Qwen3-30B-A3B-Kaidol-v4
Korean character roleplay model fine-tuned from Qwen3-30B-A3B-Instruct-2507.
Model Description
This model is optimized for Korean character roleplay conversations, trained with custom character datasets featuring distinct personalities, speech patterns, and emotional expressions.
Training Details
| Parameter | Value |
|---|---|
| Base Model | Qwen/Qwen3-30B-A3B-Instruct-2507 |
| Method | LoRA (merged) |
| LoRA Rank | 32 |
| LoRA Alpha | 64 |
| Target Modules | q_proj, k_proj, v_proj, o_proj |
| Training Epochs | 3 |
| Learning Rate | 2e-5 |
| Max Sequence Length | 2048 |
Target Modules
- Attention only: q_proj, k_proj, v_proj, o_proj
Intended Use
This model is designed for:
- Korean character roleplay conversations
- Interactive storytelling
- Character-based chat applications
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "developer-lunark/Qwen3-30B-A3B-Kaidol-v4"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "์๋
ํ์ธ์!"}
]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
vLLM Serving
vllm serve developer-lunark/Qwen3-30B-A3B-Kaidol-v4 \
--tensor-parallel-size 2 \
--max-model-len 8192
Limitations
- Optimized for Korean language; performance in other languages may vary
- Character roleplay focused; may not be optimal for factual Q&A
- Inherits limitations from the base Qwen3 model
License
Apache 2.0 (following the base model license)
Acknowledgments
- Base model: Qwen/Qwen3-30B-A3B-Instruct-2507
- Fine-tuned by developer-lunark
- Downloads last month
- 14
Model tree for developer-lunark/Qwen3-30B-A3B-Kaidol-v4
Base model
Qwen/Qwen3-30B-A3B-Instruct-2507