File size: 21,805 Bytes
f4d0231
 
49579c7
7b57542
 
9a3d676
49579c7
abef4eb
 
 
 
 
 
 
f4d0231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f82669f
 
 
 
67c1999
 
abef4eb
67c1999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abef4eb
67c1999
 
 
 
 
 
 
 
 
 
abef4eb
67c1999
 
f82669f
67c1999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f82669f
67c1999
 
 
 
 
f82669f
67c1999
 
 
 
abef4eb
67c1999
 
 
 
 
 
 
f82669f
 
 
67c1999
 
 
7b57542
67c1999
 
 
 
 
 
 
abef4eb
282fb81
 
abef4eb
282fb81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abef4eb
 
 
 
 
 
 
 
282fb81
 
abef4eb
 
 
 
 
 
 
 
282fb81
abef4eb
 
 
282fb81
abef4eb
 
 
 
 
282fb81
 
7b57542
abef4eb
 
 
 
 
 
 
282fb81
abef4eb
 
282fb81
abef4eb
 
 
7b57542
282fb81
 
abef4eb
 
282fb81
 
 
 
 
 
 
 
 
abef4eb
282fb81
 
abef4eb
 
282fb81
abef4eb
 
282fb81
abef4eb
 
282fb81
abef4eb
 
 
282fb81
abef4eb
 
 
282fb81
7b57542
abef4eb
 
 
 
 
 
 
282fb81
abef4eb
 
282fb81
abef4eb
 
 
7b57542
282fb81
7b57542
282fb81
 
abef4eb
282fb81
 
 
abef4eb
282fb81
abef4eb
 
 
 
 
 
282fb81
abef4eb
 
282fb81
abef4eb
 
 
 
282fb81
 
 
abef4eb
 
 
 
 
 
7b57542
abef4eb
 
 
 
 
282fb81
abef4eb
 
 
 
 
 
 
 
282fb81
abef4eb
 
282fb81
abef4eb
 
 
282fb81
7b57542
282fb81
abef4eb
 
282fb81
7b57542
abef4eb
282fb81
 
 
 
 
 
 
 
 
 
abef4eb
 
 
 
 
 
 
282fb81
abef4eb
282fb81
 
abef4eb
 
 
 
 
 
282fb81
abef4eb
282fb81
 
abef4eb
 
 
282fb81
 
abef4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
282fb81
 
 
7b57542
abef4eb
 
 
 
 
 
 
282fb81
abef4eb
 
282fb81
abef4eb
 
 
282fb81
7b57542
282fb81
 
abef4eb
681a703
 
 
 
 
 
 
282fb81
681a703
 
 
 
9a3d676
 
 
681a703
 
9a3d676
7adb5ef
9a3d676
 
 
 
 
 
 
7adb5ef
9a3d676
 
681a703
7adb5ef
9a3d676
7adb5ef
 
9a3d676
7adb5ef
 
 
 
 
9a3d676
681a703
dfcbcda
 
 
 
7adb5ef
681a703
 
 
 
 
abef4eb
dfcbcda
 
 
 
 
 
 
 
 
 
7adb5ef
dfcbcda
 
abef4eb
681a703
 
 
 
9a3d676
 
 
 
dfcbcda
 
 
681a703
dfcbcda
 
 
 
7adb5ef
 
 
 
 
dfcbcda
7adb5ef
 
dfcbcda
abef4eb
282fb81
681a703
 
 
abef4eb
282fb81
9a3d676
abef4eb
dfcbcda
abef4eb
9a3d676
681a703
282fb81
abef4eb
 
681a703
9a3d676
681a703
 
9a3d676
681a703
 
9a3d676
 
681a703
9a3d676
681a703
 
9a3d676
 
 
 
 
 
 
 
 
 
abef4eb
 
7adb5ef
abef4eb
 
 
681a703
 
 
 
abef4eb
 
9a3d676
abef4eb
 
282fb81
abef4eb
681a703
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
"""Response formatting utilities"""

from typing import Any, Dict, List, Optional, Tuple
import plotly.graph_objects as go
import plotly.express as px
import traceback  

def safe_get(data: Dict, key: str, default: Any = None) -> Any:
    """Safely get value from dictionary"""
    try:
        return data.get(key, default)
    except:
        return default


def format_card_display(card_data: Dict) -> str:
    """Format card recommendation for display"""
    card_name = card_data.get("card_name", "Unknown Card")
    reward_rate = card_data.get("reward_rate", 0)
    reward_amount = card_data.get("reward_amount", 0)
    category = card_data.get("category", "General")
    reasoning = card_data.get("reasoning", "")
    
    return f"""
### ๐Ÿ’ณ {card_name}

**Reward Rate:** {reward_rate}x points  
**Reward Amount:** ${reward_amount:.2f}  
**Category:** {category}  
**Why:** {reasoning}
"""

def format_full_recommendation(response: Dict) -> str:
    """Format complete recommendation response"""
    if response.get("error"):
        return f"โŒ **Error:** {response.get('message', 'Unknown error')}"
    
    # Header
    output = f"""
# ๐ŸŽฏ Recommendation for {response.get('merchant', 'Unknown')}

**Amount:** ${response.get('amount_usd', 0):.2f}  
**Date:** {response.get('transaction_date', 'N/A')}  
**User:** {response.get('user_id', 'N/A')}

---

## ๐Ÿ† Best Card to Use

"""
    
    # Recommended card
    recommended = response.get("recommended_card", {})
    output += format_card_display(recommended)
    
    # RAG Insights
    rag_insights = response.get("rag_insights")
    if rag_insights:
        output += f"""
---

## ๐Ÿ“š Card Benefits

{rag_insights.get('benefits', 'No additional information available.')}
"""
        if rag_insights.get('tips'):
            output += f"""
๐Ÿ’ก **Pro Tip:** {rag_insights.get('tips')}
"""
    
    # Forecast Warning
    forecast = response.get("forecast_warning")
    if forecast:
        risk_level = forecast.get("risk_level", "low")
        message = forecast.get("message", "")
        
        if risk_level == "high":
            emoji = "๐Ÿšจ"
        elif risk_level == "medium":
            emoji = "โš ๏ธ"
        else:
            emoji = "โœ…"
        
        output += f"""
---

## {emoji} Spending Status

{message}

**Current Spend:** ${forecast.get('current_spend', 0):.2f}  
**Spending Cap:** ${forecast.get('cap', 0):.2f}  
**Projected Spend:** ${forecast.get('projected_spend', 0):.2f}
"""
    
    # Alternative cards
    alternatives = response.get("alternative_cards", [])
    if alternatives:
        output += "\n---\n\n## ๐Ÿ”„ Alternative Cards\n\n"
        for i, alt in enumerate(alternatives[:2], 1):
            output += f"### Option {i}\n"
            output += format_card_display(alt)
    
    # Metadata
    services = response.get("services_used", [])
    time_ms = response.get("orchestration_time_ms", 0)
    
    output += f"""
---

**Services Used:** {', '.join(services)}  
**Response Time:** {time_ms:.0f}ms
"""
    
    return output

def format_comparison_table(cards: list) -> str:
    """Format card comparison as markdown table"""
    if not cards:
        return "No cards to compare."
    
    table = """
| Card | Reward Rate | Reward Amount | Category |
|------|-------------|---------------|----------|
"""
    
    for card in cards:
        name = card.get("card_name", "Unknown")
        rate = card.get("reward_rate", 0)
        amount = card.get("reward_amount", 0)
        category = card.get("category", "N/A")
        table += f"| {name} | {rate}x | ${amount:.2f} | {category} |\n"
    
    return table

# utils/formatters.py

def format_analytics_metrics(data: Dict) -> Tuple[str, str, str, str]:
    """Format analytics data into HTML metrics, table, insights, and forecast"""
    
    user_id = data.get("user_id", "Unknown User")
    total_spending = data.get("total_spending", 0)
    total_rewards = data.get("total_rewards", 0)
    optimization_score = data.get("optimization_score", 0)
    potential_savings = data.get("potential_savings", 0)
    optimized_count = data.get("optimized_count", 0)
    
    # Calculate rewards rate
    rewards_rate = (total_rewards / total_spending * 100) if total_spending > 0 else 0
    
    # Metrics HTML with user identifier
    metrics_html = f"""
    <div style="display: flex; gap: 10px; flex-wrap: wrap;">
        <div class="metric-card" style="flex: 1; min-width: 200px;">
            <h2>${potential_savings:,.2f}</h2>
            <p>๐Ÿ’ฐ Potential Annual Savings</p>
            <small style="opacity: 0.8;">for {user_id}</small>
        </div>
        <div class="metric-card metric-card-green" style="flex: 1; min-width: 200px;">
            <h2>{rewards_rate:.1f}%</h2>
            <p>๐Ÿ“ˆ Rewards Rate</p>
            <small style="opacity: 0.8;">Effective return</small>
        </div>
        <div class="metric-card metric-card-orange" style="flex: 1; min-width: 200px;">
            <h2>{optimized_count}</h2>
            <p>โœ… Optimized Transactions</p>
            <small style="opacity: 0.8;">This month</small>
        </div>
        <div class="metric-card metric-card-blue" style="flex: 1; min-width: 200px;">
            <h2>{optimization_score}/100</h2>
            <p>โญ Optimization Score</p>
            <small style="opacity: 0.8;">{"Excellent!" if optimization_score >= 85 else "Good!" if optimization_score >= 70 else "Needs work"}</small>
        </div>
    </div>
    """
    
    # Spending table
    spending_by_category = data.get("spending_by_category", {})
    
    if spending_by_category:
        table_rows = "\n".join([
            f"| {category} | ${amount:,.2f} | {(amount/total_spending*100):.1f}% |"
            for category, amount in spending_by_category.items()
        ])
        
        spending_table = f"""
## ๐Ÿ’ณ Spending Breakdown for **{user_id}**

| Category | Amount | % of Total |
|----------|--------|------------|
{table_rows}
| **TOTAL** | **${total_spending:,.2f}** | **100%** |
"""
    else:
        spending_table = f"## ๐Ÿ’ณ Spending Breakdown for **{user_id}**\n\n*No spending data available*"
    
    # Insights
    if spending_by_category:
        top_category = max(spending_by_category.items(), key=lambda x: x[0])[0]
        top_amount = spending_by_category[top_category]
    else:
        top_category = "Unknown"
        top_amount = 0
    
    insights = f"""
## ๐Ÿ’ก Personalized Insights for **{user_id}**

- ๐ŸŽฏ Your top spending category is **{top_category}** (${top_amount:,.2f})
- ๐Ÿ“Š Optimization score: **{optimization_score}/100** - {"๐ŸŽ‰ Excellent!" if optimization_score >= 85 else "๐Ÿ‘ Good!" if optimization_score >= 70 else "โš ๏ธ Room for improvement"}
- ๐Ÿ’ฐ You could save **${potential_savings:,.2f}** annually with better card selection
- ๐Ÿ† Current rewards rate: **{rewards_rate:.2f}%** effective return
- โœ… Optimized **{optimized_count}** transactions this period

**๐Ÿ’ก Quick Tips:**
- Consider cards with higher rewards in {top_category}
- Watch for spending caps on premium cards
- Review quarterly bonus categories
"""
    
    # Forecast
    projected_spending = total_spending * 1.05
    projected_rewards = total_rewards * 1.05
    
    forecast = f"""
## ๐Ÿ”ฎ Forecast for **{user_id}**

Based on your spending patterns:

- ๐Ÿ“ˆ Projected next month spending: **${projected_spending:,.2f}** (โ†‘ 5%)
- ๐Ÿ’Ž Projected rewards: **${projected_rewards:,.2f}**
- ๐ŸŽฏ Potential with optimization: **${projected_rewards * 1.15:,.2f}**

**โš ๏ธ Heads Up:**
- Watch out for category spending caps on premium cards
- Q4 bonus categories may be ending soon
- Consider timing large purchases for maximum rewards
"""
    
    return metrics_html, spending_table, insights, forecast

def create_spending_chart(data: Dict) -> go.Figure:
    """Create spending vs rewards chart"""
    try:
        # Extract data with fallbacks
        spending_by_category = data.get('spending_by_category', {})
        
        if not spending_by_category:
            # Create sample data if none exists
            spending_by_category = {
                'Groceries': 1200.00,
                'Restaurants': 850.00,
                'Gas Stations': 420.00,
                'Online Shopping': 800.00
            }
        
        categories = list(spending_by_category.keys())
        spending = list(spending_by_category.values())
        
        # Calculate rewards (assume 2% average)
        rewards = [s * 0.02 for s in spending]
        
        fig = go.Figure()
        
        fig.add_trace(go.Bar(
            name='Spending',
            x=categories,
            y=spending,
            marker_color='#667eea',
            text=[f'${s:,.0f}' for s in spending],
            textposition='outside'
        ))
        
        fig.add_trace(go.Bar(
            name='Rewards',
            x=categories,
            y=rewards,
            marker_color='#38ef7d',
            text=[f'${r:.2f}' for r in rewards],
            textposition='outside'
        ))
        
        fig.update_layout(
            title='Spending vs Rewards by Category',
            xaxis_title='Category',
            yaxis_title='Amount ($)',
            barmode='group',
            template='plotly_white',
            height=400,
            showlegend=True,
            legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
        )
        
        return fig
        
    except Exception as e:
        print(f"Error creating spending chart: {e}")
        fig = go.Figure()
        fig.add_annotation(
            text="Chart data unavailable",
            xref="paper", yref="paper",
            x=0.5, y=0.5, showarrow=False,
            font=dict(size=14, color="#666")
        )
        fig.update_layout(height=400, template='plotly_white')
        return fig

        
def create_rewards_pie_chart(data: Dict) -> go.Figure:
    """Create rewards distribution pie chart"""
    try:
        rewards_by_card = data.get('rewards_by_card', {})
        
        if not rewards_by_card:
            # Create sample data
            rewards_by_card = {
                'Amex Gold': 95.50,
                'Chase Sapphire Reserve': 62.00,
                'Citi Double Cash': 30.00
            }
        
        cards = list(rewards_by_card.keys())
        rewards = list(rewards_by_card.values())
        
        fig = go.Figure(data=[go.Pie(
            labels=cards,
            values=rewards,
            hole=0.4,
            marker=dict(colors=['#667eea', '#38ef7d', '#f093fb', '#4facfe']),
            textinfo='label+percent',
            textposition='outside',
            hovertemplate='<b>%{label}</b><br>$%{value:.2f}<br>%{percent}<extra></extra>'
        )])
        
        fig.update_layout(
            title='Rewards Distribution by Card',
            template='plotly_white',
            height=400,
            showlegend=True,
            legend=dict(orientation="v", yanchor="middle", y=0.5, xanchor="left", x=1.1)
        )
        
        return fig
        
    except Exception as e:
        print(f"Error creating pie chart: {e}")
        fig = go.Figure()
        fig.add_annotation(
            text="Chart data unavailable",
            xref="paper", yref="paper",
            x=0.5, y=0.5, showarrow=False,
            font=dict(size=14, color="#666")
        )
        fig.update_layout(height=400, template='plotly_white')
        return fig

        

def create_optimization_gauge(data: Dict) -> go.Figure:
    """Create optimization score gauge chart"""
    try:
        # Handle both dict and int input
        if isinstance(data, dict):
            score = data.get('optimization_score', 0)
        else:
            score = int(data) if data else 0
        
        fig = go.Figure(go.Indicator(
            mode="gauge+number+delta",
            value=score,
            domain={'x': [0, 1], 'y': [0, 1]},
            title={'text': "Optimization Score", 'font': {'size': 20}},
            delta={'reference': 80, 'increasing': {'color': "green"}},
            gauge={
                'axis': {'range': [None, 100], 'tickwidth': 1, 'tickcolor': "darkblue"},
                'bar': {'color': "#667eea"},
                'bgcolor': "white",
                'borderwidth': 2,
                'bordercolor': "gray",
                'steps': [
                    {'range': [0, 60], 'color': '#ffcccc'},
                    {'range': [60, 80], 'color': '#fff4cc'},
                    {'range': [80, 100], 'color': '#ccffcc'}
                ],
                'threshold': {
                    'line': {'color': "red", 'width': 4},
                    'thickness': 0.75,
                    'value': 90
                }
            }
        ))
        
        fig.update_layout(
            template='plotly_white',
            height=400,
            margin=dict(l=20, r=20, t=50, b=20)
        )
        
        return fig
        
    except Exception as e:
        print(f"Error creating gauge: {e}")
        fig = go.Figure()
        fig.add_annotation(
            text="Chart data unavailable",
            xref="paper", yref="paper",
            x=0.5, y=0.5, showarrow=False,
            font=dict(size=14, color="#666")
        )
        fig.update_layout(height=400, template='plotly_white')
        return fig
        

def create_trend_line_chart(data: Dict) -> go.Figure:
    """Create monthly trend line chart"""
    try:
        monthly_trends = data.get('monthly_trends', [])
        
        if not monthly_trends:
            # Create sample data
            monthly_trends = [
                {"month": "Aug", "spending": 1200, "rewards": 52},
                {"month": "Sep", "spending": 1450, "rewards": 63},
                {"month": "Oct", "spending": 1600, "rewards": 72}
            ]
        
        months = [t['month'] for t in monthly_trends]
        spending = [t['spending'] for t in monthly_trends]
        rewards = [t['rewards'] for t in monthly_trends]
        
        fig = go.Figure()
        
        fig.add_trace(go.Scatter(
            x=months,
            y=spending,
            mode='lines+markers',
            name='Spending',
            line=dict(color='#667eea', width=3),
            marker=dict(size=10),
            yaxis='y'
        ))
        
        fig.add_trace(go.Scatter(
            x=months,
            y=rewards,
            mode='lines+markers',
            name='Rewards',
            line=dict(color='#38ef7d', width=3),
            marker=dict(size=10),
            yaxis='y2'
        ))
        
        fig.update_layout(
            title='Monthly Spending & Rewards Trends',
            xaxis=dict(title='Month'),
            yaxis=dict(
                title='Spending ($)',
                titlefont=dict(color='#667eea'),
                tickfont=dict(color='#667eea')
            ),
            yaxis2=dict(
                title='Rewards ($)',
                titlefont=dict(color='#38ef7d'),
                tickfont=dict(color='#38ef7d'),
                overlaying='y',
                side='right'
            ),
            template='plotly_white',
            height=400,
            hovermode='x unified',
            showlegend=True,
            legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
        )
        
        return fig
        
    except Exception as e:
        print(f"Error creating trend chart: {e}")
        fig = go.Figure()
        fig.add_annotation(
            text="Chart data unavailable",
            xref="paper", yref="paper",
            x=0.5, y=0.5, showarrow=False,
            font=dict(size=14, color="#666")
        )
        fig.update_layout(height=400, template='plotly_white')
        return fig
        

def create_card_performance_chart(data: Dict) -> go.Figure:
    """Create card performance comparison chart"""
    try:
        # Try multiple possible data keys
        rewards_by_card = (
            data.get('rewards_by_card') or 
            data.get('card_performance') or 
            data.get('top_cards') or 
            {}
        )
        
        print(f"๐Ÿ” DEBUG - rewards_by_card type: {type(rewards_by_card)}")
        print(f"๐Ÿ” DEBUG - rewards_by_card content: {rewards_by_card}")
        
        # Handle different data formats
        cards = []
        rewards = []
        
        if isinstance(rewards_by_card, list):
            # If it's a list of dicts like [{"card": "Amex", "rewards": 95.50}, ...]
            for item in rewards_by_card:
                card_name = str(item.get('card', item.get('card_name', 'Unknown')))
                reward_value = item.get('rewards', item.get('reward_amount', 0))
                
                cards.append(card_name)
                # Convert to float, handle strings
                try:
                    rewards.append(float(reward_value))
                except (ValueError, TypeError):
                    print(f"โš ๏ธ Could not convert reward value: {reward_value}")
                    rewards.append(0.0)
                    
        elif isinstance(rewards_by_card, dict):
            # If it's a dict like {"Amex Gold": 85.0, "Chase": 62.00}
            for card_name, reward_value in rewards_by_card.items():
                cards.append(str(card_name))
                # Convert to float, handle strings and any type
                try:
                    reward_float = float(reward_value)
                    rewards.append(reward_float)
                    print(f"โœ… Converted {card_name}: {reward_value} ({type(reward_value)}) -> {reward_float}")
                except (ValueError, TypeError) as e:
                    print(f"โš ๏ธ Could not convert reward value for {card_name}: {reward_value} - {e}")
                    rewards.append(0.0)
        
        # Debug: Check what we have BEFORE sorting
        print(f"๐Ÿ“Š BEFORE SORT - Cards: {cards}")
        print(f"๐Ÿ“Š BEFORE SORT - Rewards: {rewards}")
        print(f"๐Ÿ“Š BEFORE SORT - Rewards types: {[type(r) for r in rewards]}")
        
        # If still no data, create sample data
        if not cards or sum(rewards) == 0:
            print("โš ๏ธ No card performance data, using sample data")
            cards = ['Amex Gold', 'Chase Sapphire Reserve', 'Citi Double Cash']
            rewards = [95.50, 62.00, 30.00]
        
        # Sort by rewards (highest first) - FIXED: ensure both are in the tuple
        sorted_pairs = sorted(
            list(zip(cards, rewards)), 
            key=lambda pair: pair[1],  # Sort by reward (second element)
            reverse=True
        )
        
        # Unpack sorted pairs
        cards = [pair[0] for pair in sorted_pairs]
        rewards = [pair[1] for pair in sorted_pairs]
        
        print(f"๐Ÿ“Š AFTER SORT - Cards: {cards}")
        print(f"๐Ÿ“Š AFTER SORT - Rewards: {rewards}")
        
        # Take top 5 only
        cards = cards[:5]
        rewards = rewards[:5]
        
        # Reverse for bottom-to-top display
        cards = cards[::-1]
        rewards = rewards[::-1]
        
        print(f"๐Ÿ“Š FINAL - Cards: {cards}")
        print(f"๐Ÿ“Š FINAL - Rewards: {rewards}")
        
        # Create color gradient (darker = better performance)
        if not rewards:
            rewards = [0.0]
        
        max_reward = max(rewards)  # Already floats, no need to convert
        print(f"๐Ÿ“Š Max reward: {max_reward} (type: {type(max_reward)})")
        
        # Calculate colors with explicit float division
        colors = []
        for r in rewards:
            opacity = 0.4 + 0.6 * (r / max_reward) if max_reward > 0 else 0.5
            color = f'rgba(102, 126, 234, {opacity:.2f})'
            colors.append(color)
            print(f"  Color for ${r:.2f}: {color}")
        
        fig = go.Figure(data=[go.Bar(
            y=cards,  # Horizontal bar chart
            x=rewards,
            orientation='h',
            marker=dict(
                color=colors,
                line=dict(color='#667eea', width=1)
            ),
            text=[f'${r:.2f}' for r in rewards],
            textposition='outside',
            textfont=dict(size=12, color='#333'),
            hovertemplate='<b>%{y}</b><br>Total Rewards: $%{x:.2f}<extra></extra>'
        )])
        
        fig.update_layout(
            title={
                'text': '๐Ÿ† Top Performing Cards',
                'x': 0.5,
                'xanchor': 'center',
                'font': {'size': 16, 'color': '#333'}
            },
            xaxis=dict(
                title='Total Rewards Earned ($)',
                showgrid=True,
                gridcolor='#f0f0f0',
                zeroline=False
            ),
            yaxis=dict(
                title='',
                showgrid=False,
                tickfont=dict(size=11)
            ),
            template='plotly_white',
            height=400,
            showlegend=False,
            margin=dict(l=180, r=80, t=60, b=50),
            plot_bgcolor='rgba(0,0,0,0)',
            paper_bgcolor='white'
        )
        
        print("โœ… Chart created successfully!")
        return fig
        
    except Exception as e:
        print(f"โŒ Error creating card performance chart: {e}")
        print(f"๐Ÿ“‹ Traceback: {traceback.format_exc()}")
        
        # Return empty chart with error message
        fig = go.Figure()
        fig.add_annotation(
            text="Chart data unavailable",
            xref="paper", yref="paper",
            x=0.5, y=0.5, showarrow=False,
            font=dict(size=14, color="#666")
        )
        fig.update_layout(
            height=400, 
            template='plotly_white',
            title='Top Performing Cards'
        )
        return fig