Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pytesseract | |
| from PIL import Image | |
| from transformers import pipeline | |
| import re | |
| # 1. Load scam keywords from file | |
| # Each line in 'scam_keywords.txt' is treated as a separate keyword. | |
| with open("scam_keywords.txt", "r", encoding="utf-8") as f: | |
| SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()] | |
| # 2. Zero-Shot Classification Pipeline | |
| model_name = "joeddav/xlm-roberta-large-xnli" | |
| classifier = pipeline("zero-shot-classification", model=model_name) | |
| CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"] | |
| def keyword_and_url_boost(probabilities, text): | |
| """ | |
| Adjust final probabilities if certain scam-related keywords or URLs appear. | |
| - probabilities: dict, label -> original probability | |
| - text: the combined text from user input + OCR | |
| Returns an updated dict of probabilities that sum to 1. | |
| """ | |
| lower_text = text.lower() | |
| # 1. Check scam keywords | |
| keyword_count = sum(1 for kw in SCAM_KEYWORDS if kw in lower_text) | |
| keyword_boost = 0.05 * keyword_count # 5% per found keyword | |
| keyword_boost = min(keyword_boost, 0.30) # cap at +30% | |
| # 2. Check if there's any URL (simple regex for http/https) | |
| found_urls = re.findall(r"(https?://[^\s]+)", lower_text) | |
| url_boost = 0.0 | |
| if found_urls: | |
| # For demonstration: a flat +10% if a URL is found | |
| url_boost = 0.10 | |
| # 3. Combine total boost | |
| total_boost = keyword_boost + url_boost | |
| total_boost = min(total_boost, 0.40) # cap at +40% | |
| if total_boost <= 0: | |
| return probabilities # no change if no keywords/URLs found | |
| smishing_prob = probabilities["SMiShing"] | |
| other_scam_prob = probabilities["Other Scam"] | |
| legit_prob = probabilities["Legitimate"] | |
| # 4. Distribute the total boost equally to "SMiShing" and "Other Scam" | |
| half_boost = total_boost / 2.0 | |
| smishing_boosted = smishing_prob + half_boost | |
| other_scam_boosted = other_scam_prob + half_boost | |
| legit_boosted = legit_prob | |
| # 5. Re-normalize so they sum to 1 | |
| total = smishing_boosted + other_scam_boosted + legit_boosted | |
| if total > 0: | |
| smishing_final = smishing_boosted / total | |
| other_scam_final = other_scam_boosted / total | |
| legit_final = legit_boosted / total | |
| else: | |
| smishing_final = 0.0 | |
| other_scam_final = 0.0 | |
| legit_final = 1.0 | |
| return { | |
| "SMiShing": smishing_final, | |
| "Other Scam": other_scam_final, | |
| "Legitimate": legit_final | |
| } | |
| def smishing_detector(text, image): | |
| """ | |
| 1. Extract text from the image (OCR) if provided. | |
| 2. Combine with user-entered text. | |
| 3. Zero-shot classification -> base probabilities. | |
| 4. Keyword + URL boost -> adjusted probabilities. | |
| 5. Return final label, confidence, etc. | |
| """ | |
| # Step 1: OCR if there's an image | |
| combined_text = text if text else "" | |
| if image is not None: | |
| ocr_text = pytesseract.image_to_string(image, lang="spa+eng") | |
| combined_text += " " + ocr_text | |
| # Clean text | |
| combined_text = combined_text.strip() | |
| if not combined_text: | |
| return { | |
| "text_used_for_classification": "(none)", | |
| "label": "No text provided", | |
| "confidence": 0.0, | |
| "keywords_found": [], | |
| "urls_found": [] | |
| } | |
| # Step 2: Zero-shot classification | |
| result = classifier( | |
| sequences=combined_text, | |
| candidate_labels=CANDIDATE_LABELS, | |
| hypothesis_template="This message is {}." | |
| ) | |
| original_probs = dict(zip(result["labels"], result["scores"])) | |
| # Step 3: Keyword + URL boost | |
| boosted_probs = keyword_and_url_boost(original_probs, combined_text) | |
| # Step 4: Pick final label after boost | |
| final_label = max(boosted_probs, key=boosted_probs.get) | |
| final_confidence = round(boosted_probs[final_label], 3) | |
| # Step 5: Identify which keywords and URLs were found | |
| lower_text = combined_text.lower() | |
| found_keywords = [kw for kw in SCAM_KEYWORDS if kw in lower_text] | |
| found_urls = re.findall(r"(https?://[^\s]+)", lower_text) | |
| return { | |
| "text_used_for_classification": combined_text, | |
| "original_probabilities": {k: round(v, 3) for k, v in original_probs.items()}, | |
| "boosted_probabilities": {k: round(v, 3) for k, v in boosted_probs.items()}, | |
| "label": final_label, | |
| "confidence": final_confidence, | |
| "keywords_found": found_keywords, | |
| "urls_found": found_urls, | |
| } | |
| demo = gr.Interface( | |
| fn=smishing_detector, | |
| inputs=[ | |
| gr.Textbox( | |
| lines=3, | |
| label="Paste Suspicious SMS Text (English/Spanish)", | |
| placeholder="Type or paste the message here..." | |
| ), | |
| gr.Image( | |
| type="pil", | |
| label="Or Upload a Screenshot (Optional)" | |
| ) | |
| ], | |
| outputs="json", | |
| title="SMiShing & Scam Detector (Keyword + URL Boost)", | |
| description=""" | |
| This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model | |
| (joeddav/xlm-roberta-large-xnli). It also checks for certain "scam keywords" (loaded from a file) | |
| and any URLs, boosting the probability of a scam label if found. | |
| Supports English & Spanish text (OCR included). | |
| """, | |
| allow_flagging="never" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |