VibeVoice-Realtime-0.5B / demo /realtime_model_inference_from_file.py
akhaliq's picture
akhaliq HF Staff
Upload 37 files
26e0cd3 verified
import argparse
import os
import re
import traceback
from typing import List, Tuple, Union, Dict, Any
import time
import torch
import copy
from vibevoice.modular.modeling_vibevoice_streaming_inference import VibeVoiceStreamingForConditionalGenerationInference
from vibevoice.processor.vibevoice_streaming_processor import VibeVoiceStreamingProcessor
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
class VoiceMapper:
"""Maps speaker names to voice file paths"""
def __init__(self):
self.setup_voice_presets()
# change name according to our preset voice file
new_dict = {}
for name, path in self.voice_presets.items():
if '_' in name:
name = name.split('_')[0]
if '-' in name:
name = name.split('-')[-1]
new_dict[name] = path
self.voice_presets.update(new_dict)
# print(list(self.voice_presets.keys()))
def setup_voice_presets(self):
"""Setup voice presets by scanning the voices directory."""
voices_dir = os.path.join(os.path.dirname(__file__), "voices/streaming_model")
# Check if voices directory exists
if not os.path.exists(voices_dir):
print(f"Warning: Voices directory not found at {voices_dir}")
self.voice_presets = {}
self.available_voices = {}
return
# Scan for all VOICE files in the voices directory
self.voice_presets = {}
# Get all .pt files in the voices directory
pt_files = [f for f in os.listdir(voices_dir)
if f.lower().endswith('.pt') and os.path.isfile(os.path.join(voices_dir, f))]
# Create dictionary with filename (without extension) as key
for pt_file in pt_files:
# Remove .pt extension to get the name
name = os.path.splitext(pt_file)[0]
# Create full path
full_path = os.path.join(voices_dir, pt_file)
self.voice_presets[name] = full_path
# Sort the voice presets alphabetically by name for better UI
self.voice_presets = dict(sorted(self.voice_presets.items()))
# Filter out voices that don't exist (this is now redundant but kept for safety)
self.available_voices = {
name: path for name, path in self.voice_presets.items()
if os.path.exists(path)
}
print(f"Found {len(self.available_voices)} voice files in {voices_dir}")
print(f"Available voices: {', '.join(self.available_voices.keys())}")
def get_voice_path(self, speaker_name: str) -> str:
"""Get voice file path for a given speaker name"""
# First try exact match
if speaker_name in self.voice_presets:
return self.voice_presets[speaker_name]
# Try partial matching (case insensitive)
speaker_lower = speaker_name.lower()
for preset_name, path in self.voice_presets.items():
if preset_name.lower() in speaker_lower or speaker_lower in preset_name.lower():
return path
# Default to first voice if no match found
default_voice = list(self.voice_presets.values())[0]
print(f"Warning: No voice preset found for '{speaker_name}', using default voice: {default_voice}")
return default_voice
def parse_args():
parser = argparse.ArgumentParser(description="VibeVoiceStreaming Processor TXT Input Test")
parser.add_argument(
"--model_path",
type=str,
default="microsoft/VibeVoice-Realtime-0.5B",
help="Path to the HuggingFace model directory",
)
parser.add_argument(
"--txt_path",
type=str,
default="demo/text_examples/1p_vibevoice.txt",
help="Path to the txt file containing the script",
)
parser.add_argument(
"--speaker_name",
type=str,
default="Wayne",
help="Single speaker name (e.g., --speaker_name Wayne)",
)
parser.add_argument(
"--output_dir",
type=str,
default="./outputs",
help="Directory to save output audio files",
)
parser.add_argument(
"--device",
type=str,
default=("cuda" if torch.cuda.is_available() else ("mps" if torch.backends.mps.is_available() else "cpu")),
help="Device for inference: cuda | mps | cpu",
)
parser.add_argument(
"--cfg_scale",
type=float,
default=1.5,
help="CFG (Classifier-Free Guidance) scale for generation (default: 1.5)",
)
return parser.parse_args()
def main():
args = parse_args()
# Normalize potential 'mpx' typo to 'mps'
if args.device.lower() == "mpx":
print("Note: device 'mpx' detected, treating it as 'mps'.")
args.device = "mps"
# Validate mps availability if requested
if args.device == "mps" and not torch.backends.mps.is_available():
print("Warning: MPS not available. Falling back to CPU.")
args.device = "cpu"
print(f"Using device: {args.device}")
# Initialize voice mapper
voice_mapper = VoiceMapper()
# Check if txt file exists
if not os.path.exists(args.txt_path):
print(f"Error: txt file not found: {args.txt_path}")
return
# Read and parse txt file
print(f"Reading script from: {args.txt_path}")
with open(args.txt_path, 'r', encoding='utf-8') as f:
scripts = f.read().strip()
if not scripts:
print("Error: No valid scripts found in the txt file")
return
full_script = scripts.replace("’", "'").replace('“', '"').replace('”', '"')
print(f"Loading processor & model from {args.model_path}")
processor = VibeVoiceStreamingProcessor.from_pretrained(args.model_path)
# Decide dtype & attention implementation
if args.device == "mps":
load_dtype = torch.float32 # MPS requires float32
attn_impl_primary = "sdpa" # flash_attention_2 not supported on MPS
elif args.device == "cuda":
load_dtype = torch.bfloat16
attn_impl_primary = "flash_attention_2"
else: # cpu
load_dtype = torch.float32
attn_impl_primary = "sdpa"
print(f"Using device: {args.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}")
# Load model with device-specific logic
try:
if args.device == "mps":
model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
args.model_path,
torch_dtype=load_dtype,
attn_implementation=attn_impl_primary,
device_map=None, # load then move
)
model.to("mps")
elif args.device == "cuda":
model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
args.model_path,
torch_dtype=load_dtype,
device_map="cuda",
attn_implementation=attn_impl_primary,
)
else: # cpu
model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
args.model_path,
torch_dtype=load_dtype,
device_map="cpu",
attn_implementation=attn_impl_primary,
)
except Exception as e:
if attn_impl_primary == 'flash_attention_2':
print(f"[ERROR] : {type(e).__name__}: {e}")
print(traceback.format_exc())
print("Error loading the model. Trying to use SDPA. However, note that only flash_attention_2 has been fully tested, and using SDPA may result in lower audio quality.")
model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
args.model_path,
torch_dtype=load_dtype,
device_map=(args.device if args.device in ("cuda", "cpu") else None),
attn_implementation='sdpa'
)
if args.device == "mps":
model.to("mps")
else:
raise e
model.eval()
model.set_ddpm_inference_steps(num_steps=5)
if hasattr(model.model, 'language_model'):
print(f"Language model attention: {model.model.language_model.config._attn_implementation}")
target_device = args.device if args.device != "cpu" else "cpu"
voice_sample = voice_mapper.get_voice_path(args.speaker_name)
all_prefilled_outputs = torch.load(voice_sample, map_location=target_device, weights_only=False)
# Prepare inputs for the model
inputs = processor.process_input_with_cached_prompt(
text=full_script,
cached_prompt=all_prefilled_outputs,
padding=True,
return_tensors="pt",
return_attention_mask=True,
)
# Move tensors to target device
for k, v in inputs.items():
if torch.is_tensor(v):
inputs[k] = v.to(target_device)
print(f"Starting generation with cfg_scale: {args.cfg_scale}")
# Generate audio
start_time = time.time()
outputs = model.generate(
**inputs,
max_new_tokens=None,
cfg_scale=args.cfg_scale,
tokenizer=processor.tokenizer,
generation_config={'do_sample': False},
verbose=True,
all_prefilled_outputs=copy.deepcopy(all_prefilled_outputs) if all_prefilled_outputs is not None else None,
)
generation_time = time.time() - start_time
print(f"Generation time: {generation_time:.2f} seconds")
# Calculate audio duration and additional metrics
if outputs.speech_outputs and outputs.speech_outputs[0] is not None:
# Assuming 24kHz sample rate (common for speech synthesis)
sample_rate = 24000
audio_samples = outputs.speech_outputs[0].shape[-1] if len(outputs.speech_outputs[0].shape) > 0 else len(outputs.speech_outputs[0])
audio_duration = audio_samples / sample_rate
rtf = generation_time / audio_duration if audio_duration > 0 else float('inf')
print(f"Generated audio duration: {audio_duration:.2f} seconds")
print(f"RTF (Real Time Factor): {rtf:.2f}x")
else:
print("No audio output generated")
# Calculate token metrics
input_tokens = inputs['tts_text_ids'].shape[1] # Number of input tokens
output_tokens = outputs.sequences.shape[1] # Total tokens (input + generated)
generated_tokens = output_tokens - input_tokens - all_prefilled_outputs['tts_lm']['last_hidden_state'].size(1)
print(f"Prefilling text tokens: {input_tokens}")
print(f"Generated speech tokens: {generated_tokens}")
print(f"Total tokens: {output_tokens}")
# Save output (processor handles device internally)
txt_filename = os.path.splitext(os.path.basename(args.txt_path))[0]
output_path = os.path.join(args.output_dir, f"{txt_filename}_generated.wav")
os.makedirs(args.output_dir, exist_ok=True)
processor.save_audio(
outputs.speech_outputs[0], # First (and only) batch item
output_path=output_path,
)
print(f"Saved output to {output_path}")
# Print summary
print("\n" + "="*50)
print("GENERATION SUMMARY")
print("="*50)
print(f"Input file: {args.txt_path}")
print(f"Output file: {output_path}")
print(f"Speaker names: {args.speaker_name}")
print(f"Prefilling text tokens: {input_tokens}")
print(f"Generated speech tokens: {generated_tokens}")
print(f"Total tokens: {output_tokens}")
print(f"Generation time: {generation_time:.2f} seconds")
print(f"Audio duration: {audio_duration:.2f} seconds")
print(f"RTF (Real Time Factor): {rtf:.2f}x")
print("="*50)
if __name__ == "__main__":
main()