SentenceTransformer based on estrogen/ModernBERT-base-sbert-initialized
This is a sentence-transformers model finetuned from estrogen/ModernBERT-base-sbert-initialized on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: estrogen/ModernBERT-base-sbert-initialized
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("estrogen/ModernBERT-base-nli-v3")
sentences = [
'A middle-aged man works under the engine of a train on rail tracks.',
'A guy is working on a train.',
'A guy is driving to work.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
sts-dev |
sts-test |
| pearson_cosine |
0.8602 |
0.8484 |
| spearman_cosine |
0.8651 |
0.8505 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor, positive, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
| type |
string |
string |
string |
| details |
- min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
|
- min: 6 tokens
- mean: 12.91 tokens
- max: 40 tokens
|
- min: 5 tokens
- mean: 13.49 tokens
- max: 51 tokens
|
- Samples:
| anchor |
positive |
negative |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
A person is at a diner, ordering an omelette. |
Children smiling and waving at camera |
There are children present |
The kids are frowning |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
The boy skates down the sidewalk. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor, positive, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
| type |
string |
string |
string |
| details |
- min: 6 tokens
- mean: 18.25 tokens
- max: 69 tokens
|
- min: 5 tokens
- mean: 9.88 tokens
- max: 30 tokens
|
- min: 5 tokens
- mean: 10.48 tokens
- max: 29 tokens
|
- Samples:
| anchor |
positive |
negative |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
The men are fighting outside a deli. |
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. |
Two kids in numbered jerseys wash their hands. |
Two kids in jackets walk to school. |
A man selling donuts to a customer during a world exhibition event held in the city of Angeles |
A man selling donuts to a customer. |
A woman drinks her coffee in a small cafe. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 1024
per_device_eval_batch_size: 1024
num_train_epochs: 1
warmup_ratio: 0.1
bf16: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 1024
per_device_eval_batch_size: 1024
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
Validation Loss |
sts-dev_spearman_cosine |
sts-test_spearman_cosine |
| 0 |
0 |
- |
- |
0.5576 |
- |
| 0.0018 |
1 |
36.2556 |
- |
- |
- |
| 0.0037 |
2 |
36.6329 |
- |
- |
- |
| 0.0055 |
3 |
36.9705 |
- |
- |
- |
| 0.0073 |
4 |
36.9173 |
- |
- |
- |
| 0.0092 |
5 |
36.8254 |
- |
- |
- |
| 0.0110 |
6 |
36.7313 |
- |
- |
- |
| 0.0128 |
7 |
36.5865 |
- |
- |
- |
| 0.0147 |
8 |
36.1709 |
- |
- |
- |
| 0.0165 |
9 |
36.0519 |
- |
- |
- |
| 0.0183 |
10 |
35.712 |
- |
- |
- |
| 0.0202 |
11 |
35.4072 |
- |
- |
- |
| 0.0220 |
12 |
35.0623 |
- |
- |
- |
| 0.0239 |
13 |
34.6996 |
- |
- |
- |
| 0.0257 |
14 |
34.2426 |
- |
- |
- |
| 0.0275 |
15 |
33.6913 |
- |
- |
- |
| 0.0294 |
16 |
33.2808 |
- |
- |
- |
| 0.0312 |
17 |
32.5487 |
- |
- |
- |
| 0.0330 |
18 |
31.6451 |
- |
- |
- |
| 0.0349 |
19 |
30.7017 |
- |
- |
- |
| 0.0367 |
20 |
29.8238 |
- |
- |
- |
| 0.0385 |
21 |
28.7414 |
- |
- |
- |
| 0.0404 |
22 |
27.316 |
- |
- |
- |
| 0.0422 |
23 |
26.1119 |
- |
- |
- |
| 0.0440 |
24 |
24.7211 |
- |
- |
- |
| 0.0459 |
25 |
24.0007 |
- |
- |
- |
| 0.0477 |
26 |
22.706 |
- |
- |
- |
| 0.0495 |
27 |
21.7943 |
- |
- |
- |
| 0.0514 |
28 |
21.5753 |
- |
- |
- |
| 0.0532 |
29 |
20.9671 |
- |
- |
- |
| 0.0550 |
30 |
20.5548 |
- |
- |
- |
| 0.0569 |
31 |
20.263 |
- |
- |
- |
| 0.0587 |
32 |
19.8474 |
- |
- |
- |
| 0.0606 |
33 |
18.846 |
- |
- |
- |
| 0.0624 |
34 |
18.5923 |
- |
- |
- |
| 0.0642 |
35 |
17.8432 |
- |
- |
- |
| 0.0661 |
36 |
17.6267 |
- |
- |
- |
| 0.0679 |
37 |
17.1291 |
- |
- |
- |
| 0.0697 |
38 |
16.6147 |
- |
- |
- |
| 0.0716 |
39 |
16.1403 |
- |
- |
- |
| 0.0734 |
40 |
16.5382 |
- |
- |
- |
| 0.0752 |
41 |
15.7209 |
- |
- |
- |
| 0.0771 |
42 |
15.565 |
- |
- |
- |
| 0.0789 |
43 |
15.2099 |
- |
- |
- |
| 0.0807 |
44 |
15.2644 |
- |
- |
- |
| 0.0826 |
45 |
14.8458 |
- |
- |
- |
| 0.0844 |
46 |
15.2214 |
- |
- |
- |
| 0.0862 |
47 |
15.194 |
- |
- |
- |
| 0.0881 |
48 |
15.53 |
- |
- |
- |
| 0.0899 |
49 |
14.893 |
- |
- |
- |
| 0.0917 |
50 |
14.4146 |
- |
- |
- |
| 0.0936 |
51 |
14.4308 |
- |
- |
- |
| 0.0954 |
52 |
13.8239 |
- |
- |
- |
| 0.0972 |
53 |
13.9299 |
- |
- |
- |
| 0.0991 |
54 |
14.6545 |
- |
- |
- |
| 0.1009 |
55 |
14.3374 |
- |
- |
- |
| 0.1028 |
56 |
14.5065 |
- |
- |
- |
| 0.1046 |
57 |
13.8447 |
- |
- |
- |
| 0.1064 |
58 |
14.179 |
- |
- |
- |
| 0.1083 |
59 |
13.8866 |
- |
- |
- |
| 0.1101 |
60 |
13.4879 |
- |
- |
- |
| 0.1119 |
61 |
13.6273 |
- |
- |
- |
| 0.1138 |
62 |
13.891 |
- |
- |
- |
| 0.1156 |
63 |
13.6066 |
- |
- |
- |
| 0.1174 |
64 |
13.4999 |
- |
- |
- |
| 0.1193 |
65 |
13.9862 |
- |
- |
- |
| 0.1211 |
66 |
13.4257 |
- |
- |
- |
| 0.1229 |
67 |
13.9192 |
- |
- |
- |
| 0.1248 |
68 |
13.5504 |
- |
- |
- |
| 0.1266 |
69 |
13.3689 |
- |
- |
- |
| 0.1284 |
70 |
13.4802 |
- |
- |
- |
| 0.1303 |
71 |
13.0249 |
- |
- |
- |
| 0.1321 |
72 |
13.2021 |
- |
- |
- |
| 0.1339 |
73 |
13.1101 |
- |
- |
- |
| 0.1358 |
74 |
13.0868 |
- |
- |
- |
| 0.1376 |
75 |
12.8536 |
- |
- |
- |
| 0.1394 |
76 |
12.9317 |
- |
- |
- |
| 0.1413 |
77 |
12.6403 |
- |
- |
- |
| 0.1431 |
78 |
12.9776 |
- |
- |
- |
| 0.1450 |
79 |
13.1359 |
- |
- |
- |
| 0.1468 |
80 |
13.0558 |
- |
- |
- |
| 0.1486 |
81 |
13.0849 |
- |
- |
- |
| 0.1505 |
82 |
12.6719 |
- |
- |
- |
| 0.1523 |
83 |
12.5796 |
- |
- |
- |
| 0.1541 |
84 |
12.472 |
- |
- |
- |
| 0.1560 |
85 |
12.4221 |
- |
- |
- |
| 0.1578 |
86 |
12.0878 |
- |
- |
- |
| 0.1596 |
87 |
12.6923 |
- |
- |
- |
| 0.1615 |
88 |
12.4428 |
- |
- |
- |
| 0.1633 |
89 |
12.2897 |
- |
- |
- |
| 0.1651 |
90 |
12.4254 |
- |
- |
- |
| 0.1670 |
91 |
12.3808 |
- |
- |
- |
| 0.1688 |
92 |
12.5224 |
- |
- |
- |
| 0.1706 |
93 |
12.48 |
- |
- |
- |
| 0.1725 |
94 |
11.8793 |
- |
- |
- |
| 0.1743 |
95 |
11.8582 |
- |
- |
- |
| 0.1761 |
96 |
12.5362 |
- |
- |
- |
| 0.1780 |
97 |
12.3912 |
- |
- |
- |
| 0.1798 |
98 |
12.7162 |
- |
- |
- |
| 0.1817 |
99 |
12.4455 |
- |
- |
- |
| 0.1835 |
100 |
12.4815 |
8.5398 |
0.8199 |
- |
| 0.1853 |
101 |
12.1586 |
- |
- |
- |
| 0.1872 |
102 |
11.8041 |
- |
- |
- |
| 0.1890 |
103 |
11.6278 |
- |
- |
- |
| 0.1908 |
104 |
11.8511 |
- |
- |
- |
| 0.1927 |
105 |
11.762 |
- |
- |
- |
| 0.1945 |
106 |
11.568 |
- |
- |
- |
| 0.1963 |
107 |
11.8152 |
- |
- |
- |
| 0.1982 |
108 |
11.9005 |
- |
- |
- |
| 0.2 |
109 |
11.9282 |
- |
- |
- |
| 0.2018 |
110 |
11.8451 |
- |
- |
- |
| 0.2037 |
111 |
12.1208 |
- |
- |
- |
| 0.2055 |
112 |
11.6718 |
- |
- |
- |
| 0.2073 |
113 |
11.0296 |
- |
- |
- |
| 0.2092 |
114 |
11.4185 |
- |
- |
- |
| 0.2110 |
115 |
11.337 |
- |
- |
- |
| 0.2128 |
116 |
10.9242 |
- |
- |
- |
| 0.2147 |
117 |
11.0482 |
- |
- |
- |
| 0.2165 |
118 |
11.3196 |
- |
- |
- |
| 0.2183 |
119 |
11.1849 |
- |
- |
- |
| 0.2202 |
120 |
10.9769 |
- |
- |
- |
| 0.2220 |
121 |
10.5047 |
- |
- |
- |
| 0.2239 |
122 |
11.1094 |
- |
- |
- |
| 0.2257 |
123 |
11.2565 |
- |
- |
- |
| 0.2275 |
124 |
11.1569 |
- |
- |
- |
| 0.2294 |
125 |
11.5391 |
- |
- |
- |
| 0.2312 |
126 |
10.8941 |
- |
- |
- |
| 0.2330 |
127 |
10.8196 |
- |
- |
- |
| 0.2349 |
128 |
11.0836 |
- |
- |
- |
| 0.2367 |
129 |
11.4241 |
- |
- |
- |
| 0.2385 |
130 |
11.4976 |
- |
- |
- |
| 0.2404 |
131 |
10.938 |
- |
- |
- |
| 0.2422 |
132 |
11.5283 |
- |
- |
- |
| 0.2440 |
133 |
11.4238 |
- |
- |
- |
| 0.2459 |
134 |
11.3364 |
- |
- |
- |
| 0.2477 |
135 |
11.225 |
- |
- |
- |
| 0.2495 |
136 |
11.0415 |
- |
- |
- |
| 0.2514 |
137 |
10.8503 |
- |
- |
- |
| 0.2532 |
138 |
10.9302 |
- |
- |
- |
| 0.2550 |
139 |
10.5476 |
- |
- |
- |
| 0.2569 |
140 |
10.8422 |
- |
- |
- |
| 0.2587 |
141 |
10.4239 |
- |
- |
- |
| 0.2606 |
142 |
10.5155 |
- |
- |
- |
| 0.2624 |
143 |
10.589 |
- |
- |
- |
| 0.2642 |
144 |
10.6116 |
- |
- |
- |
| 0.2661 |
145 |
10.7158 |
- |
- |
- |
| 0.2679 |
146 |
10.6952 |
- |
- |
- |
| 0.2697 |
147 |
10.3678 |
- |
- |
- |
| 0.2716 |
148 |
11.159 |
- |
- |
- |
| 0.2734 |
149 |
11.3336 |
- |
- |
- |
| 0.2752 |
150 |
10.7669 |
- |
- |
- |
| 0.2771 |
151 |
10.5946 |
- |
- |
- |
| 0.2789 |
152 |
10.9448 |
- |
- |
- |
| 0.2807 |
153 |
10.7132 |
- |
- |
- |
| 0.2826 |
154 |
10.5812 |
- |
- |
- |
| 0.2844 |
155 |
10.7827 |
- |
- |
- |
| 0.2862 |
156 |
10.7807 |
- |
- |
- |
| 0.2881 |
157 |
10.7351 |
- |
- |
- |
| 0.2899 |
158 |
10.7904 |
- |
- |
- |
| 0.2917 |
159 |
10.5921 |
- |
- |
- |
| 0.2936 |
160 |
10.2996 |
- |
- |
- |
| 0.2954 |
161 |
10.2353 |
- |
- |
- |
| 0.2972 |
162 |
10.2108 |
- |
- |
- |
| 0.2991 |
163 |
10.089 |
- |
- |
- |
| 0.3009 |
164 |
10.1736 |
- |
- |
- |
| 0.3028 |
165 |
10.2599 |
- |
- |
- |
| 0.3046 |
166 |
10.4347 |
- |
- |
- |
| 0.3064 |
167 |
10.9999 |
- |
- |
- |
| 0.3083 |
168 |
11.1655 |
- |
- |
- |
| 0.3101 |
169 |
10.8125 |
- |
- |
- |
| 0.3119 |
170 |
10.5497 |
- |
- |
- |
| 0.3138 |
171 |
10.6918 |
- |
- |
- |
| 0.3156 |
172 |
10.4792 |
- |
- |
- |
| 0.3174 |
173 |
10.6018 |
- |
- |
- |
| 0.3193 |
174 |
10.2092 |
- |
- |
- |
| 0.3211 |
175 |
10.5625 |
- |
- |
- |
| 0.3229 |
176 |
10.3539 |
- |
- |
- |
| 0.3248 |
177 |
9.5403 |
- |
- |
- |
| 0.3266 |
178 |
10.2351 |
- |
- |
- |
| 0.3284 |
179 |
10.1557 |
- |
- |
- |
| 0.3303 |
180 |
10.0721 |
- |
- |
- |
| 0.3321 |
181 |
9.721 |
- |
- |
- |
| 0.3339 |
182 |
9.7519 |
- |
- |
- |
| 0.3358 |
183 |
9.7737 |
- |
- |
- |
| 0.3376 |
184 |
9.5207 |
- |
- |
- |
| 0.3394 |
185 |
9.6557 |
- |
- |
- |
| 0.3413 |
186 |
9.7205 |
- |
- |
- |
| 0.3431 |
187 |
9.9902 |
- |
- |
- |
| 0.3450 |
188 |
10.1699 |
- |
- |
- |
| 0.3468 |
189 |
10.5102 |
- |
- |
- |
| 0.3486 |
190 |
10.2026 |
- |
- |
- |
| 0.3505 |
191 |
10.1148 |
- |
- |
- |
| 0.3523 |
192 |
9.5341 |
- |
- |
- |
| 0.3541 |
193 |
9.5213 |
- |
- |
- |
| 0.3560 |
194 |
9.7469 |
- |
- |
- |
| 0.3578 |
195 |
10.1795 |
- |
- |
- |
| 0.3596 |
196 |
10.3835 |
- |
- |
- |
| 0.3615 |
197 |
10.7346 |
- |
- |
- |
| 0.3633 |
198 |
9.9378 |
- |
- |
- |
| 0.3651 |
199 |
9.7758 |
- |
- |
- |
| 0.3670 |
200 |
10.3206 |
7.0991 |
0.8294 |
- |
| 0.3688 |
201 |
9.7032 |
- |
- |
- |
| 0.3706 |
202 |
9.8851 |
- |
- |
- |
| 0.3725 |
203 |
9.9285 |
- |
- |
- |
| 0.3743 |
204 |
10.0227 |
- |
- |
- |
| 0.3761 |
205 |
9.8062 |
- |
- |
- |
| 0.3780 |
206 |
9.9988 |
- |
- |
- |
| 0.3798 |
207 |
10.0256 |
- |
- |
- |
| 0.3817 |
208 |
9.8837 |
- |
- |
- |
| 0.3835 |
209 |
10.0787 |
- |
- |
- |
| 0.3853 |
210 |
9.5776 |
- |
- |
- |
| 0.3872 |
211 |
9.6239 |
- |
- |
- |
| 0.3890 |
212 |
9.717 |
- |
- |
- |
| 0.3908 |
213 |
10.1639 |
- |
- |
- |
| 0.3927 |
214 |
9.4994 |
- |
- |
- |
| 0.3945 |
215 |
9.6895 |
- |
- |
- |
| 0.3963 |
216 |
9.4938 |
- |
- |
- |
| 0.3982 |
217 |
9.3008 |
- |
- |
- |
| 0.4 |
218 |
9.6183 |
- |
- |
- |
| 0.4018 |
219 |
9.3632 |
- |
- |
- |
| 0.4037 |
220 |
9.3575 |
- |
- |
- |
| 0.4055 |
221 |
9.4888 |
- |
- |
- |
| 0.4073 |
222 |
9.337 |
- |
- |
- |
| 0.4092 |
223 |
9.9598 |
- |
- |
- |
| 0.4110 |
224 |
9.345 |
- |
- |
- |
| 0.4128 |
225 |
9.2595 |
- |
- |
- |
| 0.4147 |
226 |
9.3508 |
- |
- |
- |
| 0.4165 |
227 |
9.8293 |
- |
- |
- |
| 0.4183 |
228 |
9.8365 |
- |
- |
- |
| 0.4202 |
229 |
9.6528 |
- |
- |
- |
| 0.4220 |
230 |
9.9696 |
- |
- |
- |
| 0.4239 |
231 |
10.113 |
- |
- |
- |
| 0.4257 |
232 |
9.9706 |
- |
- |
- |
| 0.4275 |
233 |
9.577 |
- |
- |
- |
| 0.4294 |
234 |
9.7624 |
- |
- |
- |
| 0.4312 |
235 |
9.5083 |
- |
- |
- |
| 0.4330 |
236 |
9.5067 |
- |
- |
- |
| 0.4349 |
237 |
9.1004 |
- |
- |
- |
| 0.4367 |
238 |
8.914 |
- |
- |
- |
| 0.4385 |
239 |
9.6852 |
- |
- |
- |
| 0.4404 |
240 |
9.573 |
- |
- |
- |
| 0.4422 |
241 |
9.8598 |
- |
- |
- |
| 0.4440 |
242 |
10.1793 |
- |
- |
- |
| 0.4459 |
243 |
10.2789 |
- |
- |
- |
| 0.4477 |
244 |
9.9536 |
- |
- |
- |
| 0.4495 |
245 |
9.3878 |
- |
- |
- |
| 0.4514 |
246 |
9.6734 |
- |
- |
- |
| 0.4532 |
247 |
9.3747 |
- |
- |
- |
| 0.4550 |
248 |
8.8334 |
- |
- |
- |
| 0.4569 |
249 |
9.7495 |
- |
- |
- |
| 0.4587 |
250 |
8.8468 |
- |
- |
- |
| 0.4606 |
251 |
9.3828 |
- |
- |
- |
| 0.4624 |
252 |
9.1118 |
- |
- |
- |
| 0.4642 |
253 |
9.3682 |
- |
- |
- |
| 0.4661 |
254 |
9.3647 |
- |
- |
- |
| 0.4679 |
255 |
9.8533 |
- |
- |
- |
| 0.4697 |
256 |
9.2787 |
- |
- |
- |
| 0.4716 |
257 |
8.9831 |
- |
- |
- |
| 0.4734 |
258 |
9.0524 |
- |
- |
- |
| 0.4752 |
259 |
9.5378 |
- |
- |
- |
| 0.4771 |
260 |
9.4227 |
- |
- |
- |
| 0.4789 |
261 |
9.3545 |
- |
- |
- |
| 0.4807 |
262 |
8.8428 |
- |
- |
- |
| 0.4826 |
263 |
9.1284 |
- |
- |
- |
| 0.4844 |
264 |
8.7769 |
- |
- |
- |
| 0.4862 |
265 |
9.0381 |
- |
- |
- |
| 0.4881 |
266 |
9.0261 |
- |
- |
- |
| 0.4899 |
267 |
8.811 |
- |
- |
- |
| 0.4917 |
268 |
9.0848 |
- |
- |
- |
| 0.4936 |
269 |
9.0951 |
- |
- |
- |
| 0.4954 |
270 |
9.0682 |
- |
- |
- |
| 0.4972 |
271 |
9.0418 |
- |
- |
- |
| 0.4991 |
272 |
9.7316 |
- |
- |
- |
| 0.5009 |
273 |
9.263 |
- |
- |
- |
| 0.5028 |
274 |
9.624 |
- |
- |
- |
| 0.5046 |
275 |
10.0133 |
- |
- |
- |
| 0.5064 |
276 |
9.0789 |
- |
- |
- |
| 0.5083 |
277 |
9.1399 |
- |
- |
- |
| 0.5101 |
278 |
9.3854 |
- |
- |
- |
| 0.5119 |
279 |
8.9982 |
- |
- |
- |
| 0.5138 |
280 |
9.1342 |
- |
- |
- |
| 0.5156 |
281 |
9.0517 |
- |
- |
- |
| 0.5174 |
282 |
9.5637 |
- |
- |
- |
| 0.5193 |
283 |
9.5213 |
- |
- |
- |
| 0.5211 |
284 |
9.9231 |
- |
- |
- |
| 0.5229 |
285 |
10.3441 |
- |
- |
- |
| 0.5248 |
286 |
9.6162 |
- |
- |
- |
| 0.5266 |
287 |
9.4794 |
- |
- |
- |
| 0.5284 |
288 |
9.2728 |
- |
- |
- |
| 0.5303 |
289 |
9.411 |
- |
- |
- |
| 0.5321 |
290 |
9.5806 |
- |
- |
- |
| 0.5339 |
291 |
9.4193 |
- |
- |
- |
| 0.5358 |
292 |
9.3528 |
- |
- |
- |
| 0.5376 |
293 |
9.7581 |
- |
- |
- |
| 0.5394 |
294 |
9.4407 |
- |
- |
- |
| 0.5413 |
295 |
9.027 |
- |
- |
- |
| 0.5431 |
296 |
9.4272 |
- |
- |
- |
| 0.5450 |
297 |
9.2733 |
- |
- |
- |
| 0.5468 |
298 |
9.3 |
- |
- |
- |
| 0.5486 |
299 |
9.6388 |
- |
- |
- |
| 0.5505 |
300 |
9.0698 |
6.8356 |
0.8273 |
- |
| 0.5523 |
301 |
9.4613 |
- |
- |
- |
| 0.5541 |
302 |
9.9061 |
- |
- |
- |
| 0.5560 |
303 |
9.3524 |
- |
- |
- |
| 0.5578 |
304 |
9.1935 |
- |
- |
- |
| 0.5596 |
305 |
9.1243 |
- |
- |
- |
| 0.5615 |
306 |
8.8865 |
- |
- |
- |
| 0.5633 |
307 |
9.4411 |
- |
- |
- |
| 0.5651 |
308 |
9.1322 |
- |
- |
- |
| 0.5670 |
309 |
9.3072 |
- |
- |
- |
| 0.5688 |
310 |
8.4299 |
- |
- |
- |
| 0.5706 |
311 |
8.9471 |
- |
- |
- |
| 0.5725 |
312 |
8.5097 |
- |
- |
- |
| 0.5743 |
313 |
9.1158 |
- |
- |
- |
| 0.5761 |
314 |
9.0221 |
- |
- |
- |
| 0.5780 |
315 |
9.5871 |
- |
- |
- |
| 0.5798 |
316 |
9.3789 |
- |
- |
- |
| 0.5817 |
317 |
9.1566 |
- |
- |
- |
| 0.5835 |
318 |
9.0472 |
- |
- |
- |
| 0.5853 |
319 |
8.947 |
- |
- |
- |
| 0.5872 |
320 |
9.1791 |
- |
- |
- |
| 0.5890 |
321 |
8.8764 |
- |
- |
- |
| 0.5908 |
322 |
8.9794 |
- |
- |
- |
| 0.5927 |
323 |
9.2044 |
- |
- |
- |
| 0.5945 |
324 |
9.0374 |
- |
- |
- |
| 0.5963 |
325 |
9.3389 |
- |
- |
- |
| 0.5982 |
326 |
9.7387 |
- |
- |
- |
| 0.6 |
327 |
9.4248 |
- |
- |
- |
| 0.6018 |
328 |
9.4799 |
- |
- |
- |
| 0.6037 |
329 |
8.9019 |
- |
- |
- |
| 0.6055 |
330 |
9.113 |
- |
- |
- |
| 0.6073 |
331 |
9.3148 |
- |
- |
- |
| 0.6092 |
332 |
8.9871 |
- |
- |
- |
| 0.6110 |
333 |
8.5404 |
- |
- |
- |
| 0.6128 |
334 |
9.1587 |
- |
- |
- |
| 0.6147 |
335 |
8.9698 |
- |
- |
- |
| 0.6165 |
336 |
9.3393 |
- |
- |
- |
| 0.6183 |
337 |
9.4845 |
- |
- |
- |
| 0.6202 |
338 |
9.6075 |
- |
- |
- |
| 0.6220 |
339 |
9.426 |
- |
- |
- |
| 0.6239 |
340 |
9.0633 |
- |
- |
- |
| 0.6257 |
341 |
9.1017 |
- |
- |
- |
| 0.6275 |
342 |
9.2461 |
- |
- |
- |
| 0.6294 |
343 |
9.065 |
- |
- |
- |
| 0.6312 |
344 |
9.4668 |
- |
- |
- |
| 0.6330 |
345 |
9.0267 |
- |
- |
- |
| 0.6349 |
346 |
9.2938 |
- |
- |
- |
| 0.6367 |
347 |
9.391 |
- |
- |
- |
| 0.6385 |
348 |
9.2386 |
- |
- |
- |
| 0.6404 |
349 |
9.5285 |
- |
- |
- |
| 0.6422 |
350 |
9.5958 |
- |
- |
- |
| 0.6440 |
351 |
9.157 |
- |
- |
- |
| 0.6459 |
352 |
9.4166 |
- |
- |
- |
| 0.6477 |
353 |
9.358 |
- |
- |
- |
| 0.6495 |
354 |
9.4497 |
- |
- |
- |
| 0.6514 |
355 |
9.407 |
- |
- |
- |
| 0.6532 |
356 |
9.1505 |
- |
- |
- |
| 0.6550 |
357 |
9.403 |
- |
- |
- |
| 0.6569 |
358 |
9.1949 |
- |
- |
- |
| 0.6587 |
359 |
8.7922 |
- |
- |
- |
| 0.6606 |
360 |
8.883 |
- |
- |
- |
| 0.6624 |
361 |
8.6828 |
- |
- |
- |
| 0.6642 |
362 |
8.5654 |
- |
- |
- |
| 0.6661 |
363 |
8.705 |
- |
- |
- |
| 0.6679 |
364 |
8.8329 |
- |
- |
- |
| 0.6697 |
365 |
9.1604 |
- |
- |
- |
| 0.6716 |
366 |
9.1609 |
- |
- |
- |
| 0.6734 |
367 |
9.4693 |
- |
- |
- |
| 0.6752 |
368 |
9.1431 |
- |
- |
- |
| 0.6771 |
369 |
8.7564 |
- |
- |
- |
| 0.6789 |
370 |
9.1378 |
- |
- |
- |
| 0.6807 |
371 |
8.8472 |
- |
- |
- |
| 0.6826 |
372 |
8.9159 |
- |
- |
- |
| 0.6844 |
373 |
8.9551 |
- |
- |
- |
| 0.6862 |
374 |
9.2721 |
- |
- |
- |
| 0.6881 |
375 |
8.7511 |
- |
- |
- |
| 0.6899 |
376 |
9.1683 |
- |
- |
- |
| 0.6917 |
377 |
8.8438 |
- |
- |
- |
| 0.6936 |
378 |
8.6151 |
- |
- |
- |
| 0.6954 |
379 |
8.7015 |
- |
- |
- |
| 0.6972 |
380 |
7.6009 |
- |
- |
- |
| 0.6991 |
381 |
7.3242 |
- |
- |
- |
| 0.7009 |
382 |
7.4182 |
- |
- |
- |
| 0.7028 |
383 |
7.2576 |
- |
- |
- |
| 0.7046 |
384 |
7.0578 |
- |
- |
- |
| 0.7064 |
385 |
6.0212 |
- |
- |
- |
| 0.7083 |
386 |
5.9868 |
- |
- |
- |
| 0.7101 |
387 |
6.033 |
- |
- |
- |
| 0.7119 |
388 |
5.8085 |
- |
- |
- |
| 0.7138 |
389 |
5.6002 |
- |
- |
- |
| 0.7156 |
390 |
5.439 |
- |
- |
- |
| 0.7174 |
391 |
5.1661 |
- |
- |
- |
| 0.7193 |
392 |
5.1261 |
- |
- |
- |
| 0.7211 |
393 |
5.5393 |
- |
- |
- |
| 0.7229 |
394 |
4.8909 |
- |
- |
- |
| 0.7248 |
395 |
5.2803 |
- |
- |
- |
| 0.7266 |
396 |
5.1639 |
- |
- |
- |
| 0.7284 |
397 |
4.7125 |
- |
- |
- |
| 0.7303 |
398 |
4.842 |
- |
- |
- |
| 0.7321 |
399 |
5.0971 |
- |
- |
- |
| 0.7339 |
400 |
4.5101 |
5.0650 |
0.8590 |
- |
| 0.7358 |
401 |
4.3422 |
- |
- |
- |
| 0.7376 |
402 |
4.719 |
- |
- |
- |
| 0.7394 |
403 |
4.1823 |
- |
- |
- |
| 0.7413 |
404 |
3.7903 |
- |
- |
- |
| 0.7431 |
405 |
3.886 |
- |
- |
- |
| 0.7450 |
406 |
4.1115 |
- |
- |
- |
| 0.7468 |
407 |
3.9201 |
- |
- |
- |
| 0.7486 |
408 |
3.9291 |
- |
- |
- |
| 0.7505 |
409 |
4.0412 |
- |
- |
- |
| 0.7523 |
410 |
3.6614 |
- |
- |
- |
| 0.7541 |
411 |
3.5718 |
- |
- |
- |
| 0.7560 |
412 |
3.6689 |
- |
- |
- |
| 0.7578 |
413 |
3.7457 |
- |
- |
- |
| 0.7596 |
414 |
3.4272 |
- |
- |
- |
| 0.7615 |
415 |
3.5112 |
- |
- |
- |
| 0.7633 |
416 |
3.8348 |
- |
- |
- |
| 0.7651 |
417 |
3.5177 |
- |
- |
- |
| 0.7670 |
418 |
3.3441 |
- |
- |
- |
| 0.7688 |
419 |
3.362 |
- |
- |
- |
| 0.7706 |
420 |
3.4926 |
- |
- |
- |
| 0.7725 |
421 |
3.4722 |
- |
- |
- |
| 0.7743 |
422 |
2.8568 |
- |
- |
- |
| 0.7761 |
423 |
3.3396 |
- |
- |
- |
| 0.7780 |
424 |
2.972 |
- |
- |
- |
| 0.7798 |
425 |
3.6889 |
- |
- |
- |
| 0.7817 |
426 |
3.5154 |
- |
- |
- |
| 0.7835 |
427 |
3.4098 |
- |
- |
- |
| 0.7853 |
428 |
3.4569 |
- |
- |
- |
| 0.7872 |
429 |
3.4916 |
- |
- |
- |
| 0.7890 |
430 |
3.7394 |
- |
- |
- |
| 0.7908 |
431 |
3.332 |
- |
- |
- |
| 0.7927 |
432 |
3.3767 |
- |
- |
- |
| 0.7945 |
433 |
3.1173 |
- |
- |
- |
| 0.7963 |
434 |
3.2257 |
- |
- |
- |
| 0.7982 |
435 |
3.3629 |
- |
- |
- |
| 0.8 |
436 |
3.1992 |
- |
- |
- |
| 0.8018 |
437 |
3.1252 |
- |
- |
- |
| 0.8037 |
438 |
3.5155 |
- |
- |
- |
| 0.8055 |
439 |
3.2583 |
- |
- |
- |
| 0.8073 |
440 |
2.9001 |
- |
- |
- |
| 0.8092 |
441 |
3.1542 |
- |
- |
- |
| 0.8110 |
442 |
3.0473 |
- |
- |
- |
| 0.8128 |
443 |
3.0446 |
- |
- |
- |
| 0.8147 |
444 |
3.3807 |
- |
- |
- |
| 0.8165 |
445 |
3.1246 |
- |
- |
- |
| 0.8183 |
446 |
3.1922 |
- |
- |
- |
| 0.8202 |
447 |
3.09 |
- |
- |
- |
| 0.8220 |
448 |
3.4341 |
- |
- |
- |
| 0.8239 |
449 |
3.0926 |
- |
- |
- |
| 0.8257 |
450 |
2.9746 |
- |
- |
- |
| 0.8275 |
451 |
3.1014 |
- |
- |
- |
| 0.8294 |
452 |
3.2205 |
- |
- |
- |
| 0.8312 |
453 |
3.1147 |
- |
- |
- |
| 0.8330 |
454 |
2.9682 |
- |
- |
- |
| 0.8349 |
455 |
3.1681 |
- |
- |
- |
| 0.8367 |
456 |
2.9821 |
- |
- |
- |
| 0.8385 |
457 |
2.8484 |
- |
- |
- |
| 0.8404 |
458 |
3.0341 |
- |
- |
- |
| 0.8422 |
459 |
3.0632 |
- |
- |
- |
| 0.8440 |
460 |
3.2026 |
- |
- |
- |
| 0.8459 |
461 |
3.132 |
- |
- |
- |
| 0.8477 |
462 |
3.0209 |
- |
- |
- |
| 0.8495 |
463 |
2.7183 |
- |
- |
- |
| 0.8514 |
464 |
3.0257 |
- |
- |
- |
| 0.8532 |
465 |
3.1462 |
- |
- |
- |
| 0.8550 |
466 |
2.8747 |
- |
- |
- |
| 0.8569 |
467 |
3.0932 |
- |
- |
- |
| 0.8587 |
468 |
3.0097 |
- |
- |
- |
| 0.8606 |
469 |
3.0956 |
- |
- |
- |
| 0.8624 |
470 |
3.019 |
- |
- |
- |
| 0.8642 |
471 |
3.1342 |
- |
- |
- |
| 0.8661 |
472 |
2.688 |
- |
- |
- |
| 0.8679 |
473 |
2.8892 |
- |
- |
- |
| 0.8697 |
474 |
3.1589 |
- |
- |
- |
| 0.8716 |
475 |
2.9274 |
- |
- |
- |
| 0.8734 |
476 |
2.8554 |
- |
- |
- |
| 0.8752 |
477 |
2.694 |
- |
- |
- |
| 0.8771 |
478 |
2.7397 |
- |
- |
- |
| 0.8789 |
479 |
2.6452 |
- |
- |
- |
| 0.8807 |
480 |
3.0158 |
- |
- |
- |
| 0.8826 |
481 |
3.0148 |
- |
- |
- |
| 0.8844 |
482 |
2.5704 |
- |
- |
- |
| 0.8862 |
483 |
2.6755 |
- |
- |
- |
| 0.8881 |
484 |
2.7805 |
- |
- |
- |
| 0.8899 |
485 |
2.8554 |
- |
- |
- |
| 0.8917 |
486 |
2.6966 |
- |
- |
- |
| 0.8936 |
487 |
2.8759 |
- |
- |
- |
| 0.8954 |
488 |
2.8838 |
- |
- |
- |
| 0.8972 |
489 |
2.7885 |
- |
- |
- |
| 0.8991 |
490 |
2.7576 |
- |
- |
- |
| 0.9009 |
491 |
2.9139 |
- |
- |
- |
| 0.9028 |
492 |
2.6583 |
- |
- |
- |
| 0.9046 |
493 |
2.9654 |
- |
- |
- |
| 0.9064 |
494 |
2.551 |
- |
- |
- |
| 0.9083 |
495 |
2.5596 |
- |
- |
- |
| 0.9101 |
496 |
2.9595 |
- |
- |
- |
| 0.9119 |
497 |
2.8677 |
- |
- |
- |
| 0.9138 |
498 |
2.5793 |
- |
- |
- |
| 0.9156 |
499 |
2.5415 |
- |
- |
- |
| 0.9174 |
500 |
2.9738 |
4.8764 |
0.8651 |
- |
| 0.9193 |
501 |
2.5838 |
- |
- |
- |
| 0.9211 |
502 |
2.6544 |
- |
- |
- |
| 0.9229 |
503 |
2.7046 |
- |
- |
- |
| 0.9248 |
504 |
2.6339 |
- |
- |
- |
| 0.9266 |
505 |
2.687 |
- |
- |
- |
| 0.9284 |
506 |
2.7863 |
- |
- |
- |
| 0.9303 |
507 |
2.7409 |
- |
- |
- |
| 0.9321 |
508 |
2.656 |
- |
- |
- |
| 0.9339 |
509 |
2.7456 |
- |
- |
- |
| 0.9358 |
510 |
2.6589 |
- |
- |
- |
| 0.9376 |
511 |
2.697 |
- |
- |
- |
| 0.9394 |
512 |
2.6443 |
- |
- |
- |
| 0.9413 |
513 |
2.7357 |
- |
- |
- |
| 0.9431 |
514 |
2.969 |
- |
- |
- |
| 0.9450 |
515 |
2.4175 |
- |
- |
- |
| 0.9468 |
516 |
2.5424 |
- |
- |
- |
| 0.9486 |
517 |
2.4773 |
- |
- |
- |
| 0.9505 |
518 |
2.6269 |
- |
- |
- |
| 0.9523 |
519 |
2.6288 |
- |
- |
- |
| 0.9541 |
520 |
2.9471 |
- |
- |
- |
| 0.9560 |
521 |
2.9775 |
- |
- |
- |
| 0.9578 |
522 |
2.9949 |
- |
- |
- |
| 0.9596 |
523 |
2.7084 |
- |
- |
- |
| 0.9615 |
524 |
2.6431 |
- |
- |
- |
| 0.9633 |
525 |
2.5849 |
- |
- |
- |
| 0.9651 |
526 |
7.353 |
- |
- |
- |
| 0.9670 |
527 |
9.1463 |
- |
- |
- |
| 0.9688 |
528 |
10.9846 |
- |
- |
- |
| 0.9706 |
529 |
10.6362 |
- |
- |
- |
| 0.9725 |
530 |
10.0763 |
- |
- |
- |
| 0.9743 |
531 |
9.7147 |
- |
- |
- |
| 0.9761 |
532 |
9.3911 |
- |
- |
- |
| 0.9780 |
533 |
9.3722 |
- |
- |
- |
| 0.9798 |
534 |
10.794 |
- |
- |
- |
| 0.9817 |
535 |
11.661 |
- |
- |
- |
| 0.9835 |
536 |
11.4706 |
- |
- |
- |
| 0.9853 |
537 |
12.0868 |
- |
- |
- |
| 0.9872 |
538 |
12.0017 |
- |
- |
- |
| 0.9890 |
539 |
11.7965 |
- |
- |
- |
| 0.9908 |
540 |
12.5961 |
- |
- |
- |
| 0.9927 |
541 |
9.6563 |
- |
- |
- |
| 0.9945 |
542 |
11.5097 |
- |
- |
- |
| 0.9963 |
543 |
12.0945 |
- |
- |
- |
| 0.9982 |
544 |
10.7032 |
- |
- |
- |
| 1.0 |
545 |
10.5622 |
- |
- |
0.8505 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.1.0+cu118
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}