or 'time' in item: self.cb_date.set_active(counter) self.options[CSVImport_CONFKEY_HEADER_DATE] = i counter += 1 self.events = True def _out_entry(self, widget, e): widget.set_text(', '.join(self.options[CSVImport_CONFKEY_HEADERS])) return False def _set_entry(self, widget): value = widget.get_text() items = [] try: char = None for c in [',', ';', '|', '#']: if c in value: char = c break else: raise Exception for item in value.split(char): items.append(item.strip()) if len(items) < 2: raise Exception except: msg = _("Cannot set headers") tip = _("Please, define the name of the headers to be used as variables.") self.rootgui.show_dialog(_("Error"), msg, tip) else: try: index = items.index(self.options[CSVImport_CONFKEY_HEADER_ID]) except: index = 0 self._set_combo(self.cb_headerid, items, CSVImport_CONFKEY_HEADER_ID, index) self.rootplugin.update_headers(items) self._geolocate() def _set_combo(self, cb, items=[], key=None, active=None): self.events = False cb.get_model().clear() for item in items: cb.append_text(item) if active != None: self.options[key] = items[active] cb.set_active(active) self.events = True def _empty_combo(self, cb): cb.get_model().clear() def _combo_geolocate(self, widget, key): if self.events: header = widget.get_active_text() if header in self.options[CSVImport_CONFKEY_HEADERS]: self.options[key] = header else: self.options[key] = '' def _activate_combo(self, cb, key, value, no): counter = 0 for row in cb.get_model(): if value == row[0]: if row[0] == no: cb.set_active(0) self.options[key] = '' else: cb.set_active(counter) self.options[key] = row[0] break counter += 1 def _combo_id(self, widget): if self.events: header = widget.get_active_text() self.options[CSVImport_CONFKEY_HEADER_ID] = header header_lat = self.cb_lat.get_active_text() header_lon = self.cb_lon.get_active_text() header_ele = self.cb_ele.get_active_text() header_date = self.cb_date.get_active_text() self._geolocate() self._activate_combo(self.cb_lat, CSVImport_CONFKEY_HEADER_LAT, header_lat, header) self._activate_combo(self.cb_lon, CSVImport_CONFKEY_HEADER_LON, header_lon, header) self._activate_combo(self.cb_ele, CSVImport_CONFKEY_HEADER_ELE, header_ele, header) self._activate_combo(self.cb_date, CSVImport_CONFKEY_HEADER_DATE, header_date, header) def show(self, widget=None, options=None): if widget: widget.add(self.plugin) if options: self.setup(options) self.plugin.show_all() def hide(self, reset=False): self.plugin.hide_all() if reset: self.reset() def reset(self): self.button_process.set_sensitive(False) self.checkbutton_geolocate.set_sensitive(False) self.frame.set_sensitive(False) self._empty_combo(self.cb_headerid) self.cb_headerid.set_sensitive(False) self.options[CSVImport_CONFKEY_HEADER_ID] = '' self.entry_headers.set_sensitive(False) self.entry_headers.set_text('') image = self.button_addfile.get_image() image.set_from_stock(gtk.STOCK_ADD, gtk.ICON_SIZE_BUTTON) self.button_addfile.set_image(image) self.button_addfile.set_label(_("Select file")) self.checkbutton_geolocate.set_active(False) self.options[CSVImport_CONFKEY_FILENAME] = '' self.rootplugin.update_headers() self.userfacade.state.photovariables = self.rootplugin.photovariables_old self._geolocate() self.rootgui.reload_treeviewgeophotos() self.events = True def setup(self, options): self.options = options self.cb_date.set_tooltip_text(_("Date header name. Format should be: ") + self.options[CSVImport_CONFKEY_DATE_PARSE]) if options[CSVImport_CONFKEY_GEOLOCATE]: self.checkbutton_geolocate.set_active(True) filename = options[CSVImport_CONFKEY_FILENAME] if filename: self._set_csv(filename) #self.entry_headers.set_text(', '.join(options[CSVImport_CONFKEY_HEADERS])) #EOF
39.995842
218
0.615501
2,342
19,238
4.790777
0.153715
0.031551
0.061497
0.064973
0.379144
0.292068
0.183244
0.145989
0.077718
0.059358
0
0.011798
0.281838
19,238
480
219
40.079167
0.800304
0.049641
0
0.26799
0
0.002481
0.074862
0
0
0
0
0
0
1
0.042184
false
0.004963
0.129032
0
0.176179
0.009926
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b8fcf8f0fe4212ea52ae11e77f6cd66ebb3437f
9,024
py
Python
src/opt_utils.py
mateuszz0000/POSA
1295065251dd22c89d923fbff7d8bf4c53339d95
[ "CNRI-Python", "Xnet", "Info-ZIP", "X11" ]
71
2021-05-02T21:40:29.000Z
2022-03-30T03:52:01.000Z
src/opt_utils.py
mateuszz0000/POSA
1295065251dd22c89d923fbff7d8bf4c53339d95
[ "CNRI-Python", "Xnet", "Info-ZIP", "X11" ]
4
2021-06-18T06:31:29.000Z
2021-12-07T07:29:21.000Z
src/opt_utils.py
mateuszz0000/POSA
1295065251dd22c89d923fbff7d8bf4c53339d95
[ "CNRI-Python", "Xnet", "Info-ZIP", "X11" ]
10
2021-05-08T08:16:31.000Z
2022-02-17T04:40:30.000Z
# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2020 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: [email protected] import torch import torch.nn.functional as F import numpy as np import torchgeometry as tgm from src import misc_utils, eulerangles from tqdm import tqdm def compute_afford_loss(vertices=None, scene_data=None, gen_batch=None, pen_w=0.0, no_obj_classes=None, use_semantics=False, semantics_w=0.0, **kwargs): contact_ids = gen_batch[:, :, 0] > 0.5 x = misc_utils.read_sdf(vertices, scene_data['sdf'], scene_data['grid_dim'], scene_data['grid_min'], scene_data['grid_max'], mode="bilinear").squeeze() batch_size = vertices.shape[0] device = vertices.device contact_loss = torch.sum(x[contact_ids.flatten()] ** 2) pen_loss = torch.tensor(0.0) if pen_w > 0: mask = x.lt(0).flatten().int() + (~contact_ids.flatten()).int() x_neg = torch.abs(x[mask == 2]) if len(x_neg) == 0: pen_loss = torch.tensor(0.0) else: pen_loss = pen_w * x_neg.sum() semantics_loss = torch.tensor(0.0) if use_semantics: # Read semantics x_semantics = misc_utils.read_sdf(vertices, scene_data['semantics'], scene_data['grid_dim'], scene_data['grid_min'], scene_data['grid_max'], mode="bilinear").squeeze() x_semantics = contact_ids.flatten().float() * x_semantics.unsqueeze(0) x_semantics = torch.zeros(x_semantics.shape[0], x_semantics.shape[1], no_obj_classes, device=device).scatter_( -1, x_semantics.unsqueeze(-1).type(torch.long), 1.) # Compute loss targets = gen_batch[:, :, 1:].argmax(dim=-1).type(torch.long).reshape(batch_size, -1) semantics_loss = semantics_w * F.cross_entropy(x_semantics.permute(0, 2, 1), targets, reduction='sum') return contact_loss, pen_loss, semantics_loss def eval_init_points(init_pos=None, init_ang=None, vertices=None, scene_data=None, gen_batch=None, **kwargs): with torch.no_grad(): losses = [] init_pos_batches = init_pos.split(1) for i in tqdm(range(len(init_pos_batches))): curr_init_pos = init_pos_batches[i] rot_aa = torch.cat((torch.zeros((1, 2), device=vertices.device), init_ang[i].reshape(1, 1)), dim=1) rot_mat = tgm.angle_axis_to_rotation_matrix(rot_aa.reshape(-1, 3))[:, :3, :3] curr_vertices = torch.bmm(rot_mat, vertices.permute(0, 2, 1)).permute(0, 2, 1) curr_vertices = curr_vertices + curr_init_pos contact_loss, pen_loss, semantics_loss = compute_afford_loss(vertices=curr_vertices, scene_data=scene_data, gen_batch=gen_batch, **kwargs) loss = contact_loss + pen_loss + semantics_loss losses.append(loss.item()) # Sort initial positions and orientations from best to wrost losses = np.array(losses) ids = np.argsort(losses) losses = losses[ids] init_pos = init_pos[ids] init_ang = init_ang[ids] return losses, init_pos, init_ang def init_points_culling(init_pos=None, vertices=None, scene_data=None, gen_batch=None, max_init_points=50, **kwargs): init_ang = [] angles = torch.arange(0, 2 * np.pi, np.pi / 2, device=vertices.device) angles[0] = 1e-9 for ang in angles: init_ang.append(ang * torch.ones(init_pos.shape[0], 1, device=vertices.device)) init_ang = torch.cat(init_ang).to(init_pos.device) init_pos = init_pos.repeat(angles.shape[0], 1, 1) # Shuffle rnd_ids = np.random.choice(init_pos.shape[0], init_pos.shape[0], replace=False) init_pos = init_pos[rnd_ids, :] init_ang = init_ang[rnd_ids, :] losses, init_pos, init_ang = eval_init_points(init_pos=init_pos, init_ang=init_ang, vertices=vertices.unsqueeze(0), scene_data=scene_data, gen_batch=gen_batch, **kwargs) # Select only a subset from initial points for optimization if init_pos.shape[0] > max_init_points: init_pos = init_pos[:max_init_points] init_ang = init_ang[:max_init_points] return init_pos, init_ang class opt_wrapper(object): def __init__(self, vertices=None, vertices_can=None, pelvis=None, scene_data=None, down_sample_fn=None, down_sample_fn2=None, device=None, dtype=None, pen_w=None, use_semantics=None, no_obj_classes=None, nv=None, optimizer=None, gen_batch=None, body_model=None, opt_pose=False, semantics_w=None, init_body_pose=None, pose_w=None, **kwargs): self.optimizer = optimizer self.vertices = vertices self.vertices_can = vertices_can self.pelvis = pelvis self.scene_data = scene_data self.down_sample_fn = down_sample_fn self.down_sample_fn2 = down_sample_fn2 self.device = device self.dtype = dtype self.pen_w = pen_w self.pose_w = pose_w self.semantics_w = semantics_w self.use_semantics = use_semantics self.no_obj_classes = no_obj_classes self.nv = nv self.gen_batch = gen_batch self.opt_pose = opt_pose self.body_model = body_model self.init_body_pose = init_body_pose self.R_smpl2scene = torch.tensor(eulerangles.euler2mat(np.pi / 2, 0, 0, 'sxyz'), dtype=dtype, device=device) def compute_vertices(self, t_free, y_ang, vertices=None, down_sample=True): curr_batch_size = self.vertices.shape[0] rot_aa = torch.cat((torch.zeros((curr_batch_size, 2), device=self.device), y_ang), dim=1) rot_mat = tgm.angle_axis_to_rotation_matrix(rot_aa.reshape(-1, 3))[:, :3, :3] if self.opt_pose: body_model_output = self.body_model(return_verts=True) pelvis = body_model_output.joints[:, 0, :].reshape(1, 3) vertices_local = body_model_output.vertices.squeeze() vertices_local = torch.matmul(self.R_smpl2scene, (vertices_local - pelvis).t()).t() vertices_local.unsqueeze_(0) if down_sample: vertices_local = self.down_sample_fn.forward(vertices_local.permute(0, 2, 1)) vertices_local = self.down_sample_fn2.forward(vertices_local).permute(0, 2, 1) vertices_local = torch.bmm(rot_mat, vertices_local.permute(0, 2, 1)).permute(0, 2, 1) vertices_local += t_free else: # very important to make a local copy, so that you don't change the original variable if vertices is None: vertices_local = torch.bmm(rot_mat, self.vertices.permute(0, 2, 1)).permute(0, 2, 1) else: vertices_local = torch.bmm(rot_mat, vertices.permute(0, 2, 1)).permute(0, 2, 1) vertices_local += t_free return vertices_local, rot_mat def compute_loss(self, t_free, y_ang): pose_loss = torch.tensor(0.0) if self.opt_pose: pose_loss = self.pose_w * F.mse_loss(self.body_model.body_pose, self.init_body_pose) vertices_local, rot_mat = self.compute_vertices(t_free, y_ang) contact_loss, pen_loss, semantic_loss = compute_afford_loss(vertices=vertices_local, scene_data=self.scene_data, gen_batch=self.gen_batch, pen_w=self.pen_w, no_obj_classes=self.no_obj_classes, use_semantics=self.use_semantics, semantics_w=self.semantics_w) return contact_loss, pen_loss, pose_loss, semantic_loss def create_fitting_closure(self, t_free, y_ang): def fitting_func(): self.optimizer.zero_grad() recon_loss, pen_loss, pose_loss, semantic_loss = self.compute_loss(t_free, y_ang) loss_total = recon_loss + pen_loss + pose_loss + semantic_loss loss_total.backward(retain_graph=True) return loss_total return fitting_func
47
120
0.625332
1,240
9,024
4.281452
0.195161
0.034281
0.018648
0.02072
0.304012
0.246374
0.190055
0.165191
0.14466
0.092673
0
0.017694
0.273493
9,024
191
121
47.246073
0.791946
0.098515
0
0.078014
0
0
0.010229
0
0
0
0
0
0
1
0.056738
false
0
0.042553
0
0.156028
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b95d82a263834a4e169c435b74dfded71be2e85
5,538
py
Python
siemstress/trigger.py
dogoncouch/siemstress
be7f60bb0228a886d48deb4f46309be7fb8aa0af
[ "MIT" ]
28
2017-08-14T12:41:56.000Z
2022-02-18T01:18:11.000Z
siemstress/trigger.py
dogoncouch/siemstress
be7f60bb0228a886d48deb4f46309be7fb8aa0af
[ "MIT" ]
1
2017-08-23T10:47:16.000Z
2017-08-24T18:52:48.000Z
siemstress/trigger.py
dogoncouch/siemstress
be7f60bb0228a886d48deb4f46309be7fb8aa0af
[ "MIT" ]
6
2018-01-07T11:42:18.000Z
2020-06-08T00:04:57.000Z
#!/usr/bin/env python #_MIT License #_ #_Copyright (c) 2017 Dan Persons ([email protected]) #_ #_Permission is hereby granted, free of charge, to any person obtaining a copy #_of this software and associated documentation files (the "Software"), to deal #_in the Software without restriction, including without limitation the rights #_to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #_copies of the Software, and to permit persons to whom the Software is #_furnished to do so, subject to the following conditions: #_ #_The above copyright notice and this permission notice shall be included in all #_copies or substantial portions of the Software. #_ #_THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #_IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #_FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #_AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #_LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #_OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #_SOFTWARE. import time from time import strftime from time import sleep from time import daylight from time import timezone from time import altzone from random import randrange from datetime import datetime import MySQLdb as mdb import json import threading import os from sys import exit import siemstress.manage #import signal class SiemTrigger: def __init__(self, db, rule): """Initialize trigger object""" self.db = db self.rule = rule self.tzone = None def watch_rule(self): """Watch a trigger rule""" # Set time zone: if daylight: self.tzone = \ str(int(float(altzone) / 60 // 60)).rjust(2, '0') + \ str(int(float(altzone) / 60 % 60)).ljust(2, '0') else: self.tzone = \ str(int(float(timezone) / 60 // 60)).rjust(2, '0') + \ str(int(float(timezone) / 60 % 60)).ljust(2, '0') if not '-' in self.tzone: self.tzone = '+' + self.tzone while True: # Check the rule: self.check_rule() # Wait until the next interval sleep(int(self.rule['time_int']) * 60) def check_rule(self): """Check a trigger rule""" # To Do: Add date_stamp_utc/int logic if not self.tzone: # Set time zone: if time.localtime().tm_isdst: self.tzone = \ str(int(float(altzone) / 60 // 60)).rjust(2, '0') + \ str(int(float(altzone) / 60 % 60)).ljust(2, '0') else: self.tzone = \ str(int(float(timezone) / 60 // 60)).rjust(2, '0') + \ str(int(float(timezone) / 60 % 60)).ljust(2, '0') if not '-' in self.tzone: self.tzone = '+' + self.tzone # Query the database: con = mdb.connect(self.db['host'], self.db['user'], self.db['password'], self.db['database']) with con: cur = con.cursor() cur.execute(self.rule['sql_query']) rows = cur.fetchall() cur.close() con.close() # Evaluate the results: if len(rows) > int(self.rule['event_limit']): idtags = json.dumps([int(row[0]) for row in rows]) datestamp = datetime.now().strftime('%Y%m%d%H%M%S') datestamputc = datetime.utcnow().strftime('%Y%m%d%H%M%S') magnitude = (((len(rows) // 2) // \ (self.rule['event_limit'] + 1) // 2) + 5) * \ ( 7 - self.rule['severity']) outstatement = 'INSERT INTO ' + \ self.rule['out_table'] + \ '(date_stamp, date_stamp_utc, t_zone, ' + \ 'source_rule, severity, source_table, event_limit, ' + \ 'event_count, magnitude, time_int, message, source_ids) ' + \ 'VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)' # Send an event to the database: con = mdb.connect(self.db['host'], self.db['user'], self.db['password'], self.db['database']) with con: cur = con.cursor() cur.execute(outstatement, (datestamp, datestamputc, self.tzone, self.rule['rule_name'], self.rule['severity'], self.rule['source_table'], self.rule['event_limit'], len(rows), magnitude, self.rule['time_int'], self.rule['message'], idtags)) cur.close() con.close() def start_rule(db, rule, oneshot): """Initialize trigger object and start watching""" # Make sure the table exists: siemstress.manage.create_ruleevent_table(rule['out_table']) sentry = SiemTrigger(db, rule) if oneshot: sentry.check_rule() elif int(rule['time_int']) == 0: pass else: # Before starting, sleep randomly up to rule interval to stagger # database use: sleep(randrange(0, int(rule['time_int']) * 60)) sentry.watch_rule()
34.397516
81
0.548754
668
5,538
4.462575
0.338323
0.034888
0.010064
0.012076
0.19792
0.19792
0.19792
0.188527
0.188527
0.188527
0
0.017354
0.334056
5,538
160
82
34.6125
0.790944
0.275731
0
0.376344
0
0.010753
0.108415
0
0
0
0
0
0
1
0.043011
false
0.032258
0.150538
0
0.204301
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b9aca9719a2480581a602385b8fda1e00bcfadc
3,040
py
Python
ooobuild/lo/util/time_with_timezone.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/util/time_with_timezone.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/util/time_with_timezone.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Struct Class # this is a auto generated file generated by Cheetah # Namespace: com.sun.star.util # Libre Office Version: 7.3 from ooo.oenv.env_const import UNO_NONE import typing from .time import Time as Time_604e0855 class TimeWithTimezone(object): """ Struct Class represents a combined time value with time zone. **since** LibreOffice 4.1 See Also: `API TimeWithTimezone <https://api.libreoffice.org/docs/idl/ref/structcom_1_1sun_1_1star_1_1util_1_1TimeWithTimezone.html>`_ """ __ooo_ns__: str = 'com.sun.star.util' __ooo_full_ns__: str = 'com.sun.star.util.TimeWithTimezone' __ooo_type_name__: str = 'struct' typeName: str = 'com.sun.star.util.TimeWithTimezone' """Literal Constant ``com.sun.star.util.TimeWithTimezone``""" def __init__(self, TimeInTZ: typing.Optional[Time_604e0855] = UNO_NONE, Timezone: typing.Optional[int] = 0) -> None: """ Constructor Arguments: TimeInTZ (Time, optional): TimeInTZ value. Timezone (int, optional): Timezone value. """ super().__init__() if isinstance(TimeInTZ, TimeWithTimezone): oth: TimeWithTimezone = TimeInTZ self.TimeInTZ = oth.TimeInTZ self.Timezone = oth.Timezone return kargs = { "TimeInTZ": TimeInTZ, "Timezone": Timezone, } if kargs["TimeInTZ"] is UNO_NONE: kargs["TimeInTZ"] = None self._init(**kargs) def _init(self, **kwargs) -> None: self._time_in_tz = kwargs["TimeInTZ"] self._timezone = kwargs["Timezone"] @property def TimeInTZ(self) -> Time_604e0855: """ the time (in TimeZone) """ return self._time_in_tz @TimeInTZ.setter def TimeInTZ(self, value: Time_604e0855) -> None: self._time_in_tz = value @property def Timezone(self) -> int: """ contains the time zone, as signed offset in minutes from UTC, that is east of UTC, that is the amount of minutes that should be added to UTC time to obtain the time in that timezone. To obtain UTC time from TimeInTZ, you need to subtract TimeZone minutes. """ return self._timezone @Timezone.setter def Timezone(self, value: int) -> None: self._timezone = value __all__ = ['TimeWithTimezone']
30.4
190
0.650329
382
3,040
5.018325
0.408377
0.031299
0.026082
0.036515
0.077726
0.045383
0
0
0
0
0
0.022085
0.255263
3,040
99
191
30.707071
0.824647
0.436842
0
0.052632
0
0
0.104801
0.045977
0
0
0
0
0
1
0.157895
false
0
0.078947
0
0.447368
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
4b9cdb57c833e7e628efc0c75d61d7090e29a276
393
py
Python
exercicios/Lista6/Q5.py
AlexandrePeBrito/CursoUdemyPython
3de58cb30c9f333b32078309847179ff3f9d7e22
[ "MIT" ]
null
null
null
exercicios/Lista6/Q5.py
AlexandrePeBrito/CursoUdemyPython
3de58cb30c9f333b32078309847179ff3f9d7e22
[ "MIT" ]
null
null
null
exercicios/Lista6/Q5.py
AlexandrePeBrito/CursoUdemyPython
3de58cb30c9f333b32078309847179ff3f9d7e22
[ "MIT" ]
null
null
null
""" 5. Faça um programa que receba do usuário um arquivo texto e um caracter. Mostre na tela quantas vezes aquele caractere ocorre dentro do arquivo. """ arquivo=open('CursoUdemyPython/exercicios/Lista6/arq.txt') texto=arquivo.read() carac=input('Informe um caractere: ') ca=0 for c in texto: if(c == carac): ca+=1 arquivo.close() print(f"Foi identificado {ca} deste caractere")
28.071429
92
0.725191
60
393
4.75
0.733333
0
0
0
0
0
0
0
0
0
0
0.012085
0.157761
393
13
93
30.230769
0.848943
0.368957
0
0
0
0
0.422594
0.175732
0
0
0
0
0
1
0
false
0
0
0
0
0.111111
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0