fastapi-apertus / app.py
Oleg Lavrovsky
Quantization config
0494685 unverified
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, ValidationError
from typing import List, Optional
from torch import cuda
from transformers import (
AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
)
from hashlib import sha256
from huggingface_hub import login
from dotenv import load_dotenv
from datetime import datetime
import os
import uvicorn
import time
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Required for access to a gated model
load_dotenv()
hf_token = os.getenv("HF_TOKEN", None)
if hf_token is not None:
login(token=hf_token)
# Configurable model identifier
model_name = os.getenv("HF_MODEL", "swiss-ai/Apertus-8B-Instruct-2509")
model_quantization = int(os.getenv("QUANTIZE", 0)) # 8, 4, 0=default
# Configure max tokens
MAX_NEW_TOKENS = 4096
# Load base prompt from a text file
system_prompt = None
if int(os.getenv("USE_SYSTEM_PROMPT", 1)):
with open('system_prompt.md', 'r') as file:
system_prompt = file.read()
# Keep data in session
model = None
tokenizer = None
class TextInput(BaseModel):
text: str = ""
min_length: int = 3
# Apertus by default supports a context length up to 65,536 tokens.
max_length: int = 65536
class ModelResponse(BaseModel):
text: str
confidence: float
processing_time: float
class ChatMessage(BaseModel):
role: str = "user"
content: str = ""
class Completion(BaseModel):
model: str = "apertus"
messages: List[ChatMessage]
max_tokens: Optional[int] = 512
temperature: Optional[float] = 0.1
top_p: Optional[float] = 0.9
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Load the transformer model on startup"""
global model, tokenizer
try:
logger.info(f"Loading model: {model_name}")
# Automatically select device based on availability
device = "cuda" if cuda.is_available() else "cpu"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Use a quantization setting
bnb_config = None
if model_quantization == 8:
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
elif model_quantization == 4:
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
if bnb_config is not None:
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto", # Automatically splits model across CPU/GPU
offload_folder="offload", # Temporary offload to disk
low_cpu_mem_usage=True, # Avoids unnecessary CPU memory duplication
quantization_config=bnb_config, # To reduce memory and overhead
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto", # Automatically splits model across CPU/GPU
offload_folder="offload", # Temporary offload to disk
)
logger.info(f"Model loaded successfully! ({device})")
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise e
# Release resources when the app is stopped
yield
del model
del tokenizer
cuda.empty_cache()
# Setup our app
app = FastAPI(
title="Apertus API",
description="REST API for serving Apertus models via Hugging Face transformers",
version="0.1.0",
docs_url="/",
lifespan=lifespan
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def fit_to_length(text, min_length=3, max_length=100):
"""Truncate text if too long."""
text = text[:max_length]
if len(text) == max_length:
logger.warning("Warning: text truncated")
if len(text) < min_length:
logger.warning("Warning: empty text, aborting")
return None
return text
def get_completion_text(messages_think: List[ChatMessage]):
txt = ""
for cm in messages_think:
txt = " ".join((txt, cm.content))
return txt
def get_message_id(txt: str):
return sha256(str(txt).encode()).hexdigest()
def get_model_reponse(messages_think: List[ChatMessage]):
"""Process the text content."""
# Apply the system template
has_system = False
for m in messages_think:
if m.role == 'system':
has_system = True
if not has_system and system_prompt:
cm = ChatMessage(role='system', content=system_prompt)
messages_think.insert(0, cm)
print(messages_think)
# Prepare the model input
text = tokenizer.apply_chat_template(
messages_think,
tokenize=False,
add_generation_prompt=True,
top_p=0.9,
temperature=0.8,
)
model_inputs = tokenizer(
[text],
return_tensors="pt",
add_special_tokens=False
).to(model.device)
# Generate the output
generated_ids = model.generate(
**model_inputs,
max_new_tokens=MAX_NEW_TOKENS
)
# Get and decode the output
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
# Decode the text message
return tokenizer.decode(output_ids, skip_special_tokens=True)
@app.post("/v1/models/apertus")
async def completion(data: Completion):
"""Generate an OpenAPI-style completion"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
try:
mt = data.messages
text = get_completion_text(mt)
result = get_model_reponse(mt)
# Standard formatted object
return {
"id": get_message_id(text),
"object": "chat.completion",
"created": time.time(),
"model": data.model,
"choices": [{
"message": ChatMessage(role="assistant", content=result)
}],
"usage": {
"prompt_tokens": len(text),
"completion_tokens": len(result),
"total_tokens": len(text) + len(result)
}
}
except Exception as e:
logger.warning(e)
raise HTTPException(status_code=400, detail="Could not process") from e
@app.get("/predict", response_model=ModelResponse)
async def predict(q: str):
"""Generate a model response for input text"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
try:
start_time = time.time()
input_data = TextInput(text=q)
text = fit_to_length(input_data.text, input_data.min_length, input_data.max_length)
messages_think = [
{"role": "user", "content": text}
]
result = get_model_reponse(messages_think)
# Checkpoint
processing_time = time.time() - start_time
return ModelResponse(
text=result, #['label'],
confidence=0, #result['score'],
processing_time=processing_time
)
except Exception as e:
logger.warning(e)
raise HTTPException(status_code=500, detail="Evaluation failed")
@app.get("/health")
async def health_check():
"""Health check and basic configuration"""
return {
"status": "healthy",
"model_loaded": model is not None,
"gpu_available": cuda.is_available()
}
if __name__=='__main__':
uvicorn.run('app:app', reload=True)