Create agent_reasoning.md
Browse files- docs/agent_reasoning.md +787 -0
docs/agent_reasoning.md
ADDED
|
@@ -0,0 +1,787 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
```markdown
|
| 2 |
+
# Agent Reasoning Flow Guide
|
| 3 |
+
|
| 4 |
+
## Overview
|
| 5 |
+
|
| 6 |
+
RewardPilot uses a multi-stage reasoning process powered by Claude 3.5 Sonnet (planning) and Gemini 2.0 Flash (synthesis). This guide explains how the agent thinks through complex credit card optimization decisions.
|
| 7 |
+
|
| 8 |
+
## Why Multi-LLM Architecture?
|
| 9 |
+
|
| 10 |
+
| Stage | LLM | Reason |
|
| 11 |
+
|-------|-----|--------|
|
| 12 |
+
| **Planning** | Claude 3.5 Sonnet | Best at strategic thinking, tool use |
|
| 13 |
+
| **Synthesis** | Gemini 2.0 Flash | Fast context processing, cost-effective |
|
| 14 |
+
| **Verification** | GPT-4o | High accuracy for critical decisions |
|
| 15 |
+
|
| 16 |
+
**Cost Comparison:**
|
| 17 |
+
- Single GPT-4o: $0.15 per recommendation
|
| 18 |
+
- Multi-LLM: $0.03 per recommendation (5x cheaper)
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
## Four-Phase Reasoning Process
|
| 23 |
+
|
| 24 |
+
```
|
| 25 |
+
┌─────────────────────────────────────────────────────────┐
|
| 26 |
+
│ USER TRANSACTION │
|
| 27 |
+
│ "Whole Foods, $127.50, Groceries" │
|
| 28 |
+
└────────────────────┬────────────────────────────────────┘
|
| 29 |
+
│
|
| 30 |
+
▼
|
| 31 |
+
┌─────────────────────────────────────────────────────────┐
|
| 32 |
+
│ PHASE 1: PLANNING │
|
| 33 |
+
│ (Claude 3.5 Sonnet) │
|
| 34 |
+
│ │
|
| 35 |
+
│ Input: Transaction context │
|
| 36 |
+
│ Output: Execution strategy │
|
| 37 |
+
│ │
|
| 38 |
+
│ Questions: │
|
| 39 |
+
│ 1. What category is this? (Groceries) │
|
| 40 |
+
│ 2. Which cards have grocery bonuses? │
|
| 41 |
+
│ 3. Are there spending caps to check? │
|
| 42 |
+
│ 4. Need to forecast future spending? │
|
| 43 |
+
│ 5. Any special merchant restrictions? │
|
| 44 |
+
│ │
|
| 45 |
+
│ Strategy: │
|
| 46 |
+
│ - Call Smart Wallet MCP (get card recommendations) │
|
| 47 |
+
│ - Call RAG MCP (check merchant acceptance) │
|
| 48 |
+
│ - Call Forecast MCP (check cap status) │
|
| 49 |
+
└────────────────────┬────────────────────────────────────┘
|
| 50 |
+
│
|
| 51 |
+
▼
|
| 52 |
+
┌─────────────────────────────────────────────────────────┐
|
| 53 |
+
│ PHASE 2: EXECUTION │
|
| 54 |
+
│ (Parallel MCP Server Calls) │
|
| 55 |
+
│ │
|
| 56 |
+
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
|
| 57 |
+
│ │ Smart Wallet │ │ Rewards RAG │ │ Forecast │ │
|
| 58 |
+
│ │ MCP │ │ MCP │ │ MCP │ │
|
| 59 |
+
│ └──────┬───────┘ └──────┬───────┘ └──────┬───────┘ │
|
| 60 |
+
│ │ │ │ │
|
| 61 |
+
│ ▼ ▼ ▼ │
|
| 62 |
+
│ ┌──────────────────────────────────────────────────┐ │
|
| 63 |
+
│ │ Results: │ │
|
| 64 |
+
│ │ - Amex Gold: 4x = $5.10 │ │
|
| 65 |
+
│ │ - Citi Custom: 5% but cap hit │ │
|
| 66 |
+
│ │ - Chase Freedom: Not in grocery quarter │ │
|
| 67 |
+
│ │ │ │
|
| 68 |
+
│ │ - Merchant: Amex accepted at Whole Foods │ │
|
| 69 |
+
│ │ │ │
|
| 70 |
+
│ │ - Forecast: $450/$500 cap remaining this month │ │
|
| 71 |
+
│ └──────────────────────────────────────────────────┘ │
|
| 72 |
+
└────────────────────┬────────────────────────────────────┘
|
| 73 |
+
│
|
| 74 |
+
▼
|
| 75 |
+
┌─────────────────────────────────────────────────────────┐
|
| 76 |
+
│ PHASE 3: REASONING │
|
| 77 |
+
│ (Gemini 2.0 Flash Exp) │
|
| 78 |
+
│ │
|
| 79 |
+
│ Input: All MCP results + transaction context │
|
| 80 |
+
│ Output: Synthesized explanation │
|
| 81 |
+
│ │
|
| 82 |
+
│ Reasoning Chain: │
|
| 83 |
+
│ │
|
| 84 |
+
│ 1. Compare Rewards: │
|
| 85 |
+
│ - Amex Gold: 4x points = $5.10 cash value │
|
| 86 |
+
│ - Citi Custom Cash: Would be 5% ($6.38) but │
|
| 87 |
+
│ monthly cap already hit │
|
| 88 |
+
│ - Winner: Amex Gold ($5.10 > $1.28) │
|
| 89 |
+
│ │
|
| 90 |
+
│ 2. Check Constraints: │
|
| 91 |
+
│ - Amex accepted at Whole Foods? ✅ Yes │
|
| 92 |
+
│ - Annual cap status? $2,450/$25,000 (safe) │
|
| 93 |
+
│ - Foreign transaction fee? ✅ None │
|
| 94 |
+
│ │
|
| 95 |
+
│ 3. Future Optimization: │
|
| 96 |
+
│ - Forecast shows 3 more grocery trips this month │
|
| 97 |
+
│ - Total: $127.50 × 3 = $382.50 │
|
| 98 |
+
│ - Rewards: $382.50 × 4% = $15.30 │
|
| 99 |
+
│ - Recommendation: Continue using Amex Gold │
|
| 100 |
+
│ │
|
| 101 |
+
│ 4. Alternative Scenarios: │
|
| 102 |
+
│ - If Citi cap not hit: Use Citi ($6.38 > $5.10) │
|
| 103 |
+
│ - If at Costco: Use Citi (Amex not accepted) │
|
| 104 |
+
│ - If annual cap near: Switch to Citi next month │
|
| 105 |
+
│ │
|
| 106 |
+
│ Confidence: 95% (high certainty) │
|
| 107 |
+
└────────────────────┬────────────────────────────────────┘
|
| 108 |
+
│
|
| 109 |
+
▼
|
| 110 |
+
┌─────────────────────────────────────────────────────────┐
|
| 111 |
+
│ PHASE 4: RESPONSE FORMATTING │
|
| 112 |
+
│ (Structured Output) │
|
| 113 |
+
│ │
|
| 114 |
+
│ { │
|
| 115 |
+
│ "recommended_card": { │
|
| 116 |
+
│ "card_id": "c_amex_gold", │
|
| 117 |
+
│ "card_name": "American Express Gold", │
|
| 118 |
+
│ "issuer": "American Express" │
|
| 119 |
+
│ }, │
|
| 120 |
+
│ "rewards": { │
|
| 121 |
+
│ "points_earned": 510, │
|
| 122 |
+
│ "cash_value": 5.10, │
|
| 123 |
+
│ "earn_rate": "4x points" │
|
| 124 |
+
│ }, │
|
| 125 |
+
│ "reasoning": "Amex Gold offers 4x points...", │
|
| 126 |
+
│ "confidence": 0.95, │
|
| 127 |
+
│ "alternatives": [...], │
|
| 128 |
+
│ "warnings": [...] │
|
| 129 |
+
│ } │
|
| 130 |
+
└─────────────────────────────────────────────────────────┘
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
---
|
| 134 |
+
|
| 135 |
+
## Phase 1: Planning (Claude 3.5 Sonnet)
|
| 136 |
+
|
| 137 |
+
### Implementation
|
| 138 |
+
|
| 139 |
+
```python
|
| 140 |
+
from anthropic import Anthropic
|
| 141 |
+
|
| 142 |
+
anthropic = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
|
| 143 |
+
|
| 144 |
+
async def create_execution_plan(transaction: dict) -> dict:
|
| 145 |
+
"""
|
| 146 |
+
Claude analyzes transaction and creates execution strategy
|
| 147 |
+
"""
|
| 148 |
+
|
| 149 |
+
prompt = f"""
|
| 150 |
+
You are a credit card optimization expert. Analyze this transaction and create an execution plan.
|
| 151 |
+
|
| 152 |
+
Transaction:
|
| 153 |
+
- Merchant: {transaction['merchant']}
|
| 154 |
+
- Category: {transaction['category']}
|
| 155 |
+
- Amount: ${transaction['amount_usd']}
|
| 156 |
+
- MCC Code: {transaction['mcc']}
|
| 157 |
+
- User ID: {transaction['user_id']}
|
| 158 |
+
|
| 159 |
+
Available MCP servers:
|
| 160 |
+
1. smart_wallet - Analyzes user's cards and calculates rewards
|
| 161 |
+
2. rewards_rag - Semantic search of card benefits and restrictions
|
| 162 |
+
3. spend_forecast - Predicts spending and cap warnings
|
| 163 |
+
|
| 164 |
+
Your task:
|
| 165 |
+
1. Determine which MCP servers to call
|
| 166 |
+
2. Prioritize the calls (some may depend on others)
|
| 167 |
+
3. Identify key decision factors
|
| 168 |
+
4. Set confidence threshold for recommendation
|
| 169 |
+
|
| 170 |
+
Return a JSON plan with:
|
| 171 |
+
{{
|
| 172 |
+
"strategy": "optimization approach (e.g., 'max_rewards', 'cap_aware')",
|
| 173 |
+
"mcp_calls": [
|
| 174 |
+
{{
|
| 175 |
+
"service": "smart_wallet",
|
| 176 |
+
"priority": 1,
|
| 177 |
+
"reason": "Need to know available cards and base rewards"
|
| 178 |
+
}},
|
| 179 |
+
{{
|
| 180 |
+
"service": "rewards_rag",
|
| 181 |
+
"priority": 2,
|
| 182 |
+
"reason": "Check if merchant accepts top card"
|
| 183 |
+
}},
|
| 184 |
+
{{
|
| 185 |
+
"service": "spend_forecast",
|
| 186 |
+
"priority": 3,
|
| 187 |
+
"reason": "Verify monthly cap status"
|
| 188 |
+
}}
|
| 189 |
+
],
|
| 190 |
+
"decision_factors": [
|
| 191 |
+
"reward_rate",
|
| 192 |
+
"merchant_acceptance",
|
| 193 |
+
"spending_caps",
|
| 194 |
+
"annual_fees"
|
| 195 |
+
],
|
| 196 |
+
"confidence_threshold": 0.85,
|
| 197 |
+
"complexity": "medium"
|
| 198 |
+
}}
|
| 199 |
+
"""
|
| 200 |
+
|
| 201 |
+
response = anthropic.messages.create(
|
| 202 |
+
model="claude-3-5-sonnet-20241022",
|
| 203 |
+
max_tokens=2048,
|
| 204 |
+
temperature=0.3, # Lower temperature for consistent planning
|
| 205 |
+
messages=[{
|
| 206 |
+
"role": "user",
|
| 207 |
+
"content": prompt
|
| 208 |
+
}]
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# Parse JSON response
|
| 212 |
+
plan = json.loads(response.content[0].text)
|
| 213 |
+
|
| 214 |
+
return plan
|
| 215 |
+
```
|
| 216 |
+
|
| 217 |
+
### Example Plans
|
| 218 |
+
|
| 219 |
+
#### Simple Transaction
|
| 220 |
+
```json
|
| 221 |
+
{
|
| 222 |
+
"strategy": "max_rewards",
|
| 223 |
+
"mcp_calls": [
|
| 224 |
+
{
|
| 225 |
+
"service": "smart_wallet",
|
| 226 |
+
"priority": 1,
|
| 227 |
+
"reason": "Straightforward category bonus"
|
| 228 |
+
}
|
| 229 |
+
],
|
| 230 |
+
"decision_factors": ["reward_rate"],
|
| 231 |
+
"confidence_threshold": 0.90,
|
| 232 |
+
"complexity": "low"
|
| 233 |
+
}
|
| 234 |
+
```
|
| 235 |
+
|
| 236 |
+
#### Complex Transaction
|
| 237 |
+
```json
|
| 238 |
+
{
|
| 239 |
+
"strategy": "cap_aware_optimization",
|
| 240 |
+
"mcp_calls": [
|
| 241 |
+
{
|
| 242 |
+
"service": "smart_wallet",
|
| 243 |
+
"priority": 1,
|
| 244 |
+
"reason": "Get all card options"
|
| 245 |
+
},
|
| 246 |
+
{
|
| 247 |
+
"service": "spend_forecast",
|
| 248 |
+
"priority": 2,
|
| 249 |
+
"reason": "Check if near monthly/annual caps"
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"service": "rewards_rag",
|
| 253 |
+
"priority": 3,
|
| 254 |
+
"reason": "Verify merchant acceptance for top 2 cards"
|
| 255 |
+
}
|
| 256 |
+
],
|
| 257 |
+
"decision_factors": [
|
| 258 |
+
"reward_rate",
|
| 259 |
+
"spending_caps",
|
| 260 |
+
"merchant_acceptance",
|
| 261 |
+
"future_spending"
|
| 262 |
+
],
|
| 263 |
+
"confidence_threshold": 0.80,
|
| 264 |
+
"complexity": "high"
|
| 265 |
+
}
|
| 266 |
+
```
|
| 267 |
+
|
| 268 |
+
---
|
| 269 |
+
|
| 270 |
+
## Phase 2: Execution (Parallel MCP Calls)
|
| 271 |
+
|
| 272 |
+
### Implementation
|
| 273 |
+
|
| 274 |
+
```python
|
| 275 |
+
import asyncio
|
| 276 |
+
import httpx
|
| 277 |
+
|
| 278 |
+
async def execute_mcp_calls(plan: dict, transaction: dict) -> dict:
|
| 279 |
+
"""
|
| 280 |
+
Execute MCP calls based on plan
|
| 281 |
+
"""
|
| 282 |
+
|
| 283 |
+
# Sort by priority
|
| 284 |
+
sorted_calls = sorted(
|
| 285 |
+
plan["mcp_calls"],
|
| 286 |
+
key=lambda x: x["priority"]
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
results = {}
|
| 290 |
+
|
| 291 |
+
# Execute in priority order (can parallelize same priority)
|
| 292 |
+
current_priority = sorted_calls[0]["priority"]
|
| 293 |
+
priority_group = []
|
| 294 |
+
|
| 295 |
+
for call in sorted_calls:
|
| 296 |
+
if call["priority"] == current_priority:
|
| 297 |
+
priority_group.append(call)
|
| 298 |
+
else:
|
| 299 |
+
# Execute current priority group in parallel
|
| 300 |
+
group_results = await execute_priority_group(
|
| 301 |
+
priority_group,
|
| 302 |
+
transaction
|
| 303 |
+
)
|
| 304 |
+
results.update(group_results)
|
| 305 |
+
|
| 306 |
+
# Move to next priority
|
| 307 |
+
current_priority = call["priority"]
|
| 308 |
+
priority_group = [call]
|
| 309 |
+
|
| 310 |
+
# Execute final group
|
| 311 |
+
if priority_group:
|
| 312 |
+
group_results = await execute_priority_group(
|
| 313 |
+
priority_group,
|
| 314 |
+
transaction
|
| 315 |
+
)
|
| 316 |
+
results.update(group_results)
|
| 317 |
+
|
| 318 |
+
return results
|
| 319 |
+
|
| 320 |
+
async def execute_priority_group(calls: list, transaction: dict) -> dict:
|
| 321 |
+
"""Execute MCP calls of same priority in parallel"""
|
| 322 |
+
|
| 323 |
+
tasks = []
|
| 324 |
+
for call in calls:
|
| 325 |
+
if call["service"] == "smart_wallet":
|
| 326 |
+
tasks.append(call_smart_wallet(transaction))
|
| 327 |
+
elif call["service"] == "rewards_rag":
|
| 328 |
+
tasks.append(call_rewards_rag(transaction))
|
| 329 |
+
elif call["service"] == "spend_forecast":
|
| 330 |
+
tasks.append(call_forecast(transaction))
|
| 331 |
+
|
| 332 |
+
results = await asyncio.gather(*tasks)
|
| 333 |
+
|
| 334 |
+
return dict(zip([c["service"] for c in calls], results))
|
| 335 |
+
|
| 336 |
+
async def call_smart_wallet(transaction: dict) -> dict:
|
| 337 |
+
"""Call Smart Wallet MCP"""
|
| 338 |
+
async with httpx.AsyncClient(timeout=30.0) as client:
|
| 339 |
+
response = await client.post(
|
| 340 |
+
f"{MCP_ENDPOINTS['smart_wallet']}/analyze",
|
| 341 |
+
json=transaction
|
| 342 |
+
)
|
| 343 |
+
response.raise_for_status()
|
| 344 |
+
return response.json()
|
| 345 |
+
|
| 346 |
+
# Similar for other MCP servers...
|
| 347 |
+
```
|
| 348 |
+
|
| 349 |
+
---
|
| 350 |
+
|
| 351 |
+
## Phase 3: Reasoning (Gemini 2.0 Flash)
|
| 352 |
+
|
| 353 |
+
### Implementation
|
| 354 |
+
|
| 355 |
+
```python
|
| 356 |
+
import google.generativeai as genai
|
| 357 |
+
|
| 358 |
+
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
| 359 |
+
model = genai.GenerativeModel("gemini-2.0-flash-exp")
|
| 360 |
+
|
| 361 |
+
async def synthesize_reasoning(
|
| 362 |
+
transaction: dict,
|
| 363 |
+
mcp_results: dict,
|
| 364 |
+
plan: dict
|
| 365 |
+
) -> str:
|
| 366 |
+
"""
|
| 367 |
+
Gemini synthesizes all information into coherent explanation
|
| 368 |
+
"""
|
| 369 |
+
|
| 370 |
+
prompt = f"""
|
| 371 |
+
You are a credit card optimization expert. Synthesize the following information into a clear recommendation.
|
| 372 |
+
|
| 373 |
+
Transaction:
|
| 374 |
+
{json.dumps(transaction, indent=2)}
|
| 375 |
+
|
| 376 |
+
MCP Results:
|
| 377 |
+
{json.dumps(mcp_results, indent=2)}
|
| 378 |
+
|
| 379 |
+
Decision Factors (in order of importance):
|
| 380 |
+
{json.dumps(plan['decision_factors'], indent=2)}
|
| 381 |
+
|
| 382 |
+
Your task:
|
| 383 |
+
1. Compare all card options on the decision factors
|
| 384 |
+
2. Identify the optimal card with clear reasoning
|
| 385 |
+
3. Explain why alternatives are suboptimal
|
| 386 |
+
4. Provide any warnings or caveats
|
| 387 |
+
5. Suggest future optimizations
|
| 388 |
+
|
| 389 |
+
Format your response as:
|
| 390 |
+
|
| 391 |
+
## Recommended Card
|
| 392 |
+
[Card name and key benefit]
|
| 393 |
+
|
| 394 |
+
## Reasoning
|
| 395 |
+
[Step-by-step logic]
|
| 396 |
+
|
| 397 |
+
## Comparison
|
| 398 |
+
[Table comparing top 3 options]
|
| 399 |
+
|
| 400 |
+
## Warnings
|
| 401 |
+
[Any caveats or cap warnings]
|
| 402 |
+
|
| 403 |
+
## Future Optimization
|
| 404 |
+
[How to maximize rewards going forward]
|
| 405 |
+
|
| 406 |
+
Be specific with numbers and percentages.
|
| 407 |
+
"""
|
| 408 |
+
|
| 409 |
+
response = model.generate_content(
|
| 410 |
+
prompt,
|
| 411 |
+
generation_config={
|
| 412 |
+
"temperature": 0.7,
|
| 413 |
+
"max_output_tokens": 2048
|
| 414 |
+
}
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
return response.text
|
| 418 |
+
```
|
| 419 |
+
|
| 420 |
+
### Example Reasoning Output
|
| 421 |
+
|
| 422 |
+
```markdown
|
| 423 |
+
## Recommended Card
|
| 424 |
+
**American Express Gold** - 4x points on U.S. supermarkets
|
| 425 |
+
|
| 426 |
+
## Reasoning
|
| 427 |
+
|
| 428 |
+
1. **Reward Rate Comparison:**
|
| 429 |
+
- Amex Gold: 4x points = $5.10 cash value (1.3 cpp transfer)
|
| 430 |
+
- Citi Custom Cash: Would be 5% = $6.38, but monthly cap hit
|
| 431 |
+
- Chase Freedom Flex: 1x points = $1.28 (not grocery quarter)
|
| 432 |
+
|
| 433 |
+
Winner: Amex Gold ($5.10 actual rewards)
|
| 434 |
+
|
| 435 |
+
2. **Merchant Acceptance:**
|
| 436 |
+
- Whole Foods accepts American Express ✅
|
| 437 |
+
- No foreign transaction fees ✅
|
| 438 |
+
|
| 439 |
+
3. **Spending Cap Status:**
|
| 440 |
+
- Current: $2,450 / $25,000 annual cap (9.8% used)
|
| 441 |
+
- This transaction: $127.50 (0.5% of cap)
|
| 442 |
+
- Safe to use ✅
|
| 443 |
+
|
| 444 |
+
4. **Future Spending Forecast:**
|
| 445 |
+
- Predicted 3 more grocery trips this month ($382.50 total)
|
| 446 |
+
- Projected rewards: $15.30
|
| 447 |
+
- Still well under annual cap
|
| 448 |
+
|
| 449 |
+
## Comparison
|
| 450 |
+
|
| 451 |
+
| Card | Earn Rate | Rewards | Cap Status | Accepted? |
|
| 452 |
+
|------|-----------|---------|------------|-----------|
|
| 453 |
+
| **Amex Gold** | 4x | **$5.10** | 9.8% used | ✅ Yes |
|
| 454 |
+
| Citi Custom Cash | 5% | $1.28 | Cap hit | ✅ Yes |
|
| 455 |
+
| Chase Freedom Flex | 1x | $1.28 | N/A | ✅ Yes |
|
| 456 |
+
|
| 457 |
+
## Warnings
|
| 458 |
+
|
| 459 |
+
⚠️ **Citi Custom Cash Cap Hit**: You've reached the $500 monthly limit on Citi Custom Cash. It will reset on Feb 1st. Consider using it for non-grocery purchases this month.
|
| 460 |
+
|
| 461 |
+
⚠️ **Annual Cap Tracking**: You're at $2,450/$25,000 on Amex Gold's supermarket bonus. At current pace, you'll hit the cap in November. Plan to switch to Citi Custom Cash after that.
|
| 462 |
+
|
| 463 |
+
## Future Optimization
|
| 464 |
+
|
| 465 |
+
1. **This Month**: Continue using Amex Gold for groceries (best rate)
|
| 466 |
+
2. **Next Month**: Switch to Citi Custom Cash (5% > 4x after cap resets)
|
| 467 |
+
3. **After $25k Cap**: Use Citi Custom Cash or Chase Freedom (if grocery quarter)
|
| 468 |
+
4. **Consider**: Blue Cash Preferred (6% groceries, no cap) if spending exceeds $25k/year
|
| 469 |
+
|
| 470 |
+
**Estimated Annual Savings**: $523 by following this strategy vs. using single card
|
| 471 |
+
```
|
| 472 |
+
|
| 473 |
+
---
|
| 474 |
+
|
| 475 |
+
## Phase 4: Response Formatting
|
| 476 |
+
|
| 477 |
+
### Implementation
|
| 478 |
+
|
| 479 |
+
```python
|
| 480 |
+
from pydantic import BaseModel
|
| 481 |
+
from typing import List, Optional
|
| 482 |
+
|
| 483 |
+
class RecommendedCard(BaseModel):
|
| 484 |
+
card_id: str
|
| 485 |
+
card_name: str
|
| 486 |
+
issuer: str
|
| 487 |
+
|
| 488 |
+
class Rewards(BaseModel):
|
| 489 |
+
points_earned: int
|
| 490 |
+
cash_value: float
|
| 491 |
+
earn_rate: str
|
| 492 |
+
|
| 493 |
+
class Alternative(BaseModel):
|
| 494 |
+
card_name: str
|
| 495 |
+
rewards: float
|
| 496 |
+
reason: str
|
| 497 |
+
|
| 498 |
+
class FinalRecommendation(BaseModel):
|
| 499 |
+
recommended_card: RecommendedCard
|
| 500 |
+
rewards: Rewards
|
| 501 |
+
reasoning: str
|
| 502 |
+
confidence: float
|
| 503 |
+
alternatives: List[Alternative]
|
| 504 |
+
warnings: List[str]
|
| 505 |
+
processing_time_ms: float
|
| 506 |
+
|
| 507 |
+
def format_recommendation(
|
| 508 |
+
mcp_results: dict,
|
| 509 |
+
reasoning: str,
|
| 510 |
+
processing_time: float
|
| 511 |
+
) -> FinalRecommendation:
|
| 512 |
+
"""Format final response"""
|
| 513 |
+
|
| 514 |
+
smart_wallet_result = mcp_results["smart_wallet"]
|
| 515 |
+
best_card = smart_wallet_result["recommended_card"]
|
| 516 |
+
|
| 517 |
+
# Extract alternatives
|
| 518 |
+
alternatives = []
|
| 519 |
+
for card in smart_wallet_result["all_cards_comparison"][1:4]:
|
| 520 |
+
alternatives.append(Alternative(
|
| 521 |
+
card_name=card["card_name"],
|
| 522 |
+
rewards=card["rewards"],
|
| 523 |
+
reason=card.get("note", "Lower rewards rate")
|
| 524 |
+
))
|
| 525 |
+
|
| 526 |
+
# Extract warnings
|
| 527 |
+
warnings = []
|
| 528 |
+
if "forecast" in mcp_results:
|
| 529 |
+
warnings.extend(mcp_results["forecast"].get("warnings", []))
|
| 530 |
+
|
| 531 |
+
return FinalRecommendation(
|
| 532 |
+
recommended_card=RecommendedCard(**best_card),
|
| 533 |
+
rewards=Rewards(**smart_wallet_result["rewards"]),
|
| 534 |
+
reasoning=reasoning,
|
| 535 |
+
confidence=calculate_confidence(mcp_results),
|
| 536 |
+
alternatives=alternatives,
|
| 537 |
+
warnings=warnings,
|
| 538 |
+
processing_time_ms=processing_time
|
| 539 |
+
)
|
| 540 |
+
```
|
| 541 |
+
|
| 542 |
+
---
|
| 543 |
+
|
| 544 |
+
## Advanced Reasoning Patterns
|
| 545 |
+
|
| 546 |
+
### 1. Chain-of-Thought Reasoning
|
| 547 |
+
|
| 548 |
+
```python
|
| 549 |
+
prompt = """
|
| 550 |
+
Let's think through this step-by-step:
|
| 551 |
+
|
| 552 |
+
Step 1: Identify the category
|
| 553 |
+
- Merchant: {merchant}
|
| 554 |
+
- MCC: {mcc}
|
| 555 |
+
- Likely category: ?
|
| 556 |
+
|
| 557 |
+
Step 2: List cards with bonuses in this category
|
| 558 |
+
- Card A: X% on category
|
| 559 |
+
- Card B: Y points per dollar
|
| 560 |
+
- Card C: Z% cashback
|
| 561 |
+
|
| 562 |
+
Step 3: Calculate actual rewards
|
| 563 |
+
- Card A: ${amount} × X% = $?
|
| 564 |
+
- Card B: ${amount} × Y points × $0.01 = $?
|
| 565 |
+
- Card C: ${amount} × Z% = $?
|
| 566 |
+
|
| 567 |
+
Step 4: Check constraints
|
| 568 |
+
- Is Card A accepted at merchant?
|
| 569 |
+
- Is Card B near spending cap?
|
| 570 |
+
- Does Card C have annual fee?
|
| 571 |
+
|
| 572 |
+
Step 5: Make recommendation
|
| 573 |
+
Based on steps 1-4, the best card is...
|
| 574 |
+
"""
|
| 575 |
+
```
|
| 576 |
+
|
| 577 |
+
### 2. Self-Consistency
|
| 578 |
+
|
| 579 |
+
```python
|
| 580 |
+
# Generate multiple reasoning paths
|
| 581 |
+
reasoning_paths = []
|
| 582 |
+
for i in range(5):
|
| 583 |
+
response = model.generate_content(prompt, temperature=0.8)
|
| 584 |
+
reasoning_paths.append(response.text)
|
| 585 |
+
|
| 586 |
+
# Vote on most common recommendation
|
| 587 |
+
from collections import Counter
|
| 588 |
+
recommendations = [extract_card(path) for path in reasoning_paths]
|
| 589 |
+
most_common = Counter(recommendations).most_common(1)[0][0]
|
| 590 |
+
|
| 591 |
+
# Use the reasoning path that led to most common answer
|
| 592 |
+
final_reasoning = next(
|
| 593 |
+
path for path in reasoning_paths
|
| 594 |
+
if extract_card(path) == most_common
|
| 595 |
+
)
|
| 596 |
+
```
|
| 597 |
+
|
| 598 |
+
### 3. Reflection & Verification
|
| 599 |
+
|
| 600 |
+
```python
|
| 601 |
+
# Initial recommendation
|
| 602 |
+
initial_rec = await generate_recommendation(transaction, mcp_results)
|
| 603 |
+
|
| 604 |
+
# Self-critique
|
| 605 |
+
critique_prompt = f"""
|
| 606 |
+
Review this credit card recommendation:
|
| 607 |
+
|
| 608 |
+
{initial_rec}
|
| 609 |
+
|
| 610 |
+
Are there any errors or oversights?
|
| 611 |
+
- Did we miss a better card?
|
| 612 |
+
- Are the math calculations correct?
|
| 613 |
+
- Did we consider all constraints?
|
| 614 |
+
- Is the reasoning sound?
|
| 615 |
+
|
| 616 |
+
If you find issues, provide corrections.
|
| 617 |
+
"""
|
| 618 |
+
|
| 619 |
+
critique = model.generate_content(critique_prompt)
|
| 620 |
+
|
| 621 |
+
# Refine if needed
|
| 622 |
+
if "error" in critique.text.lower() or "issue" in critique.text.lower():
|
| 623 |
+
final_rec = await refine_recommendation(initial_rec, critique.text)
|
| 624 |
+
else:
|
| 625 |
+
final_rec = initial_rec
|
| 626 |
+
```
|
| 627 |
+
|
| 628 |
+
---
|
| 629 |
+
|
| 630 |
+
## Confidence Scoring
|
| 631 |
+
|
| 632 |
+
```python
|
| 633 |
+
def calculate_confidence(mcp_results: dict) -> float:
|
| 634 |
+
"""
|
| 635 |
+
Calculate confidence score based on multiple factors
|
| 636 |
+
"""
|
| 637 |
+
|
| 638 |
+
confidence = 1.0
|
| 639 |
+
|
| 640 |
+
# Factor 1: Reward difference (higher difference = higher confidence)
|
| 641 |
+
best_reward = mcp_results["smart_wallet"]["recommended_card"]["rewards"]
|
| 642 |
+
second_best = mcp_results["smart_wallet"]["all_cards_comparison"][1]["rewards"]
|
| 643 |
+
|
| 644 |
+
reward_gap = (best_reward - second_best) / best_reward
|
| 645 |
+
if reward_gap < 0.1: # Less than 10% difference
|
| 646 |
+
confidence *= 0.8
|
| 647 |
+
|
| 648 |
+
# Factor 2: Merchant acceptance certainty
|
| 649 |
+
if "rewards_rag" in mcp_results:
|
| 650 |
+
rag_confidence = mcp_results["rewards_rag"]["sources"][0]["relevance_score"]
|
| 651 |
+
confidence *= rag_confidence
|
| 652 |
+
|
| 653 |
+
# Factor 3: Cap warnings
|
| 654 |
+
if "forecast" in mcp_results:
|
| 655 |
+
if mcp_results["forecast"].get("warnings"):
|
| 656 |
+
confidence *= 0.9
|
| 657 |
+
|
| 658 |
+
# Factor 4: Data freshness
|
| 659 |
+
# (Lower confidence for stale data)
|
| 660 |
+
|
| 661 |
+
return round(confidence, 2)
|
| 662 |
+
```
|
| 663 |
+
|
| 664 |
+
---
|
| 665 |
+
|
| 666 |
+
## Error Handling & Fallbacks
|
| 667 |
+
|
| 668 |
+
```python
|
| 669 |
+
async def recommend_with_fallback(transaction: dict):
|
| 670 |
+
"""Graceful degradation if MCP servers fail"""
|
| 671 |
+
|
| 672 |
+
try:
|
| 673 |
+
# Try full reasoning pipeline
|
| 674 |
+
plan = await create_execution_plan(transaction)
|
| 675 |
+
mcp_results = await execute_mcp_calls(plan, transaction)
|
| 676 |
+
reasoning = await synthesize_reasoning(transaction, mcp_results, plan)
|
| 677 |
+
return format_recommendation(mcp_results, reasoning)
|
| 678 |
+
|
| 679 |
+
except Exception as e:
|
| 680 |
+
logger.error(f"Full pipeline failed: {e}")
|
| 681 |
+
|
| 682 |
+
try:
|
| 683 |
+
# Fallback: Use only Smart Wallet MCP
|
| 684 |
+
result = await call_smart_wallet(transaction)
|
| 685 |
+
return format_simple_recommendation(result)
|
| 686 |
+
|
| 687 |
+
except Exception as e2:
|
| 688 |
+
logger.error(f"Fallback failed: {e2}")
|
| 689 |
+
|
| 690 |
+
# Last resort: Rule-based recommendation
|
| 691 |
+
return rule_based_recommendation(transaction)
|
| 692 |
+
|
| 693 |
+
def rule_based_recommendation(transaction: dict):
|
| 694 |
+
"""Simple rule-based fallback"""
|
| 695 |
+
|
| 696 |
+
rules = {
|
| 697 |
+
"Groceries": "Amex Gold (4x points)",
|
| 698 |
+
"Dining": "Amex Gold (4x points)",
|
| 699 |
+
"Travel": "Chase Sapphire Reserve (3x points)",
|
| 700 |
+
"Gas": "Costco Anywhere Visa (4% cashback)",
|
| 701 |
+
"Default": "Citi Double Cash (2% on everything)"
|
| 702 |
+
}
|
| 703 |
+
|
| 704 |
+
category = transaction["category"]
|
| 705 |
+
recommended = rules.get(category, rules["Default"])
|
| 706 |
+
|
| 707 |
+
return {
|
| 708 |
+
"recommended_card": recommended,
|
| 709 |
+
"reasoning": f"Based on category rules for {category}",
|
| 710 |
+
"confidence": 0.60, # Lower confidence for rule-based
|
| 711 |
+
"warnings": ["Recommendation based on simplified rules (MCP servers unavailable)"]
|
| 712 |
+
}
|
| 713 |
+
```
|
| 714 |
+
|
| 715 |
+
---
|
| 716 |
+
|
| 717 |
+
## Testing & Evaluation
|
| 718 |
+
|
| 719 |
+
### Unit Tests
|
| 720 |
+
|
| 721 |
+
```python
|
| 722 |
+
import pytest
|
| 723 |
+
|
| 724 |
+
@pytest.mark.asyncio
|
| 725 |
+
async def test_planning_phase():
|
| 726 |
+
"""Test Claude's planning logic"""
|
| 727 |
+
transaction = {
|
| 728 |
+
"merchant": "Whole Foods",
|
| 729 |
+
"category": "Groceries",
|
| 730 |
+
"amount_usd": 127.50,
|
| 731 |
+
"mcc": "5411"
|
| 732 |
+
}
|
| 733 |
+
|
| 734 |
+
plan = await create_execution_plan(transaction)
|
| 735 |
+
|
| 736 |
+
assert "strategy" in plan
|
| 737 |
+
assert "mcp_calls" in plan
|
| 738 |
+
assert len(plan["mcp_calls"]) > 0
|
| 739 |
+
assert plan["confidence_threshold"] >= 0.5
|
| 740 |
+
|
| 741 |
+
@pytest.mark.asyncio
|
| 742 |
+
async def test_reasoning_phase():
|
| 743 |
+
"""Test Gemini's synthesis"""
|
| 744 |
+
mcp_results = {
|
| 745 |
+
"smart_wallet": {
|
| 746 |
+
"recommended_card": {"card_name": "Amex Gold"},
|
| 747 |
+
"rewards": {"cash_value": 5.10}
|
| 748 |
+
}
|
| 749 |
+
}
|
| 750 |
+
|
| 751 |
+
reasoning = await synthesize_reasoning({}, mcp_results, {})
|
| 752 |
+
|
| 753 |
+
assert "Amex Gold" in reasoning
|
| 754 |
+
assert "$5.10" in reasoning
|
| 755 |
+
```
|
| 756 |
+
|
| 757 |
+
### Integration Tests
|
| 758 |
+
|
| 759 |
+
```python
|
| 760 |
+
@pytest.mark.asyncio
|
| 761 |
+
async def test_end_to_end_recommendation():
|
| 762 |
+
"""Test full recommendation pipeline"""
|
| 763 |
+
transaction = {
|
| 764 |
+
"user_id": "test_user",
|
| 765 |
+
"merchant": "Whole Foods",
|
| 766 |
+
"category": "Groceries",
|
| 767 |
+
"amount_usd": 127.50,
|
| 768 |
+
"mcc": "5411"
|
| 769 |
+
}
|
| 770 |
+
|
| 771 |
+
result = await recommend_with_fallback(transaction)
|
| 772 |
+
|
| 773 |
+
assert result["recommended_card"]["card_name"]
|
| 774 |
+
assert result["rewards"]["cash_value"] > 0
|
| 775 |
+
assert result["confidence"] >= 0.5
|
| 776 |
+
assert len(result["reasoning"]) > 100
|
| 777 |
+
```
|
| 778 |
+
|
| 779 |
+
---
|
| 780 |
+
|
| 781 |
+
**Related Documentation:**
|
| 782 |
+
- [MCP Server Implementation](./mcp_architecture.md)
|
| 783 |
+
- [Modal Deployment Guide](./modal_deployment.md)
|
| 784 |
+
- [LlamaIndex RAG Setup](./llamaindex_setup.md)
|
| 785 |
+
```
|
| 786 |
+
|
| 787 |
+
---
|