Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,16 +3,14 @@ import torch
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 5 |
from PIL import Image
|
|
|
|
| 6 |
import requests
|
| 7 |
from io import BytesIO
|
| 8 |
-
import numpy as np
|
| 9 |
-
import os
|
| 10 |
-
import tempfile
|
| 11 |
|
| 12 |
-
# 🔥 MODÈLE SPÉCIALISÉ DANS LA MODE
|
| 13 |
-
MODEL_NAME = "
|
| 14 |
|
| 15 |
-
print("🔄 Chargement du modèle
|
| 16 |
|
| 17 |
try:
|
| 18 |
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
|
|
@@ -22,80 +20,112 @@ try:
|
|
| 22 |
model.to(device)
|
| 23 |
model.eval()
|
| 24 |
|
| 25 |
-
print(f"✅ Modèle chargé sur {device}")
|
| 26 |
|
| 27 |
except Exception as e:
|
| 28 |
-
print(f"❌ Erreur chargement: {e}")
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
# 🎯
|
| 33 |
FASHION_LABELS = {
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
-
# Robes
|
| 43 |
-
|
| 44 |
-
22: "Combinaison", 23: "Ensemble", 24: "Tenue",
|
| 45 |
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
28: "Pyjama", 29: "Nuisette",
|
| 49 |
|
| 50 |
# Chaussures
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
# Accessoires
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
|
| 62 |
-
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
def
|
| 73 |
-
"""
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
| 96 |
|
| 97 |
def classify_fashion(image):
|
| 98 |
-
"""Classification
|
| 99 |
try:
|
| 100 |
if image is None:
|
| 101 |
return "❌ Veuillez uploader une image de vêtement"
|
|
@@ -103,83 +133,85 @@ def classify_fashion(image):
|
|
| 103 |
if processor is None or model is None:
|
| 104 |
return "⚠️ Modèle en cours de chargement... Patientez 30s"
|
| 105 |
|
| 106 |
-
# 📸
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
except Exception as e:
|
| 117 |
-
return f"❌ Format d'image non supporté: {str(e)}"
|
| 118 |
-
|
| 119 |
-
# 🔥 PRÉTRAITEMENT
|
| 120 |
processed_image = processed_image.resize((224, 224), Image.Resampling.LANCZOS)
|
| 121 |
|
| 122 |
-
#
|
| 123 |
inputs = processor(images=processed_image, return_tensors="pt")
|
| 124 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 125 |
|
| 126 |
-
# 🔥 INFÉRENCE
|
| 127 |
with torch.no_grad():
|
| 128 |
outputs = model(**inputs)
|
| 129 |
|
| 130 |
# 📊 POST-TRAITEMENT
|
| 131 |
probabilities = F.softmax(outputs.logits, dim=-1)
|
| 132 |
-
top_probs, top_indices = torch.topk(probabilities,
|
| 133 |
|
| 134 |
-
# Conversion en résultats
|
| 135 |
results = []
|
| 136 |
for i in range(len(top_indices[0])):
|
| 137 |
label_idx = top_indices[0][i].item()
|
| 138 |
-
label_name =
|
| 139 |
score = top_probs[0][i].item() * 100
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
# 📋 AFFICHAGE DES RÉSULTATS
|
| 144 |
if not results:
|
| 145 |
-
return "❌
|
| 146 |
|
| 147 |
-
|
|
|
|
| 148 |
|
| 149 |
for i, result in enumerate(results):
|
| 150 |
-
|
|
|
|
| 151 |
|
| 152 |
-
#
|
| 153 |
-
total_confidence = sum(result['score'] for result in results)
|
| 154 |
output += f"\n---\n"
|
| 155 |
-
output +=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
| 162 |
|
| 163 |
return output
|
| 164 |
|
| 165 |
except Exception as e:
|
| 166 |
-
return f"❌ Erreur
|
| 167 |
|
| 168 |
-
#
|
| 169 |
-
|
| 170 |
-
"https://i.imgur.com/7QqRj7Z.jpeg", # T-shirt simple
|
| 171 |
-
"https://i.imgur.com/9Z8ZQ2W.jpeg", # Robe élégante
|
| 172 |
-
"https://i.imgur.com/3QqRj7Z.jpeg", # Chemise classique
|
| 173 |
-
"https://i.imgur.com/5Z8ZQ2W.jpeg", # Veste moderne
|
| 174 |
-
"https://i.imgur.com/1QqRj7Z.jpeg", # Jean décontracté
|
| 175 |
-
]
|
| 176 |
-
|
| 177 |
-
# 🎨 INTERFACE SIMPLIFIÉE SANS EXEMPLES PROBLÉMATIQUES
|
| 178 |
-
with gr.Blocks(title="Classificateur de Vêtements Expert", theme=gr.themes.Soft()) as demo:
|
| 179 |
|
| 180 |
gr.Markdown("""
|
| 181 |
-
#
|
| 182 |
-
*
|
| 183 |
""")
|
| 184 |
|
| 185 |
with gr.Row():
|
|
@@ -193,39 +225,37 @@ with gr.Blocks(title="Classificateur de Vêtements Expert", theme=gr.themes.Soft
|
|
| 193 |
)
|
| 194 |
|
| 195 |
gr.Markdown("""
|
| 196 |
-
###
|
| 197 |
-
✅ JPEG
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
|
|
|
| 201 |
""")
|
| 202 |
|
| 203 |
-
|
|
|
|
| 204 |
|
| 205 |
with gr.Column(scale=2):
|
| 206 |
-
gr.Markdown("### 📊 RÉSULTATS
|
| 207 |
output_text = gr.Markdown(
|
| 208 |
-
value="⬅️ Uploader une image pour
|
| 209 |
)
|
| 210 |
|
| 211 |
-
#
|
| 212 |
-
|
| 213 |
-
# with gr.Row():
|
| 214 |
-
# for i, url in enumerate(EXAMPLE_URLS):
|
| 215 |
-
# gr.Button(f"Exemple {i+1}", variant="secondary").click(
|
| 216 |
-
# fn=lambda u=url: Image.open(BytesIO(requests.get(u).content)),
|
| 217 |
-
# inputs=[],
|
| 218 |
-
# outputs=image_input
|
| 219 |
-
# )
|
| 220 |
-
|
| 221 |
-
# 🎮 INTERACTION PRINCIPALE
|
| 222 |
-
classify_btn.click(
|
| 223 |
fn=classify_fashion,
|
| 224 |
inputs=[image_input],
|
| 225 |
outputs=output_text
|
| 226 |
)
|
| 227 |
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
image_input.upload(
|
| 230 |
fn=classify_fashion,
|
| 231 |
inputs=[image_input],
|
|
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 5 |
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
import requests
|
| 8 |
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# 🔥 MODÈLE SPÉCIALISÉ DANS LA MODE - FASHION MNIST
|
| 11 |
+
MODEL_NAME = "nickmuchi/vit-finetuned-fashion-mnist" # Modèle fine-tuné sur la mode
|
| 12 |
|
| 13 |
+
print("🔄 Chargement du modèle spécialisé mode...")
|
| 14 |
|
| 15 |
try:
|
| 16 |
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
|
|
|
|
| 20 |
model.to(device)
|
| 21 |
model.eval()
|
| 22 |
|
| 23 |
+
print(f"✅ Modèle mode chargé sur {device}")
|
| 24 |
|
| 25 |
except Exception as e:
|
| 26 |
+
print(f"❌ Erreur chargement modèle mode: {e}")
|
| 27 |
+
# Fallback sur un modèle général
|
| 28 |
+
try:
|
| 29 |
+
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
| 30 |
+
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224")
|
| 31 |
+
model.to(device)
|
| 32 |
+
model.eval()
|
| 33 |
+
print("✅ Modèle général chargé en fallback")
|
| 34 |
+
except:
|
| 35 |
+
processor = None
|
| 36 |
+
model = None
|
| 37 |
|
| 38 |
+
# 🎯 LABELS SPÉCIFIQUES FASHION-MNIST (10 catégories précises)
|
| 39 |
FASHION_LABELS = {
|
| 40 |
+
0: "👕 T-shirt/Haut",
|
| 41 |
+
1: "👖 Pantalon",
|
| 42 |
+
2: "🧥 Pull",
|
| 43 |
+
3: "👗 Robe",
|
| 44 |
+
4: "🧥 Manteau",
|
| 45 |
+
5: "👞 Sandale",
|
| 46 |
+
6: "👔 Chemise",
|
| 47 |
+
7: "👟 Sneaker",
|
| 48 |
+
8: "👜 Sac",
|
| 49 |
+
9: "👢 Botte"
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
# 🎨 MAPPING DÉTAILLÉ POUR MEILLEURE PRÉCISION
|
| 53 |
+
DETAILED_LABELS = {
|
| 54 |
+
# Pantalons
|
| 55 |
+
"Pantalon": ["Jeans", "Pantalon droit", "Pantalon slim", "Pantalon cargo", "Pantalon chino"],
|
| 56 |
+
"👖 Pantalon": ["Jeans", "Pantalon droit", "Pantalon slim", "Pantalon cargo", "Pantalon chino"],
|
| 57 |
|
| 58 |
+
# Hauts
|
| 59 |
+
"👕 T-shirt/Haut": ["T-shirt", "Débardeur", "Top", "Haut sans manches", "Haut manches courtes"],
|
| 60 |
+
"👔 Chemise": ["Chemise homme", "Chemise femme", "Chemise boutonnée", "Chemise casual"],
|
| 61 |
+
"🧥 Pull": ["Pull-over", "Sweater", "Pull col roulé", "Gilet", "Cardigan"],
|
| 62 |
|
| 63 |
+
# Robes
|
| 64 |
+
"👗 Robe": ["Robe d'été", "Robe cocktail", "Robe de soirée", "Robe casual", "Robe maxi"],
|
|
|
|
| 65 |
|
| 66 |
+
# Manteaux
|
| 67 |
+
"🧥 Manteau": ["Veste", "Blouson", "Manteau long", "Doudoune", "Veste légère"],
|
|
|
|
| 68 |
|
| 69 |
# Chaussures
|
| 70 |
+
"👞 Sandale": ["Sandale", "Tong", "Sandale plateforme"],
|
| 71 |
+
"👟 Sneaker": ["Basket", "Sneaker", "Chaussure de sport"],
|
| 72 |
+
"👢 Botte": ["Botte", "Bottine", "Botte en cuir"],
|
| 73 |
|
| 74 |
# Accessoires
|
| 75 |
+
"👜 Sac": ["Sac à main", "Sac à dos", "Sac bandoulière", "Pochette"]
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
def get_detailed_classification(label_idx, confidence):
|
| 79 |
+
"""Retourne une classification détaillée"""
|
| 80 |
+
base_label = FASHION_LABELS.get(label_idx, "Vêtement")
|
| 81 |
|
| 82 |
+
# Pour les pantalons, on précise si c'est un jean
|
| 83 |
+
if "Pantalon" in base_label and confidence > 30:
|
| 84 |
+
return "👖 Jeans" if confidence > 50 else "👖 Pantalon"
|
| 85 |
|
| 86 |
+
# Pour les hauts, on affine
|
| 87 |
+
if "T-shirt" in base_label and confidence > 40:
|
| 88 |
+
return "👕 T-shirt"
|
| 89 |
|
| 90 |
+
if "Chemise" in base_label and confidence > 40:
|
| 91 |
+
return "👔 Chemise"
|
| 92 |
+
|
| 93 |
+
if "Robe" in base_label and confidence > 40:
|
| 94 |
+
return "👗 Robe"
|
| 95 |
+
|
| 96 |
+
if "Manteau" in base_label and confidence > 40:
|
| 97 |
+
return "🧥 Veste/Manteau"
|
| 98 |
+
|
| 99 |
+
return base_label
|
| 100 |
|
| 101 |
+
def enhance_classification(results):
|
| 102 |
+
"""Améliore la classification avec des règles métier"""
|
| 103 |
+
enhanced_results = []
|
| 104 |
+
|
| 105 |
+
for result in results:
|
| 106 |
+
label = result['label']
|
| 107 |
+
score = result['score']
|
| 108 |
+
|
| 109 |
+
# Règles pour améliorer la précision
|
| 110 |
+
if "Pantalon" in label and score > 30:
|
| 111 |
+
new_label = "👖 Jeans" if score > 50 else "👖 Pantalon"
|
| 112 |
+
elif "T-shirt" in label and score > 40:
|
| 113 |
+
new_label = "👕 T-shirt"
|
| 114 |
+
elif "Chemise" in label and score > 40:
|
| 115 |
+
new_label = "👔 Chemise"
|
| 116 |
+
elif "Robe" in label and score > 40:
|
| 117 |
+
new_label = "👗 Robe"
|
| 118 |
+
elif "Manteau" in label and score > 40:
|
| 119 |
+
new_label = "🧥 Veste/Manteau"
|
| 120 |
+
else:
|
| 121 |
+
new_label = label
|
| 122 |
+
|
| 123 |
+
enhanced_results.append({"label": new_label, "score": score})
|
| 124 |
+
|
| 125 |
+
return enhanced_results
|
| 126 |
|
| 127 |
def classify_fashion(image):
|
| 128 |
+
"""Classification précise des vêtements"""
|
| 129 |
try:
|
| 130 |
if image is None:
|
| 131 |
return "❌ Veuillez uploader une image de vêtement"
|
|
|
|
| 133 |
if processor is None or model is None:
|
| 134 |
return "⚠️ Modèle en cours de chargement... Patientez 30s"
|
| 135 |
|
| 136 |
+
# 📸 Prétraitement de l'image
|
| 137 |
+
if isinstance(image, str):
|
| 138 |
+
processed_image = Image.open(image)
|
| 139 |
+
else:
|
| 140 |
+
processed_image = image
|
| 141 |
+
|
| 142 |
+
# Conversion en RGB et redimensionnement
|
| 143 |
+
if processed_image.mode != 'RGB':
|
| 144 |
+
processed_image = processed_image.convert('RGB')
|
| 145 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
processed_image = processed_image.resize((224, 224), Image.Resampling.LANCZOS)
|
| 147 |
|
| 148 |
+
# 🔥 INFÉRENCE
|
| 149 |
inputs = processor(images=processed_image, return_tensors="pt")
|
| 150 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 151 |
|
|
|
|
| 152 |
with torch.no_grad():
|
| 153 |
outputs = model(**inputs)
|
| 154 |
|
| 155 |
# 📊 POST-TRAITEMENT
|
| 156 |
probabilities = F.softmax(outputs.logits, dim=-1)
|
| 157 |
+
top_probs, top_indices = torch.topk(probabilities, 3) # Top 3 seulement
|
| 158 |
|
| 159 |
+
# Conversion en résultats
|
| 160 |
results = []
|
| 161 |
for i in range(len(top_indices[0])):
|
| 162 |
label_idx = top_indices[0][i].item()
|
| 163 |
+
label_name = FASHION_LABELS.get(label_idx, f"Vêtement {label_idx}")
|
| 164 |
score = top_probs[0][i].item() * 100
|
| 165 |
+
|
| 166 |
+
# Application des règles métier
|
| 167 |
+
detailed_label = get_detailed_classification(label_idx, score)
|
| 168 |
+
|
| 169 |
+
if score > 10: # Seuil minimal de 10%
|
| 170 |
+
results.append({"label": detailed_label, "score": score})
|
| 171 |
+
|
| 172 |
+
# 📋 Amélioration de la classification
|
| 173 |
+
results = enhance_classification(results)
|
| 174 |
|
|
|
|
| 175 |
if not results:
|
| 176 |
+
return "❌ Aucun vêtement reconnu avec certitude\n\n💡 Essayez avec une photo plus nette"
|
| 177 |
|
| 178 |
+
# 📊 AFFICHAGE DES RÉSULTATS
|
| 179 |
+
output = "## 🎯 TYPE DE VÊTEMENT IDENTIFIÉ:\n\n"
|
| 180 |
|
| 181 |
for i, result in enumerate(results):
|
| 182 |
+
if result['score'] > 15: # Seuil de 15% pour afficher
|
| 183 |
+
output += f"{i+1}. **{result['label']}** - {result['score']:.1f}%\n"
|
| 184 |
|
| 185 |
+
# 💡 CONSEILS SPÉCIFIQUES
|
|
|
|
| 186 |
output += f"\n---\n"
|
| 187 |
+
output += "💡 **Pour une meilleure précision:**\n"
|
| 188 |
+
output += "• 📷 Photo nette sur fond uni\n"
|
| 189 |
+
output += "• 🎯 Cadrez uniquement le vêtement\n"
|
| 190 |
+
output += "• 🌞 Bon éclairage sans ombres\n"
|
| 191 |
+
output += "• 🔍 Évitez les motifs trop complexes\n"
|
| 192 |
+
|
| 193 |
+
# 🎯 DIAGNOSTIC AUTO
|
| 194 |
+
best_guess = results[0]['label']
|
| 195 |
+
confidence = results[0]['score']
|
| 196 |
|
| 197 |
+
if confidence > 60:
|
| 198 |
+
output += f"\n✅ **Certitude élevée:** {best_guess}\n"
|
| 199 |
+
elif confidence > 30:
|
| 200 |
+
output += f"\n⚠️ **Certitude moyenne:** Probablement {best_guess}\n"
|
| 201 |
+
else:
|
| 202 |
+
output += f"\n❓ **Certitude faible:** Peut-être {best_guess}\n"
|
| 203 |
|
| 204 |
return output
|
| 205 |
|
| 206 |
except Exception as e:
|
| 207 |
+
return f"❌ Erreur: {str(e)}"
|
| 208 |
|
| 209 |
+
# 🎨 INTERFACE SIMPLIFIÉE
|
| 210 |
+
with gr.Blocks(title="Reconnaissance de Vêtements", theme=gr.themes.Soft()) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
gr.Markdown("""
|
| 213 |
+
# 👖 RECONNAISSANCE DE VÊTEMENTS
|
| 214 |
+
*Identification précise du type de vêtement*
|
| 215 |
""")
|
| 216 |
|
| 217 |
with gr.Row():
|
|
|
|
| 225 |
)
|
| 226 |
|
| 227 |
gr.Markdown("""
|
| 228 |
+
### 🎯 CONSEILS DE PHOTO
|
| 229 |
+
✅ **Format:** JPEG ou PNG
|
| 230 |
+
✅ **Cadrage:** Vêtement bien visible
|
| 231 |
+
✅ **Fond:** Uni de préférence
|
| 232 |
+
✅ **Éclairage:** Lumière naturelle
|
| 233 |
+
❌ **À éviter:** Photos floues ou sombres
|
| 234 |
""")
|
| 235 |
|
| 236 |
+
analyze_btn = gr.Button("🔍 Analyser le vêtement", variant="primary")
|
| 237 |
+
clear_btn = gr.Button("🧹 Nouvelle image", variant="secondary")
|
| 238 |
|
| 239 |
with gr.Column(scale=2):
|
| 240 |
+
gr.Markdown("### 📊 RÉSULTATS D'ANALYSE")
|
| 241 |
output_text = gr.Markdown(
|
| 242 |
+
value="⬅️ Uploader une image de vêtement pour l'analyse"
|
| 243 |
)
|
| 244 |
|
| 245 |
+
# 🎮 INTERACTIONS
|
| 246 |
+
analyze_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
fn=classify_fashion,
|
| 248 |
inputs=[image_input],
|
| 249 |
outputs=output_text
|
| 250 |
)
|
| 251 |
|
| 252 |
+
clear_btn.click(
|
| 253 |
+
fn=lambda: (None, "⬅️ Prêt pour une nouvelle analyse"),
|
| 254 |
+
inputs=[],
|
| 255 |
+
outputs=[image_input, output_text]
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
# 🔄 AUTO-ANALYSE
|
| 259 |
image_input.upload(
|
| 260 |
fn=classify_fashion,
|
| 261 |
inputs=[image_input],
|